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Abstract 

Quantification of magnetization-transfer (MT) experiments is typically based on a model 

comprising a liquid pool “a” of free water and a semisolid pool “b” of motionally 

restricted macromolecules or membrane compounds. By a comprehensive fitting 

approach, high quality MT parameter maps of the human brain are obtained. In 

particular, a distinct correlation between the diffusion-tensor orientation with respect 

to the B0-magnetic field and the apparent transverse relaxation time, T2b, of the 

semisolid pool (i.e., the width of its absorption line) is observed. This orientation 

dependence is quantitatively explained by a refined dipolar lineshape for pool b that 

explicitly considers the specific geometrical arrangement of lipid bilayers wrapped 

around a cylindrical axon. The model inherently reduces the myelin membrane to its 

lipid constituents, which is motivated by previous studies on efficient interaction sites 

(e.g., cholesterol or galactocerebrosides) in the myelin membrane and on the origin of 

ultrashort T2 signals in cerebral white matter. The agreement between MT orientation 

effects and corresponding forward simulations using empirical diffusion imaging results 

as input as well as results from fits employing the novel lineshape support previous 

suggestions that the fiber orientation distribution in a voxel can be modelled as a scaled 

Bingham distribution. 
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1. Introduction

The proton (1H) spin relaxation of water in biological tissues is strongly affected by

dipolar couplings to semisolid compounds, such as proteins or membrane components

[1]. As a consequence, different tissue types have distinct relaxation times, which is

widely exploited in magnetic resonance imaging (MRI) for generating contrast. Dipo-

lar couplings are further utilized in magnetization-transfer (MT) experiments to obtain

indirect information on the broad nuclear magnetic resonance (NMR) spectrum (order

of tens of kHz) of the semisolid compounds. In the most common implementation, the

semisolid spin system is saturated by radiofrequency (RF) irradiation off-resonance from

the narrow water line [2, 3]. Via cross relaxation or chemical exchange, this pertubation

is transferred to the water spin system leading to a transient signal change. In quantita-

tive MT imaging (qMTI), the effect is typically studied as a function of the strength and

frequency of the off-resonance irradiation to obtain so-called “Z-spectra” [4], to which

a mathematical model is fitted (e.g., the binary spin-bath or ’BSB’ model [5]).

The cross-relaxation rate is determined by the type and number of binding sites

for water on the semisolid components and the molecular dynamics of the system [1].

Of particular importance in nerve tissue is myelin, a lamellar membraneous structure

enveloping axons [6]. Previous work demonstrated correlations between the relative size

of the semisolid pool estimated by MT experiments and histological measures of myelin

content (e.g., [7]).

As dipole-dipole interactions depend on orientation (i.e., the angle between the axis

connecting the interacting dipoles and the direction of the main magnetic field, B0;

we will, thus, use the term ’orientation’ as a substitute of ’orientation with respect to

B0’ from here on), one might expect anisotropic MT in tissues exhibiting orientational

anisotropy Consistently, orientation-dependent T1 relaxation has been shown for water

attached to membrane surfaces in model systems [8]. Moreover, variation of the signal

intensity with orientation (so-called “magic angle effect”) was demonstrated in T1- and

T2-weighted MRI of peripheral nerve tissue [9]. For MT, however, Henkelman et al. [10]

reported an inability to identify a corresponding orientational dependence in samples

from corpus callosum and optic nerve and proposed that observation of MT anisotropy

would require a tissue geometry composed of multiple parallel sheets, which does not

seem to be provided in tissues on a macroscopic scale. Hence, MT has been assumed to

be isotropic in brain tissue.
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Inconsistent with this general assumption, we recently observed a correlation of

BSB model parameters, in particular the transverse relaxation constant of the semisolid

pool, T b2 , and the orientation of major white-matter (WM) fiber bundles [11]. A simi-

lar T b2 contrast variation with fiber tract directionality was subsequently also reported

by Yarnykh [12] without providing an explanation of the underlying mechanism. We

hypothesize that anisotropy as observed in these MT experiments is a general phe-

nomenon that is caused by an orientation dependence of the RF absorption lineshape

of the semisolid pool. Although the commonly used super-Lorentzian (SL) lineshape is

per se isotropic, this is not the case for its underlying dipolar nature, and orientational

invariance only results from ’powder averaging’ over randomly oriented membrane seg-

ments [13]. Based on a more sophisticated tissue model, we demonstrate that a random

distribution of membrane segment orientations is not a valid assumption for WM lipid

membranes of fiber bundles. Consequently, apparent anisotropy of MT parameter maps

can result from neglecting inherent orientation effects on the lineshape.

To investigate potential anisotropy empirically, MT and diffusion-weighted (DW)

images were obtained from healthy human volunteers. Among the MT parameters, a

special focus is on T b2 as a function of the WM fiber orientation relative to B0. For a

theoretical analysis, the SL lineshape is revisited, and a novel lineshape is derived for

myelinated fiber bundles. Consequences of this lineshape are evaluated in two ways,

by simulations with typical BSB parameters found in human WM and by fitting MT

parameters to in-vivo data. With both approaches, the distinct orientation dependence

of T b2 obtained with standard fitting disappears, whereas the values of the other BSB

parameters are reproduced.

2. Theory

2.1. Binary Spin-Bath Model for MT

In the BSB model, tissue is subdivided into two compartments, a liquid pool “a” (free

water) and a semisolid pool “b” (motionally restricted molecules) [2, 4, 5, 14–17]. Both

are considered to be in close contact allowing exchange of magnetization via chemical

exchange or cross relaxation. These compartments are characterized by their equilibrium

magnetizations, Ma,b
0 , longitudinal and transverse relaxation rates, Ra,b1 = 1/T a,b1 and

Ra,b2 = 1/T a,b2 , respectively, and pseudo-first-order rate constants, RMa,b
0 , describing the

transfer of longitudinal magnetization, M b
z
⇀↽ Ma

z [5]. The signal is proportional to

σMa
z , where all scanner-dependent effects are lumped into the scaling factor σ.
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The time evolution of the magnetization is described by simplified Bloch-McConnel

equations [18]. Subsequently, we will utilize an approach based on matrix algebra to

solve them without unwarranted simplifications [17]. Because T b2 is very short, transverse

magnetization of the semisolid pool is not considered [19]. However, saturation ofM b
z due

to off-resonance irradiation at frequency Ω = ω0 − ωrf is described by an RF saturation

rate [5]:

Rbrf = −πω2
1g
b(Ω) with |ω1| = |γB1| , (1)

where γ is the magnetogyric ratio, ω0 is the Larmor frequency, and ωrf and B1 are the

frequency and amplitude of the applied RF field, respectively. gb(Ω) is the absorption

lineshape for the semisolid pool. It depends on the associated transverse relaxation time,

T b2 , which is determined by the local microstructure.

A typical MT investigation involves preferable saturation of the semisolid pool and

observation of a steady-state liquid-pool magnetization. As there is a distinct interde-

pendence of some parameters, only six BSB parameters can be uniquely determined:

σMa
0 , M b

0/(R
a
1M

a
0 ), RMa

0 , Rb1, 1/(Ra1T
a
2 ), and T b2 (from Rbrf) [5]. Ra1 can be extracted

using a relaxation rate Robs
1 that may be obtained from an inversion-recovery experiment

[5] or, alternatively, all above parameters plus Ra1 can be determined directly from MT

data recorded with different excitation flip angles, α, and/or repetition times, TR [17].

2.2. Super-Lorentzian Lineshape

An SL lineshape has been successfully employed for modeling MT in many tissues

[14, 15]. It arises from partially ordered systems, notably lipid bilayers forming bio-

logical membranes [13, 20, 21]. Briefly, due to restricted molecular mobility, dipolar

interactions in liquid-crystalline membranes are not completely averaged out but only

reduced to some extent. For rapid molecular rotations or chain motions, the interac-

tions are projected along the normal to the membrane, and the time-averaged dipolar

Hamiltonian for an oriented membrane segment can be written as [13]:

〈ĤD(θn)〉 = 〈ĤD(0)〉P2 (cos θn) , (2)

θn is the angle between the bilayer normal and B0, and P2(x) = (3x2 − 1)/2 is the

second Legendre polynomial. Equation (2) predicts that the shape of the absorption line

is unaffected by a change in the segment orientation while the frequency axis changes
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according to P2 (cos θn). The resulting lineshape for one segment is:

gb(Ω, θn) =
2

|3 cos2θn − 1|
f

(
2 Ω

|3 cos2θn − 1|

)
. (3)

The function f(Ω, θn) is not easily accessible, yet it is reasonable to assume a Gaussian

[13, 20–22]:

f(Ω, θn) =
1√

2π rb2(θn)
exp

−1

2

[
Ω

rb2(θn)

]2 . (4)

Scaling of the linewidth manifests itself in the orientation dependence of the width

parameter rb2(θn):

rb2(θn) =

∣∣3 cos2θn − 1
∣∣

2T b2
. (5)

In multilamellar systems with equally distributed segment orientations, a powder

average has to be computed, from which the SL lineshape is derived:

gbSL(Ω) =
1√
2π

∫ π/2

0

2T b2
|3 cos2θn − 1|

exp

−1

2

(
2 ΩT b2

|3 cos2θn − 1|

)2
 sin θndθn. (6)

It does not show any anisotropy but is a superposition of Gaussians, with a singularity

that results from segments oriented at the magic angle (θn ≈ 54.7◦) [13].

In the spectrum of a real sample, a singularity is not observed due to further (dipo-

lar) interactions [13] and small variations of θnwithin a segment (’mosaic spread’) [23].

Experimentally, residual linewidths of 9-30 Hz have been found in lipid bilayers aligned

at the magic angle [24–26]. A well-established procedure to account for such additional

broadening is to convolve gbSL(Ω) with an appropriate function [27]. Motivated by ex-

perimental findings [20, 22, 24–26], we choose a Gaussian as convolution kernel. As the

convolution of two Gaussians is another Gaussian, this leads to

gbSL(Ω) =
1√
2π

∫ π/2

0

1√
(Rres

2 )2 + rb2(θn)2
exp

{
−1

2

Ω2

(Rres
2 )2 + rb2(θn)2

}
sin θndθn (7)

with a total relaxation rate, Rtot
2 , composed of rb2(θn) and an orientation-independent

residual constant, Rres
2 :

(Rtot
2 )2 = (Rres

2 )2 + (rb2(θn))2. (8)

Henceforth, we assume Rres
2 = 31.4 s−1 in all computations. This value results in a

full width at half maximum of 11.7 Hz of the convolution kernel matching experimental

findings [24–26]. In summary, the line-shape of a bilayer segment oriented at the magic

angle is determined by Rres
2 and much narrower than lines of segments oriented at other

angles, which are determined by rb2(θn).
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2.3. Absorption Lineshape for a Single Myelinated Fiber

The assumption of random segment orientations does not consider the specific coher-

ence of orientations in a nerve fiber with lamellae of myelin enveloping an axon. As

a more realistic model, we assume an idealized myelin sheath of cylindrical symmetry

and restrict the analysis to segments on the lateral surface of the bilayers. For this

configuration, θn will be a function of the axon orientation with respect to B0 (i.e., its

polar angle, θ, in the laboratory frame) and the azimuth, φA, in the axon frame (Fig.

1):

cos θn = − sin θ cosφA. (9)

Figure 1: Spherical coordinates describing the orientation of a bilayer segment wrapped around a cylin-
drical axon. The polar angle of the membrane normal in the laboratory frame, xyz, is θn. Transformation
into an axon frame, xAyAzA, for which the zA-axis is defined by the cylinder axis, is achieved by subse-
quent rotations about the y-axis by θ, and about the z-axis by φ. The azimuth of the membrane normal
in the axon frame is φA. Note that θn does not depend on φ. An alternative animated version of this
Figure is shown as Supplementary Figure S1.

Averaging over all segment orientations in the “cylinder model” (cyl) has to be

performed for the full range of φA but with constant θ. Hence, after inserting Eq. (9)

into Eqs. (3) and (4) and defining

rb2(θ, φA) =

∣∣3 cos2 φA sin2 θ − 1
∣∣

2T b2
(10)

analogous to Eq. (5), a novel lineshape function is obtained:

gbcyl(Ω, θ) =
1

(2π)3/2

∫ 2π

0

1√
(Rres

2 )2 + (rb2 (θ, φA))2

× exp

[
−1

2

Ω2

(Rres
2 )2 + (rb2 (θ, φA))2

]
dφA. (11)

7



PR
EP
RI
NT

Evidently, Eq. (11) shows orientation dependence. For θ = 0◦, φA drops out of

Eq. (10), and the lineshape for an ideal fiber aligned with B0 is a pure Gaussian. For

sin θ < 1/
√

3 (i.e., θ < 35.2644◦), rb2 is nonzero regardless of φA. Hence, the sharp peak

at Ω = 0 that characterizes the SL lineshape does not form, and Eq. (11) yields a bell-

shaped superposition of scaled Gaussians with decreasing width (and correspondingly

increasing intensity) for increasing θ. This is shown in Fig. 2.

b
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w
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=
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90

2
4
6
8
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x10-5
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w
b(
Ω
,θ
)/
s

Δ / kHz

5

Figure 2: (a) Lineshape (highly exaggerated) for the wb model obtained with Eq. (11) and Rres
2 = 31.4

s−1; ∆ = Ω/(2π). (b) Variation of the amplitude as a function of θ. Note the different scaling of the
axes.

For sin θ > 1/
√

3, rb2(θ, φA) has four roots in φA ∈ [0, 2π] leading to contributions

from narrow and intense Gaussians characterized by Rres
2 . Thus, integration over φA

yields a lineshape similar to the SL (Fig. 2a). At sin θ = 1/
√

3, two roots are degenerate,

and the maximum intensity is observed. For larger values of θ the intensity decreases

accompanied by an apparent broadening of the line (Fig. 2b).

2.4. Absorption Lineshape for a Bundle of Myelinated Fibers

While one angle θ is sufficient to characterize the lineshape of a single axon, the situation

is more complex on the macroscopic scale of a typical MRI voxel. The assumption

of a distinct fiber population does not hold for the majority of WM voxels (’crossing

fiber problem’) [28], and even in regions with relatively coherent fiber bundles, such

as the corpus callosum, axons are not perfectly parallel but demonstrate some degree

of spreading or bending [29–31]. For adaptation of the lineshape model, we assume

that individual fibers consist of cylindrical segments that can be described as wrapping

bilayers and introduce a fiber orientation distribution function (fODF) to account for

multidirectionality (including fiber crossings and spreading in each main direction).

The fODF represents the fraction of fibers oriented along a given direction and may

be estimated, for example, by spherical deconvolution from DW-MRI data [32, 33]. To

parameterize the peaks of the fODF and employ the result as measure for the spreading

of the main fiber direction within a voxel, we follow previous suggestion [34, 35] to use
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the antipodally symmetric Bingham probability distribution [36]. It is the analogue to

the general bivariate normal distribution on the unit sphere. Recent results demonstrate

that the scaled Bingham distribution can be fitted separately to each peak of the fODF

to derive parameters for quantitative characterization of a fiber population [35]. A scaled

Bingham distribution function is defined as [35]

β(u) = f0 exp
[
−k1 (µ1 · u)2 − k2 (µ2 · u)2

]
, (12)

where u is a point on the unit sphere’s surface, and f0 is a scaling parameter. k1 ≤ k2 are

so-called concentration parameters along axes µ1 and µ2, respectively. These parameters

characterize the width and ovality of the distribution (i.e., the larger ki the sharper the

peak in the corresponding direction) as well as its orientation. The mean direction of

the distribution is given by the vector µ0 = µ1 × µ2 and is used to identify the main

fiber orientation of the fitted fODF peak. In spherical coordinates, u is a function of θ

and φ (laboratory frame). By combining Eqs. (11) and (12), the lineshape function for

myelinated fiber bundle(s) (fb) becomes

gbfb (Ω) = N
∫ π

0

∫ 2π

0
gbcyl(Ω, θ)

∑
i
βi (θ, φ) sin θ dθdφ, (13)

where N is a normalization factor and the index i ≥ 1 denotes the number of fODF

peaks assumed to reflect different fiber bundles in the voxel.

3. Experimental Methods

3.1. Imaging Experiments

Seven healthy volunteers (4 female, mean age 26 y, range 19-33 y) were examined after

obtaining informed written consent in accordance with ethically approved local policies.

Brain MRI scans were recorded at 3 T with a Magnetom TIM Trio (Siemens, Erlan-

gen, Germany) operated by syngo MR B 15 software. The body coil was used for RF

transmission, and a 32-channel head array was used for signal reception.

An exhaustive description of the qMTI procedures has been published elsewhere [17].

Briefly, an MT-prepared gradient-recalled echo (GRE) sequence (α = 10◦; echo time, TE

= 6.7 ms; gradient and RF spoiling; 297 dummy cycles; 11 averages) was used to image

a single axial slice (nominal voxel size 1.7 × 1.7 × 1.5 mm3) at the level of the basal

ganglia (slice position was shifted cranially in one case). To obtain sufficiently densely

sampled Z-spectra, 32 scans were acquired with variation of offset frequency (0.2 kHz

≤ Ω/2π ≤ 50 kHz) and amplitude (1003 rad/s ≤ ω1,max ≤ 5016 rad/s corresponding to

9
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nominal flip angles of 180◦ ≤ αsat ≤ 900◦) of the Gaussian MT pulse (duration 10 ms;

bandwidth 300 Hz) and with variation of TR (33.6, 80, and 120 ms; 3 acquisitions with

TR = 120 ms not available in one case due to technical problems). B0 and B1 maps

were recorded with GRE-based multiple-echo (8 echoes; 1.3 ms ≤ TE ≤ 20.1 ms) [37]

and multiple-TR (20 and 100 ms; α = 60◦) techniques [38], respectively.

Twice-refocused spin-echo echo-planar imaging (TR = 1400 ms; TE = 90 ms) was

used to acquire DW images (b-value = 1000 s/mm2; 60 isotropically distributed gradi-

ent directions) from five axial slices (no gap; nominal voxel size 1.7 × 1.7 × 1.7 mm3;

center slice aligned with slice from MT experiment). Seven data sets without diffusion

weighting were recorded interleaved with the DW scans (initially and after each block

of ten diffusion directions).

3.2. Analysis of Diffusion-Weighted Images

Pre-processing and tensor-based analysis of DW images was done using FSL 4.1.4

(www.fmrib.ox.ac.uk/fsl). A diffusion tensor was fitted to each voxel after corrections

for eddy currents and B0 inhomogeneities, and eigenvectors, eigenvalues, and the frac-

tional anisotropy (FA) were extracted. Image regions outside the brain were excluded

from the analysis of DW and MT data using a manually created binary mask. Voxels

with FA < 0.3 were not considered to contain WM and were also excluded. A main

fiber direction, θ0, was retrieved from the angle between the principal eigenvector, ε1,

and B0 according to

cos θ0 = (ε1 ·B0) / (|ε1| |B0|) . (14)

Besides the simplifying diffusion tensor imaging (DTI) approach, scaled Bingham

distributions were fitted to the fODF peaks to obtain a more specific characterization

of the fiber configurations. For a full description of the procedures to estimate the five

parameters in Eq. (12), we refer to Ref. [35]. In short, constrained spherical deconvo-

lution, as implemented in MRtrix (www.brain.org.au/software/mrtrix), was applied

to the DW data (after correction for T2 weighting) [32], and the resulting fODF was

approximated by eighth-order spherical harmonics expansion. A region in the corpus

callosum was manually selected to compute the single fiber response function, which

was used for the spherical deconvolution. Typically, the fODF comprises several peaks,

which are assumed to reflect fiber bundles. For identifying these peaks, the fODF was

overlayed with a discrete grid to search for local maxima. Bingham functions were fit-

ted to the largest two maxima, whereas further peaks were considered to be artifacts

10
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or noise in this analysis. In particular, direction vectors, µ1 and µ2, were fitted using

an orientation matrix, and the concentration parameters, k1 and k2, were obtained by

solving a system of linear equations.

3.3. Analysis of MT Images I: Standard MT Fitting

The procedures for BSB parameter fitting of MT data have been published in Ref.

[17]. All algorithms were implemented in Matlab 8.1.0.604 (MathWorks, Natick, MA).

Least-squares minimizations were performed using either Levenberg-Marquardt or trust-

region-reflective algorithms; the latter one with and without parameter boundaries. We

did not observe relevant differences in the results obtained by the different methods.

All results reported subsequently were obtained with the trust-region-reflective method

without setting boundaries.

Fits were based on calculations of the time evolution of the magnetization during

the entire pulse sequence using matrix exponentials. Exact timing and shapes of all RF

pulses were directly imported from the scanner and used in the calculations without

simplifying assumptions. For better efficiency, polynomial interpolation was employed

to calculate matrix exponentials without bias [17]. The B0 and B1 maps were used

for pixel-by-pixel correction of offset frequencies and pulse amplitudes, respectively. To

analyze the Z-spectra, all BSB parameters (including Ra1) were directly fitted to the

MT data acquired with different TR [17]. Rb1 was always arbitrarily set to 1 s−1 [5].

As an initial analysis, the SL lineshape was calculated from Eq. (7) by numerical

integration, and fitting was performed assuming gb = gbSL. This approach is subsequently

referred to as “standard MT fitting”. A sketch of the processing pipeline is indicated in

Fig. 3a by the red pathway.

3.4. Analysis of MT Images II: MT Fitting Using the Novel Lineshape

For an alternative analysis, the novel RF absorption lineshape according to Eq. (13) was

used instead of the SL (i.e., gb = gbfb). This approach is subsequently referred to as “MT

fitting with the fb lineshape”. Except of the lineshape, there is no principle difference

compared to “standard MT fitting”. However, the approach is computationally more

expensive because multiple integration steps, Eqs. (11) and (13), have to be performed

for each voxel. Processing speed was enhanced by computing a lookup table with varying

T b2 for Eq. (11), from which all values required during fitting were obtained by cubic-

spline interpolation. As a metric of the local fODF, Bingham parameters from fits to

the DW images were used to generate individual maps of β(θ, φ), and the values were

11
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MT images
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Experimental
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parameter maps

β (θ,O)
Eq. (12)

Figure 3: (a) Standard MT analysis of in vivo (red pathway) and simulated data (blue pathway).
Experimental MT images are recorded with suitable protocols, and BSB parameter maps are fitted
with an algorithm that reads the sequence data and assumes the SL lineshape. The same acquisition
parameters and fixed BSB parameters are used to simulate MT images with the fiber-bundle lineshape,
Eq. (13) and further input from parameterized experimental fODF maps. Subsequently, standard fitting
with the SL lineshape yields semiempirical BSB parameter maps. (b) Equivalent steps used for MT
fitting with the novel lineshape, where Eq. (13) is directly employed for fitting the MT data.

passed to the fitting procedure to compute gbfb from Eq. (13). A sketch of this processing

pathway is shown in Fig. 3b.

3.5. Computer Simulations of qMTI

Semiempirical forward calculations of the magnetization’s time evolution during MT

experiments were performed with the aforementioned numerical methods to model Z-

spectra for the same conditions (i.e., with identical pulse shapes and sequence param-

eters) as employed in the in-vivo experiments. Typical BSB parameters for human

WM summarized in Table 1 were assumed in the simulations, based on previous results

[17, 39]. The tilde is used in Table 1 (and subsequently) to indicate fixed input pa-

rameters to forward calculations for better differentiation from free output parameters

estimated by fitting (same symbols without tilde). Maps of all BSB parameters were

calculated for all subjects comprising the following steps (blue pathway in Fig. 3a): (i)

Generation of maps of β(θ, φ). (ii) With the cylinder-model lineshape, Eq. (11), MT

data were computed for the full range of potential single-axon orientations, 0◦ ≤ θ ≤

90◦. (iii) To consider multiple fiber orientations, the single-axon results were combined

with the β maps as individual weighting factors according to Eq. (13). (iv) Standard

MT fitting (with SL lineshape) to the simulated Z-spectra was performed to exactly

mimic analysis type I of experimental data. The same input BSB parameters were used

12
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for modeling all voxels in the segmented WM in all subjects. To further analyze the

sensitivity to parameter variations, separate simulations were performed for different

T̃ b2 values (range given in Table 1). This approach is subsequently referred to as “MT

fitting of simulated data”.

Table 1: Binary spin-bath model parameters used as input in the forward simulations.

˜M b
0/M

a
0 R̃a1 R̃b1 T̃ a2 T̃ b2 R̃Ma

0 R̃res
2

0.25 2.0 s−1 1 s−1 18 ms 12–15 µs 14 s−1 31.4 s−1

A similar approach was also used for an explorative evaluation of the novel lineshape,

whereby Bingham parameters were chosen at will instead of being derived from DW data.

Simulations were performed as above, but the fODF was calculated from a simplified

version of Eq. (12) obtained by setting k1 = k2 = k̃. A single fiber tract was assumed,

and Z-spectra were calculated with the BSB parameters from Table 1 with variation of

T̃ b2 and k̃.

4. Results

4.1. Analyses Using Standard Methods

Typical parameter maps obtained with standard MT fitting are shown as Supplementary

Figure S2. At this point, we focus on T b2 for the analysis of orientation effects. Further

T b2 maps and corresponding main fiber orientations are shown in Fig. 4.

a b c d

e f g h

16

12.5

9

90

45

0

Figure 4: Color-coded parameter maps from cerebral WM in four healthy subjects. (a–d) T b
2 in µs,

estimated by standard MT fits to the experimental data; (e–h) main fiber orientation in degrees obtained
from the principal eigenvector of the diffusion tensor. Maps were interpolated from 128×96 to 256×192
for better visualization.
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All slices are nearly perpendicular to B0. Thus, fibers running inferior–superior

are parallel (blue on θ0 maps), and those running anterior–posterior or left–right are

orthogonal to B0 (red on θ0 maps). A variation of T b2 with orientation is clearly visible,

and major fiber tracts can be identified on the T b2 map. For example, T b2 estimates are

consistently smaller in the genu (gcc) and splenium (scc) of the corpus callosum (fibers

approx. orthogonal to B0) than at positions where the corticospinal tract of the internal

capsule (ic) penetrates the slice (fibers approx. parallel to B0). The cingulate gyrus

part (cgc) and hippocampal part (cgh) of the cingulum can be separated from the gcc

and the scc, respectively. In the more cranial slice (Fig. 4c), there is clear separation of

the superior corona radiata (cr; mainly inferior–superior fibers, θ0 ≈ 10–40◦ and T b2 ≈

11–12 µs) from the cgc (mainly anterior–posterior fibers, θ0 ≈ 70–90◦ and T b2 ≈ 14–16

µs).

The relation between T b2 and θ0 for the combined WM data (FA ≥ 0.3) from all

subjects is shown in Fig. 5.

θ0 / °
0 900 45 4590 0 45 90

14

12

13

11

15

10

T 2
/ µ

s

a b c

b

Figure 5: Plots of T b
2 (standard MT fits) in cerebral WM (experimental data from eight subjects) versus

main fiber orientation (DTI results) for all voxels with (a) 0.3 < FA ≤ 0.5, (b) 0.5 < FA ≤ 0.7, and (c)
FA > 0.7. Colored solid lines and shaded areas indicate the moving average ± one standard deviation
(SD).

For better visualization of general features, the data were arbitrarily divided into

three subsets differing by FA. For FA > 0.7, a peak with maximum T b2 ≈ 14 µs forms

at orientations θ0 ≈ 30–50◦. Beyond this region, there are clear trends of decreasing

T b2 with both increasing θ0 for θ0 > 50◦ and decreasing θ0 for θ0 < 30◦. The same

characteristics are also observed for FA < 0.7, however, they become more and more

buried by increasing fluctuations in the estimates of T b2 and/or θ0.
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Figure 6: Color-coded experimental T b
2 maps obtained with standard MT fitting in two subjects (a, e)

and results from semiempirical forward calculations with slightly different input parameters, T̃ b
2 = 13

µs (b, f) and 13.5 µs (c, g). Excellent quantitative agreement with the experimental result is achieved

with T̃ b
2 = 13 µs for subject 1 (b) and 13.5 µs for subject 2 (f), whereas a subtle variation of T̃ b

2 (in
this case by 4 %) leads to a discernable offset. Also shown are results obtained by MT fitting using the
novel lineshape (d, h).

4.2. Simulated MT Images

Results from standard MT fitting of simulated images (generated with Eq. (13) and

experimental fODFs) are shown in Fig. 6.

Evidently, these fits using the SL lineshape yielded a spatial distribution of T b2 al-

though the same T̃ b2 had been used to simulate all voxels. The simulated maps show a

high degree of correspondence with experimental T b2 data from the same subject. The

scaling of simulated T b2 maps was sensitive to the input; that is, a subtle variation in T̃ b2

by 4% produced an appreciable deviation between simulated and experimental maps.

A comparison of experimental T b2 as a function of the main fiber orientation and

those obtained by forward simulations is shown in Fig. 7a. The influence obtained upon

changing T̃ b2 from 13 µs to 13.5 µs (consistent with the maps in Figs. 6b, c, f, and g) is

also shown.

As in Fig. 5c, a simple tensor analysis was used to estimate θ0 from DW data, and

only voxels with FA > 0.7 were included to highlight the general relations. Experimental

and simulated data show excellent agreement for the full range of orientations. We

emphasize that this match was achieved with identical fixed input values to the forward

model for all voxels in all subjects.

The influence of a variation in the Bingham parameters on estimated T b2 (θ0) values

is demonstrated in Fig. 8a.
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Figure 7: (a) Plots of T b
2 versus θ0 comparing standard MT fits to experimental and simulated data

(combined results from voxels with FA > 0.7 in all subjects). Solid lines and shaded areas indicate the

moving average ± SD (red: experimental data; green and blue: simulations with T̃ b
2 = 13 µs and 13.5

µs, respectively). (b) Plots of T b
2 versus θ0 (same voxels as in (a)) obtained by MT fitting using the

novel lineshape. Solid lines and shaded areas indicate the moving average ± SD. Further individual
plots of T b

2 versus θ0 from all subjects are shown in Supplementary Figure S3.

Here, the main fiber orientation was taken from DW-MRI results assuming that

each voxel contains only one fiber bundle, and the average concentration parameter, k̃,

was systematically varied. Results from standard MT fits to experimental data are also

shown (identical data as in Fig. 7a). Simulations with k̃ = 4.5 and T̃ b2 = 13 µs agreed

well with the in-vivo data. With small values of k̃, a distinct maximum of T b2 (θ0) is

observed that flattens for larger k̃ (Figs. 8a and b). As large values of k̃ are equivalent

to small FA values in the DTI approach, the flattened moving average of T b2 (θ0) observed

experimentally with decreasing FA values (Fig. 5) is, therefore, reproduced by the sim-

ulations. As a further comparison, Fig. 8c demonstrates the influence from changing T̃ b2

with fixed k̃ = 4.5, which primarily produces a vertical shift of the curve.

In Fig. 9, all relevant BSB parameters obtained by standard MT fitting of the sim-

ulated data are compared, as a function of θ0, to experimental results. The forward

calculations yielded a rather subtle variation of all parameters with orientation, includ-

ing M b
0/M

a
0 , Ra1, T a2 , and RMa

0 , which was, however, much less pronounced than the

effect observed for T b2 .

Except for T b2 , such variations were smaller than experimental errors estimated in

previous in-vivo studies [17] and, hence, negligible. Deviations from the simulations were

observed experimentally for most BSB parameters (averaged data represented by solid
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Figure 8: Plots of T b
2 (θ0) obtained by standard MT fitting of simulated Z-spectra (black solid lines).

with (a) T̃ b
2 = 13 µs and k̃ = 0.1, 1, 4.5, 10, and 100; (b) T̃ b

2 = 13 µs and k̃ = 3, 4, 4.5, 5, and 6; (c)

k̃ = 4.5 and T̃ b
2 = 12.9, 13, 13.2, and 13.5 µs. Red broken lines and shaded areas indicate the in-vivo

results from Fig. 5c. An increase in k̃ primarily flattens the curve while an increase in T̃ b
2 produces a

shift.

lines in Fig. 9). This difference was minimal for T b2 , whereas larger deviations occurred

for M b
0/M

a
0 . Similarly, substantially increased variance was observed experimentally for

constant θ0, that is, when comparing voxels with similar main fiber orientation but from

different brain locations and different subjects.

4.3. Analyses Using the Novel Lineshape

Results from fits of in-vivo data using the novel lineshape are shown in Figs. 6d and h.

A spatial variation of T b2 in relation to distinct fiber orientations is no longer evident in

these maps. This is even more obvious in the flat moving average of T b2 (θ0) in Fig. 7b.

A comparison of all relevant BSB parameters obtained by MT fitting with the novel

lineshape and with standard fitting is shown in Fig. 10 as a function of θ0 (voxels with FA

> 0.7). The distinct variation of T b2 with θ0 disappeared almost entirely when applying

the novel lineshape, whereas the values for the other BSB parameters were quite similar

for both methods.

5. Discussion

In the current work, we demonstrate an orientation dependence of MT in cerebral WM,

namely of the associated transverse relaxation time T b2 obtained with standard analy-

sis. It can be explained by a fiber-bundle model that (i) adopts the BSB approach of

two pools exchanging longitudinal magnetization; (ii) derives an absorption lineshape for

the lipid components in myelin from dipolar interactions in liquid-crystalline membranes

wrapped around a cylindrical axon segment; and (iii) utilizes an empirical fiber distri-

bution obtained from DW-MRI. Simulations with the fiber-bundle lineshape reproduce
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Figure 9: Plots of BSB parameters Mb
0/M

a
0 (a), T a

1 (b), T b
2 (c), T a

2 (d), and RMa
0 (e), in cerebral WM

versus main fiber orientation (DTI results; only voxels with FA > 0.7). Solid lines and shaded areas
indicate the moving average ± SD (combined data from all subjects) obtained by standard MT fits to
the experimental (red) and simulated data (blue).

the effects observed in vivo.

Considering previous assumption that it is “unlikely that MT anisotropy will be

observed” [10], we note that the orientation dependence found here is of apparent nature.

In particular, it is the RF absorption by the semisolid pool that is anisotropic due to

dipolar interactions in the partially ordered lipid bilayers of the myelin membrane. The

orientation-dependent efficiency of saturation of the macromolecular resonance, in turn,

modulates the cross-relaxation rate.

This variable efficiency can be modeled with the same T̃ b2 for different WM regions

characterizing the average dipolar couplings in a lipid bilayer if additional information

from the fODF is integrated. Most of the range of T b2 values observed in normal WM with

standard analysis is, thus, not due to a variation in such couplings (as it might result,

e.g., from changes in the membrane composition) but primarily reflects a residual angular

term in the powder average of dipole-dipole interactions for a cylindrical arrangement

of bilayers. This biophysical geometry is typical for myelin-containing WM, but not

addressed when using the SL lineshape.

We note that our lineshape model ignores contributions from membranes that are
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Figure 10: Plots of BSB parameters Mb
0/M

a
0 (a), T a

1 (b), T b
2 (c), T a

2 (d), and RMa
0 (e), in cerebral

WM versus main fiber orientation (DTI results; only voxels with FA > 0.7). Solid lines and shaded
areas indicate, respectively, the moving average ± SD (combined data from all subjects) obtained by
fits using the standard SL lineshape (red) and the novel lineshape (black).

not arranged as cylinders (e.g., from oligodendrocyte cell bodies or astrocytes). This

seems to be justified as it is generally believed that myelin is the dominant source of MT

in brain tissue [40–44]. 500pm-deep pockets in the water-lipid interface at cholesterol

locations have been attributed a key role as interaction sites [40]. They are presumably

filled with water forming relatively long-lived hydrogen bonds to hydroxyl groups of

cholesterol and sphingomyelin [41, 43]. Alternatively, hydrogen bonds with galactose

head groups of galactocerebrosides extending outward from the membrane have also

been emphasized [44]. This view is based on careful experiments with artificial bilayers

of different lipid composition [41–44]. Such studies are well suited to identify potential

sources of efficient MT, however, they do not prove that the same effect is responsible

for the contrast observed in vivo [44]. One difference is that the artificial systems lack

proteins [40], which in myelin account for approximately 30% of the dry weight [45].

Although the fiber-bundle lineshape derived here is too non-specific to identify in-

dividual molecules, a common aspect with previous relaxation models is a reduction

of the myelin membrane to its lipid constituents (as interaction sites). Previous work

has shown that the dipolar broadened line of motionally constrained membrane proteins
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(e.g., myelin basic protein or proteolipid protein) is different from that of the liquid-

crystalline lipid components [22, 46]. As the apparent T b2 anisotropy observed in vivo is

quantitatively explained by the new lineshape model without consideration of protein

contributions, this might indicate that their contribution to MT is weak in cerebral

WM. The hypothesis that cross-relaxation in WM can be adequately described by MT

models that reduce the myelin membrane to its lipid constituents is also in agreement

with studies of the origins of ultrashort T2 signals by Horch et al. [47].

Although the fiber-bundle model achieves consistent simulations of orientation effects

as observed in vivo, it is nevertheless a simplification. Cerebral WM is known to have

multiple free water components with distinct values of T a2 for axoplasmic and myelin

water [48] and, at least at sufficiently high fields, correspondingly distinct values of T a1

[49]. Hence, the reduction to a BSB does not correctly reflect the properties of all water

pools in brain tissue [50, 51]. Moreover, the arrangement of membranes in the model

(Fig. 1) is consistent with the structure of compact myelin but it does not account for

the nodes of Ranvier and does not correctly describe the different morphology of the

paranodal region flanking the nodes [52]. A potential role of these structures for MT is

thus not addressed. However, the resulting pertubation may be expected to be small

considering typical fractions occupied by the nodes and internodes along the length of

an axon in the brain: Assuming 0.8 µm for the longitudinal extension of the node of

Ranvier and 200-300 µm for the internode (data from rat optic nerve; [53]), the fraction

occupied by paranodal regions is of the order of only 0.5%.

A substantial contribution to the increasing variance in the experimental results

for FA < 0.7 (Fig. 5) is due to an inadequate definition of θ0 by the simplifying DTI

approach, especially for crossing fibers [28]. This could be improved by replacing ε1

in Eq. (14) by µ0 of the scaled Bingham distribution fitted to the largest fODF peak.

However, even with a better definition of orientation, there will be some scatter due

to variation in the fODF between voxels with the same θ0. We note that this variance

is addressed in our model in the term β(u) in Eq. (13), which yields a corresponding

variation in the voxel lineshape and, thereby, the scatter observed in the simulated data

(Fig. 6).

In the forward simulations, all BSB parameters were fixed, primarily to reduce com-

putation time. Despite this restriction, simulated and experimental T b2 maps agreed well

(Figs. 9c). While we might expect further improvement upon voxel-by-voxel adjustment
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of the input parameters as achieved by fitting with the novel lineshape), a rather small

variation of T̃ b2 (order of a few percent; Fig. 6) results from such adjustment. Hence, the

apparent variation of T b2 (Fig. 9c, red line) is almost entirely explained by orientation

(blue line). This is different for other BSB parameters, in particular M b
0/M

a
0 . Here,

no pronounced dependence on θ0 is indicated by the forward simulations (Fig. 9a, blue

line); that is, orientation effects do not explain the experimental result. For T̃ b2 (char-

acterizing shape and width of the line), the narrow range is due to selective specificity

to certain types of interaction sites facilitating efficient cross relaxation. ˜M b
0/M

a
0 (i.e.,

the line’s amplitude), however, measures the relative number of such sites, and a larger

range of values is required to match simulations and experimental results—consistent

with previously observed correlations of MT parameters with myelination and fiber den-

sity [7, 54]. The result in Fig. 9a (blue solid line) further indicates that the estimation

of M b
0/M

a
0 (unlike that of T b2 ) is relatively insensitive to orientation effects, that is, only

minor errors are expected for standard BSB fitting without consideration of orientation).

In our experiment, large values of M b
0/M

a
0 were observed particularly for major fiber

tracts (e.g., gcc, scc, or cgc). A similar conspicious appearance of main tracts on maps

of the semisolid pool fraction has been previously reported by Yarnykh and Yuan [55]

and, consistently, attributed to variations in the density of myelinated fibers.

The influence of WM fiber orientation on MR parameters, in particular, the effective

transverse relaxation time, T ∗
2 , and phase contrast due to local B0 inhomogeneity, has

recently received substantial attention [56–60]. These observations can be explained by

the tensorial (i.e., anisotropic) characteristics of the magnetic susceptibility of myelin

[61, 62]. Corresponding approaches to simulate magnitude and phase in GRE images

bear remarkable similarities with our assumptions to characterize MT: (i) the myelin

sheath is assumed to cause contrast behavior; (ii) it is represented as a hollow cylinder

oriented at angle θ0 to B0; (iii) its microstructure is modeled as wrapped bilayers of

radially aligned lipids representing the source of anisotropy (i.e., of magnetic suscep-

tibility vs. dipolar line broadening in our case); (iv) membrane proteins are ignored.

Quantitatively, however, anisotropic susceptibility causes frequency shifts of only a few

Hz [56, 58, 59, 62], whereas the modulation of the dipolar lineshape with orientation is

in the kHz range (Fig. 2).

An interesting aspect is finally, that our synthesis of the analysis of dipolar interac-

tion leading to MT and a parameterization of anisotropic diffusion, that is, a combination
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of fundamentally different contrast mechanisms (i.e., cross relaxation vs. self diffusion)

and imaging experiments (qMTI vs. DW-MRI) can also be exploited for evaluating

DW-MRI techniques. A still persisting problem of tractography, and of DW-MRI in

general, is the fact that no established gold standard is currently available for in vivo

validation of the methodology in humans. In our forward simulations, an apparent

orientation dependence of T b2 was consistently produced with different assumptions of

fiber distributions, such as a simple Gaussian distribution of orientations about a main

direction (results not shown). However, the quantitative agreement with the experimen-

tally observed change of T b2 with θ0 sensitively depended on the assumed distribution

function. By far the best results (i.e., almost perfect agreement; Fig. 9c) were achieved

by modeling the fODF peaks as scaled Bingham distributions. This strongly supports

the assumption that Eq. (12) yields a valid quantitative parametrization of the fiber

population in a voxel.

6. Conclusion

Magnetization-transfer imaging in cerebral WM shows orientation dependence related to

the cylindrical symmetry of liquid crystalline lipid bilayer membranes enveloping axons.

This geometry gives rise to a distinct dipolar lineshape characterizing RF absorption

by the semisolid proton pool. Forward simulations using the novel lineshape function

along with information from the parametrized local fODF achieves excellent agreement

with in vivo results in human brain. If orientation effects are appropriately addressed,

T̃ b2 characterizing the inherent width of the absorption line shows very little variation

between WM regions or among healthy young adults. Larger variation is observed for

the relative size of the semisolid pool, which is thought to reflect the number of sites of

efficient cross relaxation in the voxel, and is consistent with previous hypotheses relating

M b
0/M

a
0 to myelination and/or fiber density of a fiber bundle. Consideration of orienta-

tion effects is relevant for a precise measurement of BSB parameters, in particular T b2 . In

comparison, estimates of M b
0/M

a
0 are more robust, and standard qMTI analysis with the

isotropic SL lineshape is expected to yield meaningful results. The excellent agreement

between orientation effects observed in qMTI and maps computed using experimental

DW-MRI results as input further indicates that the scaled Bingham distribution is a

valid parametrization of the fODF peaks.
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Abbreviations:
BSB = binary spin bath; cgc = cingulum cingulate gyrus part; cgh = cingulum hip-
pocampal part; cr = corona radiata; cyl = cylinder; DTI = diffusion tensor imaging; DW
= diffusion weighted; FA = fractional anisotropy; fODF = fiber orientation distribution
function; FOV = field of view; gcc = genu of corpus callosum; GRE = gradient-recalled
echo; MRI = magnetic resonance imaging; MT = magnetization transfer; NMR = nu-
clear magnetic resonance; qMTI = quantitative magnetization-transfer imaging; RF =
radiofrequency; scc = splenium of corpus callosum; SD = standard deviation; SL =
super-Lorentzian; WM = white matter.

Mathematical symbols:
a, b: indices for the liquid and semisolid proton pools
:̃ indicates a fixed parameter
B0: static magnetic field
B0: static magnetic field amplitude
B1: RF field amplitude
b: b-value
f : frequency distribution
f0: scaling factor in the Bingham distribution
g; absorption lineshape function
gfb: fiber-bundle lineshape function (cylinder-Bingham model)
gSL: super-Lorentzian lineshape function
gcyl: single-fiber lineshape function (cylinder model)

ĤD: dipolar Hamiltonian

〈ĤD(0)〉: isotropic part of the time-averaged dipolar Hamiltonian
i: integer

k̃: average concentration parameter in the Bingham distribution
k1, k2: concentration parameters in the Bingham distribution
M0: equilibrium magnetization
Mz: longitudinal magnetization component
N : normalization constant
P2 second Legendre polynomial
R: MT rate constant
R1: longitudinal relaxation rate constant
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Robs
1 : observed longitudinal relaxation rate constant

R2: transverse relaxation rate constant
Rres

2 : residual relaxation rate
Rtot

2 : total relaxation rate
Rb

rf : saturation rate constant of the semisolid pool
rb2: orientation-dependent relaxation rate
T1: longitudinal relaxation time
T2: transverse relaxation time
T ∗
2 : effective transverse relaxation time
TE: echo time
TI : inversion time
TR: repetition time
u: point on the surface of the unit sphere
x, y, z: Cartesian coordinates in the laboratory frame
xA, yA, zA: Cartesian coordinates in the axon frame
α RF pulse flip angle
αsat nominal on-resonance saturation pulse flip angle
β: scaled Bingham distribution
γ: magnetogyric ratio
ε1: principal eigenvector of the diffusion tensor
θ: polar angle (of axon axis) in the laboratory frame
θ0: main fiber orientation
θn: polar angle between membrane normal and B0

µ0: direction of the mean of the Bingham distribution
µ1, µ2: directions in the Bingham distribution
σ: scaling factor
φ: azimuth in the laboratory frame
φA: azimuth in the axon frame
Ω: offset frequency in rad/s
ω0: Larmor frequency in rad/s
ω1: RF field amplitude in rad/s
ω1,max: maximum ω1 value of amplitude-modulated RF pulse
ωrf : frequency of the RF field in rad/s
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Supplementary Figure S1: Spherical coordinates describing the orientation of a
bilayer segment wrapped around a cylindrical axon. The polar angle of the membrane
normal in the laboratory frame, xyz, is θn. Transformation into an axon frame, xAyAzA,
for which the zA-axis is defined by the cylinder axis, is achieved by subsequent rotations
about the y-axis by θ, and about the z-axis by φ. The azimuth of the membrane normal
in the axon frame is φA. Note that θn does not depend on φ.
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Supplementary Figure S2: Examples of experimental maps of the BSB parameters
M b

0/M
a
0 (a) and T b

2 (b) from one subject as well as corresponding Z-spectra (red and
blue symbols) and results from standard fitting with the SL lineshape (red and blue
solid lines) in two selected pixels in the splenium of the corpus callosum (c) and the
internal capsule (d). The positions of the selected pixels are in the center of the red
and blue circle, respectively. Only a subset of the experimental data points recorded at
TR = 33.6 and 80 ms are displayed in the Z-spectra to avoid excessive overlap of the
fitted curves; ∆ = Ω/(2π).
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Supplementary Figure S3: Plots of T b
2 versus θ0 comparing standard fits to exper-

imental and simulated data (voxels with FA > 0.7) for all subjects. ed solid lines and
shaded areas indicate the moving average ± SD of experimental T b

2 and blue filled circles
show simulations for the same voxels. Identical BSB parameters (Table 1) with T̃ b

2 =
13.5 µs) were used in all simulations.
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