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Based on available 1870 literature data for the oxidative coupling of methane (OCM), various statistical
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models were applied i) to design three-component catalysts consisting of one host metal oxide (La,O3 or
MgO) and two oxide (Li, Na, Cs, Sr, Ba, La, or Mn) dopants and ii) to predict their OCM performance. To
validate this approach for catalyst design, selected materials were prepared and experimentally tested for

their activity and selectivity in the target reaction. The effects of kinds of host oxides, dopants and their
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Introduction

Owing to the large fossil resources of natural gas (shale gas)
and renewability of methane (biogas), a strong economic
interest exists in developing processes for methane conver-
sion into value-added products. Currently, methane is indus-
trially converted through catalytic steam or autothermal
reforming to synthesis gas, i.e. a mixture of CO and H,." This
mixture finds its application in the large-scale production of
methanol and higher hydrocarbons. There are commercial
technologies for methanol conversion into ethylene and
propylene,>® which are the two most important building
blocks of chemical industry. However, each step in the syn-
thesis gas route of methane conversion into useful products
has its own drawbacks negatively influencing the overall pro-
cess economy. Therefore, direct (one step) conversion of
methane to methanol, formaldehyde, or C, hydrocarbons
(C,Hy4, and C,Hg) is highly desired. For this purpose, a large
amount of research has been carried out over the last 30 years.
Most of such studies were devoted to the oxidative coupling
of methane (OCM) to produce C, hydrocarbons. Since the
pioneering works of Keller and Bhasin* as well as Hinsen and
Baerns,” various catalytic materials have been investigated for
this reaction.®® Unfortunately, the performance of known
OCM catalysts is significantly lower than in steam cracker of
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interplay on the OCM performance of differently composed catalysts were statistically evaluated.

ethane to ethylene: ethylene selectivity of 0.8 at around 0.7
ethane conversion. Under this consideration, the OCM reac-
tion can become profitable when the ethylene selectivity
would be close to the above value at a methane conversion
higher than 0.30."*7'® The low selectivity to C, hydrocarbons
at industrially relevant degrees of methane conversion is
related to higher reactivity of the target products tending to
oxidation to CO and CO, (CO,). To overcome such problems,
methane can be converted into C, hydrocarbons including
acetylene in the absence of oxygen at temperatures above
2000 °C as had been previously utilized by Hiils AG and
BASF."” However, such process suffers from high energy
demand. Hall reported about an alternative process concept
for converting methane into ethylene and hydrogen or hydro-
carbon liquids."® In this concept, methane (less than 10% of
the fed methane) is combusted in an internal-combustion
thermal cracker where non-reacted methane is converted to
mainly acetylene and hydrogen. The acetylene can then be
hydrogenated with very high selectivity to ethylene using the
hydrogen from the cracker. Recently, a dual-reactor concept
was introduced for improving selectivity to higher hydro-
carbons in the OCM reaction with a simultaneous decrease
in CO, selectivity."”?° In this concept, the OCM reaction is
performed in a first reactor, while a second reactor operating
at a lower temperature and located downstream to the first
one is used for hydrogenation of OCM-generated CO, to
hydrocarbons in presence of additional hydrogen. More than
50% of CO, products formed in the OCM reactor were hydro-
genated to desired C;, C, and C;s hydrocarbons, with propane
selectivity being up to 0.10. An overall yield of C,, hydrocar-
bons of 0.38 was achieved. Further progress of this concept
can be expected when active and selective catalysts for CO,
hydrogenation will be developed. Alternatively, this concept

This journal is © The Royal Society of Chemistry 2015
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or the OCM reaction itself would profit from new catalytic
materials with improved OCM selectivity.

Some years ago, Thybaut et al.>’ have suggested a method-
ology for catalyst design based on the kinetics of the OCM
reaction. The idea behind their approach is to correlate cata-
Iytic performance with specific catalyst descriptors influenc-
ing individual reaction pathways. The following descriptors
were defined and applied: i) reaction enthalpy of hydrogen
abstraction from CH,, ii) chemisorption energy of O,, CH,O,
HCO, CO, CO,, H,0, and C,Hy, iii) initial sticking probabili-
ties of O,, CH;', CO, CO,, and H,0, and iv) concentration of
active sites. By optimizing these parameters and reaction
conditions, a yield of C, hydrocarbons of 0.35 was predicted
but not experimentally verified.

From a general viewpoint, the chemical composition of
catalysts should influence such descriptors. Therefore, estab-
lishing relationships between the catalyst composition and
OCM performance may open the possibility for designing
effective catalytic materials. To this end, Zavyalova et al.>>
have statistically analysed about 1000 scientific papers and
patents reporting quantitative data on the chemical composi-
tion of OCM catalysts and their performance under different
reaction conditions. These authors suggested a strategy for
designing multicomponent catalysts; promising OCM cata-
lysts should consists of host basic metal oxide (MgO or La,05)
promoted with metal oxide dopant(s) influencing positively
C,-selectivity (Cs, Na, Sr, Ba) and activity (Mn, W).

Unfortunately, no theoretically based relationship between
catalyst composition and performance is known for the oxi-
dative coupling of methane. Thus, such a relationship can
only be established empirically, i.e. through fitting some
mathematical function(s) to the available experimental data.
The simplest kind of such empirical models is linear regres-
sion, which is however not suitable for this purpose because
catalytic data typically do not reveal any linear dependence
on catalyst composition. Consequently, quadratic or some
special cubic models known as response surface have been tra-
ditionally used.>® Owing to the increasing power of modern
computers, it became possible to use more sophisticated and
complex nonlinear models, such as artificial neural networks,**
kernel regression,” or Gaussian processes™ for catalyst research® >
and for mathematical modelling in catalysis.>* > Such empiri-
cal models can be trained on the basis of available catalytic
data and hereafter used to predict performance of other cata-
lysts that had not been used in the training. There are two
typical purposes of such prediction approaches:

i) To check the trained model for its predictability, cata-
lytic materials with compositions predefined by researchers
are experimentally prepared and tested. Since only the cata-
lysts from this predefined set are taken into account, it
doesn't matter whether some of the available catalysts used
for training the model have better performance than the cata-
lysts from this set. However, some good-performing materials
can be discovered because the composition of virtual cata-
lysts is varied in a more systematic way compared to classical
trial and error approach.
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ii) To find the best catalyst, the search, is performed in
the whole considered set of catalyst compositions with the
use of an optimization method, e.g. an evolutionary
algorithm.>® When the model from (i) fits the experimental
data well enough, it can be used for suggesting catalyst for-
mulations in such evolutionary approach.

The main purpose of the present study was to experi-
mentally validate the strategy for generating OCM catalysts
based on host and dopant metal oxides as theoretically
suggested in ref. 22. The specific objectives of the study were:
(i) to elucidate the potential of statistical models for
predicting OCM performance of multicomponent materials,
(ii) to prove if there is a systematic difference in catalytic
performance between materials possessing different main
components, and (iii) to check if there is a synergy effect
between two dopants. To this end, we applied various sta-
tistical models for suggesting potential catalyst composi-
tions and tested their OCM performance experimentally.
Finally, the models are critically evaluated in terms of their
predictive accuracy.

Theoretical approach and
experimental details
Mathematical modelling

From a mathematical viewpoint, eqn (1) represents an empir-
ical model of a scalar performance feature, such as yield,
selectivity or conversion as a function of catalyst composition
or/and reaction conditions. Such function for a quadratic
model is given by eqn (2). Other models considered in this
paper are several variants of a particular kind of artificial
neural networks, called radial basis function (RBF) networks.*
They are thoroughly explained in the electronic ESIT together
with the corresponding functions in eqn (1). Model parameters
in artificial neural networks are called weights.

FRYP — R, ie., flx,w) ER, (1)

d d j-l
f(xw)=w,+ Z(W/x/ + W/'Jx?) + ZZW,-,A»XM- (2)
j=1

j=2k=1

where 2297 denotes the space of (d + p)-dimensional real
vectors, d is the dimension of input data x (catalyst composi-
tion, reaction parameters ), and p is the number of model
parameters, i.e. the dimension of the vector of model param-

d(d+3)

eters w. For a quadratic function p= +1 and w =

(Wo, Wiyeovqy Wi,1ye- Wi gy Wa 1, - Wa,q)-

The choice of a particular model kind, ie. a particular
definition of f in eqn (1), is the most important modelling
decision. However, it does not enable to make model
predictions for a particular input x. To this end, a particular
value W of the vector w of parameters must also be chosen.
The process of choosing W is called model learning or
model training. For model learning, we need a set .# of
input data (in our case, a set of catalyst compositions) such
that for each x&€./4/, one or more measured values of the
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considered catalyst performance are available. The overall
number of measurements available for x is denoted n(x),
whereas the notation m(x) = (y,...,Vn) is used for the
whole sequence of the corresponding measured values.
Most frequently, n(x) is equal to 1, but a model must be
able to also deal with a situation that several different per-
formance values have been measured for the same input x,
e.g. in different experiments or by different laboratories.
Each pair (x, y), in which x€.4 and y is one of the corre-
sponding values y; from the sequence m(x), is called a train-
ing pair for the model. Mathematically, model learning is
the minimization of some error E with respect to its param-
eters using the available training pairs, thus the resulting W
fulfils eqn (3),

E(f,vAv,,/lﬁ):%li£E(f,w,,li). 3)

To solve the minimization task in eqn (3), two further
decisions must be made:

e Within which set W should the vector w be sought? Fre-
quently, W is simply the space of all p-dimensional real vec-
tors. Sometimes, however, some restrictions are imposed to
some components of w, e.g., they have to be positive.

e How to compute the error E(f, w, .#)? The kinds of
errors most frequently used are the mean absolute error
(MAE) and the mean squared error (MSE) defined in eqn (4)
and (5), respectively.

MAE(f,w,.) =

®)

Since the physical units of MAE and MSE are different,
the root mean squared error (RMSE) is frequently used
instead of MSE, which has the same units as MAE,

RMSE( f (x,w),.# ) = \[MSE(f,w,.) (6)

Model learning (eqn (3)) based on RMSE gives, of course,
the same result as model learning based on MSE. In our
research, we employed model learning based on RMSE, and
for comparison, we also recorded MAE.

It is important to note that MAE, MSE and RMSE measure
the error of the model but are not suitable to estimate the
error of a particular prediction by the model because they do
not include the information about the particular input for
which the prediction is computed. Therefore, to estimate the
error of a particular prediction in our experiments, we used a

1670 | Catal Sci. Technol., 2015, 5, 1668-1677

View Article Online

Catalysis Science & Technology
heuristics based on nearest neighbours,***
in two steps:

1. Given the input Xy, in which the prediction f(xpew, W)
has been computed, and a number k chosen in advance, the
elements of ./ are ordered increasingly according to their
distance from Xy, and the average of the measured values
y(l),...,y(k) corresponding to the k elements x@ . x® of

. . & .
closest t0 Xnew is computed, ie. 7 :—Zy(). For ordering

i=1

which proceeds

the elements of .#, any distance can be used. When estimat-
ing the errors of predictions in our experiments, we used the
Euclidean distance standardized with respect to different
variance of proportions of different elements, which form the
dimensions of the points in ./ .

2. As an estimate of the prediction f(xnew, W), its distance

from j(") is then taken, Ze. the value ‘ f (x“ew,vAv) - i(k)‘ . According

to step 1, this distance depends on the choice of k. Therefore,
we have always computed it for k = 2, 3, 4, 5 and used the
maximum of those 4 values.

For modelling the dependence of yield of C, hydrocarbons
on composition of OCM catalysts, we used 2 different model
types mentioned below. Their mathematical description is
provided in the ESLf

I. The traditional quadratic response surface model
described in eqn (2).

II. Clustered RBF network with diagonal Gaussian radial
basis functions centred in data, optionally in addition com-
bined with linear regression.

Catalyst preparation

La,0; and MgO were used as host oxides for preparation
of catalytic materials. Each host oxide was impregnated with
an aqueous solution of two dopants at room temperature
according to the incipient wetness impregnation method.
The dopants were nitrates of lithium, sodium, caesium,
barium, strontium and manganese. The impregnated mate-
rials were dried at 393 K for 4 hours followed by their calcina-
tion in a muffle furnace in static air at 1073 K for 5 hours.

Catalytic testing

Catalytic tests were carried out in a multi-channel reactor
system at ambient pressure using a feed with methane and
air in a stoichiometric CH,: O, ratio of 2. This setup consists
of 48 plug-flow fixed-bed quartz tube reactors (i.d. = 4 mm)
operating in parallel. 78 mg of the fresh catalyst (sieve frac-
tion of 250-450 pm) diluted with SiC in the ratio of 1/3 were
filled into each reactor. An in-house developed flow restrictor
equally distributed the total gas flow to 48 reactors to
ensure the modified contact time of 0.0039 ¢ min ml™" per
reactor. Before testing, the catalysts were heated up to 1073 K
in a flow of air. Hereafter, the methane-air mixture was fed
to the reactors.

This journal is © The Royal Society of Chemistry 2015
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The feed components and the reaction products were
analysed by an on-line gas chromatograph (Agilent 7890)
equipped with PLOT/Q (for CO,) AL/S (for hydrocarbons) and
Molsieve 5 (for H,, O,, N,, and CO) columns as well as flame
ionization and thermal conductivity detectors. The GC
analysis started after the system reached reaction tempera-
ture and was carried out sequentially for each individual
reactor. The CH, conversion was calculated from the inlet
and outlet molar flows of CH,. The product selectivity was
calculated on feed basis.

Results and discussion
Selection of catalyst compositions based on literature data

For modelling, we defined 378 three-component catalyst for-
mulations consisting of one host oxide (La,O; or MgO) and
two dopants from oxides of Li, Na, Cs, Sr, Ba, La, or Mn. For
each host oxide, there were 21 individual groups differing in
dopant combinations. In addition, each group consisted of
9 catalyst formulations based on individual dopant concen-
trations varying from 0.1 to 10 wt.%. In order to estimate the
yield of C, hydrocarbons for these materials, we used various
models of type (II) as defined in section “Mathematical
modelling”. In total, there were 13 models. All the models
were trained using available literature data on catalysts and
their OCM performance from ref. 22. The individual models
differ from each other in:

i. The definition of the model described by eqn (1), in
particular, in the number of clusters and of basic functions
(cf- ESIT) used for modelling in each cluster,

ii. The details of the minimization procedure used to solve
the optimization problem described by eqn (3),

iii. The data used for their training. Three subsets of the
available literature data were considered:

A. 4 models for yield of C, hydrocarbons were trained
using catalysts based on host oxides of La or Mg (495 catalysts,
50 elements);

B. 4 models for yield of C, hydrocarbons were trained
using catalysts based on host oxides of La or Mg prepared via
impregnation (181 catalysts, 31 elements);

C. 5 models for yield of C, hydrocarbons were trained
using catalysts containing only elements from the pool of
oxides of Mg, La, Sr, Ba, Na, Cs, Li, Mn, and W (386 catalysts,
9 elements).

To compare the trained models with respect to their
predictive accuracy, a 10-fold cross-validation on the consid-
ered subset of literature data was performed. Such subset
was randomly divided into ten parts of approximately equal
size. Hereafter, for each part, the RMSE of a model trained
on the remaining 9 parts was computed and finally, the
RMSE was averaged over all 10 parts. The two lowest average
RMSE values were obtained for models trained on the subset
C of literature data. Therefore, only predictions made by
models trained on the subset C were finally taken into
account for the decision which catalysts will be experimen-
tally prepared and tested for the OCM reaction. To this end,

This journal is © The Royal Society of Chemistry 2015
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a weighted average prediction of the yield of C, hydrocar-
bons was calculated for each catalyst composition using the
predictions by the five models trained on the subset C.

The weights of the 5 predictions were inversely propor-
tional to the RMSE of each model. Within each catalyst group
consisting of nine materials, the catalyst composition with
the highest weighted average yield was synthesized. Table 1
reports these compositions and their predicted OCM perfor-
mance. For clarity purposes, we classified the catalysts into
8 systems differing in host metals and promoters: La-Sr,
La-Ba, La-Mg, La-alkali, Mg-Sr, Mg-Ba, Mg-La, and Mg-
alkali. On average, catalysts based on La,0; as host oxide
should perform superior to their MgO-based counterparts.
The highest average C, yield of around 0.156 is predicted for

Table 1 Nominal composition of catalysts prepared on La,O; and MgO
basis. Yp, and Yg, stand for their predicted and experimental yields of C,
hydrocarbons respectively

Metals and their weight
concentrations/wt.%

Nr. Catalysts La Mg Sr Ba Li Na Cs Mn Yp Yex

1 LaSrMn  90.8 9.1 0.1 0.148 0.141
2 LaSrBa 90.8 9.1 0.1 0.148 0.164
3 LaSrLi 90.8 9.1 0.1 0.139 0.173
4 LaSrNa 90.8 9.1 0.1 0.138 0.160
5 LaSrCs 90.8 9.1 0.1 0.148 0.147
6 LaBaMn 98.9 1.0 0.1 0.147 0.115
7 LaBaLi 99.8 0.1 0.1 0.135 0.154
8 LaBaNa 90.8 0.1 9.1 0.153 0.140
9 LaBaCs 99.8 0.1 0.1 0.146 0.149
10 LaMgMn 90.8 9.1 0.1 0.147 0.103
11 LaMgSr 83.3 8.3 8.3 0.151 0.148
12 LaMgBa 90.1 9.0 0.9 0.147 0.159
13 LaMgLi 90.8 9.1 0.1 0.134 0.141
14 LaMgNa 90.8 9.1 0.1 0.146 0.139
15 LaMgCs 90.1 9.0 0.9 0.146 0.127
16 LaLiMn 83.3 8.3 8.3 0.165 0.110
17 LaNaMn 90.1 9.0 0.9 0.155 0.137
18 LaCsMn 83.3 8.3 8.3 0.158 0.090
19 LaNaLi 83.3 8.3 8.3 0.156 0.130
20 LaNaCs 90.8 9.1 0.1 0.153 0.145
21 LaCsLi 90.8 9.1 0.1 0.147 0.147
22 MgSrMn 83.3 8.3 0.141 0.009
23 MgSrBa 83.3 8.3 8.3 0.13 0.167
24 MgSrLi 83.3 8.3 8.3 0.138 0.102
25 MgSrNa 83.3 8.3 8.3 0.146 0.157
26 MgSrCs 83.3 8.3 8.3 0.13 0.168
27 MgBaMn 90.8 9.1 0.135 0.119
28 MgBalLi 90.8 0.1 9.1 0.145 0.062
29 MgBaNa 90.1 0.9 9.0 0.153 0.018
30 MgBaCs 83.3 8.3 8.3 0.128 0.153
31 MgLaMn 9.1 90.8 0.146 0.088
32 MgLaSr 8.3 83.3 8.3 0.136 0.139
33 MgLaBa 9.0 90.1 0.9 0.145 0.127
34 MglLlaLi 8.3 833 8.3 0.151 0.104
35 MgLaNa 8.3 83.3 8.3 0.156 0.158
36 MgLaCs 8.3 833 8.3 0.138 0.120
37 MgLiMn 90.8 9.1 0.145 0.097
38 MgNaMn 90.8 9.1 0.154 0.010
39 MgCsMn 90.8 9.1 0.135 0.093
40 MgNaLi 90.8 9.1 0.1 0.145 0.064
41 MgNaCs 90.8 0.1 9.1 0.135 0.112
42  MgCsLi 90.8 9.1 0.1 0.145 0.072
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La-Alkali system. The worst catalytic performance is pre-
dicted for catalysts from the Mg-Sr group.

Experimental catalytic data and their comparison
with literature

To check the contribution of non-catalytic methane oxidation
to products distribution determined in presence of catalytic
materials, we initially performed tests with an empty reactor
and reactors filled with SiC, Al,O; or fused SiO,. In all cases,
carbon oxides and C, hydrocarbons were detected but
methane conversion stayed below 0.025 and oxygen conver-
sion below 0.04. When catalytic materials were tested, conver-
sion of methane and oxygen was significantly higher. Thus,
the below results can be safely ascribed to the effect of cata-
lyst on the OCM reaction.

Fig. 1 exemplarily illustrates the yield of C, hydrocarbons
experimentally determined over catalysts from the La-Sr and
Mg-Sr groups as a function of time on stream. The corre-
sponding conversion of methane is given in Fig. S1 in the
ESL} The results obtained over catalysts from the La-Ba,
La-Mg, La-alkali, Mg-Ba, Mg-La, and Mg-alkali groups are
summarized in Fig. S2-S7. For comparative purposes, the
OCM performance of non-doped La,O; and MgO is also
presented in these figures. It should also be noted that not
all catalytic materials showed stable OCM performance over
40 h at 1073 K. Therefore, Table 1 reports initial yields of
C, hydrocarbons. One can clearly see that the yield is
influenced both by host oxide and dopants. With the exception

(a)

0.18

AN L
58 886 ¢3¢
] o o o o [u] o
P § © © » s @ d
0.12
|
-
N
e
> 0.06
0.00 . . : .
0 10 20 30 40
time on stream / h
(b)
0.1
0.12
2 L Y T TR
N
e
> 0.06
0.00 . : ; ,
0 10 20 30 40

time on stream / h
Fig. 1 Time on-stream yield of C, hydrocarbons over (a) La-Sr-based
(@-Lay,O3, O-LaSrCs, O-LaSrNa, A-LaSrLi, v-LaSrMn, ¢-LaSrBa) and
(b) Mg-Sr-based (m-MgO, m-MgSrCs, ®-MgSrNa, a-MgSrLi, w-MgSrMn,
-MgSrBa) catalysts at 1073 K and 7 of 0.0039 g min ml™ using a feed
consisting of 29% CH, in air.
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of MgBaLi, MgBaNa, MgNaLi, MgCsLi, oxygen conversion
was complete over all catalysts tested.

Fig. 2 shows methane conversion and selectivity to C,
hydrocarbons experimentally obtained over catalysts synthe-
sized in the present study together with the literature data
available through ref. 22. From a viewpoint of yield of C,
hydrocarbons (used as criterion in our study for selecting
catalytic materials), a visual inspection of all these figures
suggests that the worst agreement between the previous liter-
ature and our present data was obtained for the Mg-Alkali
and La-Mg systems, while the performance of other systems
was reasonably predicted. To validate this interpretation
statistically, we tested the equality of yield distributions
between the literature data and our measurements using the
2-sample Kolmogorov-Smirnov test.*® Table 2 summarizes
the achieved significance level for rejecting the hypothesis
that the distributions of literature and experimental yields of
C, hydrocarbons are equal.

The achieved significance level is the probability that the
obtained data can occur if the hypothesis is true, i.e. if both
groups of data really follow the same distribution. If that
probability is low, it is interpreted as the hypothesis being
rejected by the test, and the lower the probability is, the
higher is the significance of its rejection. For the La-Ba,
La-alkali, La-Sr, Mg-Ba and Mg-Sr systems, the tested
hypothesis cannot be rejected. It can be rejected at the low
significance level of 10% for the Mg-La system, but not at
the usual significance level of 5%. For the Mg-alkali and
La-Mg systems, it can be rejected even at the high signifi-
cance level of 1%. Based on this statistical analysis, it can be
concluded that our models realistically predict the OCM
performance of differently composed -catalysts with the
exception of those from the Mg-alkali and La-Mg systems.
It is beyond the current study to elucidate possible reasons
for the latter deviation.

Comparison between prediction and experiment

To illustrate the predictive accuracy of our modelling approach,
we calculated the difference between predicted and experi-
mental yields of C, hydrocarbons. The smaller the difference,
the better the prediction is. If this difference has a negative
value the modelling underestimates the experimentally deter-
mined OCM performance, while the situation is reverse
when such value is positive. Fig. 3 compares the difference
values for all catalysts. On average, the OCM performance of
catalysts based on La,O; is better predicted than that of
their MgO-containing counterparts. The large difference for
MgBaLi, MgBaNa, MgNaLi, MgCsLi is due to their low
activity.

It is worth repeating that the predicted yields were
obtained by using a model that is a weighted combination of
five RBF network models trained with the subset C of the
available literature data. To check the predictive accuracy
of individual models, we selected six particular models.
Their selection was made according to the model predictive

This journal is © The Royal Society of Chemistry 2015
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Fig. 2 Comparison between literature data (solid symbols) available through ref. 22 and data measured in the present study (open symbols) for
the systems: (@) Mg-Ba, (b) Mg-Sr, (c) Mg-La, (d) Mg-Alkali, (e) La-Ba, (f) La-Sr, (g) La-Mg and (h) La-Akali. The experimental conditions are as in the

caption of Fig. 1.

ability estimated by 10-fold cross-validation. They include
three models of type I (quadratic response surface models),
which were trained with the subsets A, B and C of the litera-
ture data, respectively, and three models of type II (RBF
network models) again trained with the subsets 4, B and C,
respectively.

The MAE and RMSE values for each of the tested models
are given in Table 3. It is important to note that, according to
eqn (4) and (6), the lower these prediction errors, the better the
predictive model accuracy is. Irrespective of the model applied,
the lowest MAE and RMSE values were determined for the
La-Ba system followed by the La-alkali, Mg-La and Mg-alkali
systems. The values, however, depend on the model and litera-
ture data subset used. When using the subset C, the lowest
error was obtained nearly always with a model of type I. For
all other subsets, models of type II appear to have better pre-
dictive accuracy. This model type also provided the lowest
MAE and RMSE values when it was trained on the subset A.

To get insights into the errors in prediction of yield of C,
hydrocarbons, we checked the distribution of that error for

Table 2 Results of testing the equality of distributions between litera-
ture and experimental yields of C, hydrocarbons using the 2-sample
Kolmogorov-Smirnov test

System Significance level/%
La-Ba 30.0
La-Alkali 67.0
La-Mg 6.1
La-Sr 39.0
Mg-La 25.0
Mg-Alkali 0.2
Mg-Ba 68.0
Mg-Sr 63.0

This journal is © The Royal Society of Chemistry 2015

the catalysts tested in our experiments, as well as for their
most important subgroups. Those subgroups were obtained
using a regression tree®” for regression of the prediction error
depending on the main component of the catalyst and on the
presence of individual dopants. This tree is shown in Fig. 4
together with the distributions of prediction errors in the
obtained subgroups. Analysing this tree, the following impor-
tant influences on the prediction error on yield of C, hydro-
carbons were identified:

i. Most important feature from the point of view
whether the prediction error is high or low is presence of Mn
among dopants.

ii. Among catalysts not having Mn as a dopant, the next
most important feature is the usage of Sr as a dopant.

iii. In all 3 subgroups resulting from the above two sub-
divisions, the next most important feature is always the main
component, i.e. La,0; or MgO.

As seen from Fig. 4, the distributions of prediction errors
for all tested catalysts is slightly shifted towards positive
values (its mean value is 2.2) and is skewed to the right-hand
side. Similar characteristics hold also for the specific subsets
of catalysts containing neither Mn nor Sr as dopants or for
catalysts containing Mn as a dopant, especially if MgO is the
host oxide, though in those cases, they are based only on a
rather low number of tested catalysts. On the other hand, the
distribution of catalysts without Mn but containing Sr is
slightly shifted towards negative values, though also this
observation is based only on few catalysts.

The deviations between the predicted and the experimen-
tal values can originate from the facts that i) the models
applied were inappropriate or ii) the literature data used to
train the models strongly deviate from each other. To check
the latter possibility, we analysed C, hydrocarbons yields
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Fig. 3 Prediction error, i.e. the difference between predicted and experimental yield values of C, hydrocarbons (AYC,). The numbers of catalysts

are explained in Table 1.

Table 3 Comparison of the MAE and RMSE errors with which different models predicted the yield of C, hydrocarbons on various catalysts

Best model of type I

Subset A Subset B Subset C
Kind of model error
Systems EV (M)* MAE RMSE MAE RMSE MAE RMSE
La-Ba 5.6 2.6 3.2 3.5 3.9 1.4 1.6
La-alkali 5.9 401.9 401.9 28.9 28.9 1.9 2.0
Mg-La 3.6 2.6 2.8 2.1 2.5 2.6 3.2
Mg-Alkali 3.9 6.9 7.3 6.5 6.9 6.9 7.0
Models of type II
Best Combined
Subset A Subset B Subset C
Kind of model error
Systems EV (JZ)“ MAE RMSE MAE RMSE MAE RMSE MAE RMSE
La-Ba 5.6 0.6 0.7 1.4 1.8 1.6 2.6 1.7 2.0
La-Alkali 5.9 1.6 2.0 2.5 3.2 1.9 2.6 1.9 2.7
Mg-La 3.6 2.4 2.7 2.5 2.3 2.8 3.4 2.4 3.2
Mg-Alkali 3.9 4.9 5.2 5.0 6.0 8.5 8.8 8.1 8.5

“ See eqn (7).

previously reported in literature for catalyst compositions,
based on which the catalysts in the present study were
prepared. The criteria for selecting literature data are sum-
marized below:

i. La,O; or MgO are host oxides with their weight percent-
ages being between 83.3 and 99.8%.

ii. Depending on the kind of catalytic system various
dopants were considered as follows:

¢ For the La-Ba system: Ba, Na, Cs, Li, Mn;

o Ffor the La-Alkali system: Na, Cs, Li, Mn;

e For the Mg-La system: La, Sr, Ba, Na, Cs, Li, Mn;

e For the Mg-Alkali system: Na, Cs, Li, Mn.

The extent of variation (EV (/#)) of yield of C, hydrocar-
bons in various literature studies was calculated according to
eqn (7). In this equation, the set .# for a certain catalytic
system was selected according to the above criteria, x and y

1674 | Catal. Sci. Technol.,, 2015, 5, 1668-1677

stand for catalyst composition and the corresponding yield
respectively. For an ideal case, if the set of training pairs
contains (x;, y;) and (x;, y;) and x; = x; then y; should equal y;.
Inequality between y; and y; shows deviation between differ-
ent published literature data.

z xedl n(x)>1, Z::(';)Z:in—y,l

mten o)

PG LR ?)

EV ()=

The EV () values for available literature data are com-
pared in Table 3 with the MAE and RMSE values showing
the extent of deviation between experimentally determined
and predicted yields of C, hydrocarbons in the present study.
From a general viewpoint, if the EV (.4 ) values are smaller

This journal is © The Royal Society of Chemistry 2015
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than the errors (MAE or RMSE) between experimental and
predicted values, then mainly the modelling approach is
responsible for the problems with predictability. However,
Table 3 shows that irrespective of the model applied, the
MAE or RMSE values for the La-Ba and Mg-La systems are
always smaller than EV (.#). In case of the La-Ba system, they
are often substantially below (in particular, the error MAE of
the RBF network trained with the subset B of data is only
about 10% of EV (.#)). For the La-Alkali system, the errors of
all considered RBF networks are consistently below EV (),
but among the traditional quadratic models, this is true only
for the model trained with the C subset of data, whereas the
other two quadratic models are completely unusable.

In summary, at least the models of type II can be expected
to correctly predict catalytic performance of materials based
on the La-Ba, La-Alkali and Mg-La systems. This is not valid
for the Mg-Alkali system, because the errors of all considered
models are consistently larger than EV (/).

Relationships between catalyst composition and performance

The purpose of the discussion below is to analyse possible
relationships between the composition of three-component
catalysts and their OCM performance. Particularly, we focus
on the role of host oxide (MgO vs. La,0O3) and dopants. In
agreement with previous studies,®® pure La,0O; performed
superior to MgO with respect to the yield of C, hydrocarbons;
0.137 vs. 0.102 at complete conversion of oxygen. For our
multicomponent catalysts, promoting La,O; or MgO with SrO
has the most positive effect on the yield; the highest C, yields

This journal is © The Royal Society of Chemistry 2015

of 0.173 and 0.165 were achieved over LaSrLi and MgSrCs
respectively (Table 1). According to the database in ref. 22
these values are actually higher than those reported in litera-
ture for catalysts based La,O; or MgO as host components
with the exception of Li/MgO from ref. 39. This positive effect
of SrO is valid for all tested catalysts irrespective of the
second dopant used in our study, i.e., Li, Na, Cs, Ba, Mg and
Mn, with the last mentioned one showing a slightly negative
effect. From a mechanistic viewpoint, promoting La,03; with
SrO results in the formation of anion vacancies in the lattice
of the host oxide,*® which help to transform non-selective
bi-atomic oxygen species on the catalyst surface into selective
mono-atomic ones.”""” When BaO was used as dopant, the
yield of C, hydrocarbons was also improved compared to
pure MgO and La,O;. However, this is not valid for all
combinations of Ba with another dopant. Moreover,
Ba-promoted catalysts showed lower on-stream stability com-
pared to the Sr-doped counterparts. This can be explained
by the fact that barium oxide is transformed to the corre-
sponding carbonate, which is more stable than strontium
carbonate. For both La,0;- and MgO-based catalysts, using
alkali metal oxide as promoters also influenced this catalyst
characteristics negatively.

The effect of individual dopants and dopant combina-
tions on the yield of C, hydrocarbons was further analysed
by regression trees. The trees for the yield regression as a
function of the dopants were constructed for the catalysts
based on La,0; and those based on MgO, and they are
shown in Fig. 5. The numbers in this figure stand for aver-
age C, yields, with the value in the root being an average

Catal. Sci. Technol,, 2015, 5, 1668-1677 | 1675
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Fig. 5 Regression trees for the regression of yield (in percentage) of C,
hydrocarbons over La,O3z- and MgO-based catalysts on the presence
of individual dopants. At each node and leaf of the tree, an average
yield of the corresponding catalyst is given.

yield obtained over one of these two catalyst groups as a
whole.

The paths from the root illustrate how the presence or
absence of a certain dopant influences the yield. Among
the catalysts from the La,O; group, the presence of Mn has
the most decisive influence on yield of C, hydrocarbons. On
average, this dopant negatively affects the yield. This state-
ment contradicts to the theoretical conclusion from ref. 22
where Mn was identified as an important element positively
influencing this catalyst property. This contradiction is
probably due to the fact that Mn has been reported to play
an important role as promoter only for supported catalysts
possessing Na,WO,. Its positive effect on OCM performance
was ascribed to the formation of catalytically active Na-O-Mn
species**** and/or interconnected tetrahedral WO, and octa-
hedral MnOg groups.*” Such catalyst compositions were not
investigated in the present study. In the subgroup containing
Mn, the presence of Cs has the most decisive influence
followed by the effect of Sr. The latter dopant also plays an

1676 | Catal Sci. Technol.,, 2015, 5, 1668-1677

View Article Online

Catalysis Science & Technology

important role in the subgroup free of Mn. In the following
leafs, the presence of Li and Ba is highly relevant for C,
hydrocarbons yield over catalysts without and with Sr respec-
tively. However, the latter condition appears to be more
important for achieving high yields.

The presence of Li has the most decisive influence on the
yield of C, hydrocarbons over catalysts based on MgO
(Fig. 5). In the subgroup of Li-free materials, doping with Mn
plays the second important role. The next important dopant
influencing C, yield is SrO. On average, catalysts containing
this dopant showed the highest yield not only among MgO-
but also among La,03-based catalysts.

Thus, taking the above statistically verified experimental
results into account, we suppose that designing OCM catalysts
based on one host metal oxide and two dopants may result in
novel catalyst formulations with improved performance. Fur-
ther progress can be expected when not only composition of
catalysts but also their physico-chemical properties will be
considered in statistical modelling. In addition, we strongly
believe that supplementary information about the kinetics of
individual reaction pathways should be taken into account in
such approach to derive deeper fundamental relationships
between catalyst composition and performance. We are cur-
rently performing such kinetic studies with the purpose to
determine reaction constants of activation of O,, CH,;, C,Hg
and C,H,. Assuming that this statistical modeling turns out
to be successful, evolutionary strategy in combination with
high-through-put experimentation is to be applied for dis-
covering optimal catalysts for maximal performance taking
into account the multi-parameter space defined by the vari-
ous variables (composition, solid-state properties, prepara-
tion methods, kinetic parameters and reaction conditions).

Conclusions

Statistical analysis of available literature data on OCM reac-
tion was experimentally proven to have the potential for
designing three-component catalysts based on one host metal
oxide (La,O; or MgO) and two dopants and for predicting
their OCM performance. Catalysts prepared according to this
approach performed superior to previously tested similarly
composed materials. This analysis also enabled us to estab-
lish relationships between the catalyst composition and OCM
performance. Compared with previous literature data, we
cannot confirm that promoting with alkali metal oxides will
always result in catalysts showing high yields of C, hydrocar-
bons. To generate active and selective catalysts, it is important
to combine such dopants with oxides of alkali-earth metals.
Irrespective of the kind of second dopant, our study claims
that Sr is the most promising dopant for La,0; and MgO.

From the point of view of modelling catalyst performance,
our research has brought twofold experience:

1. Models based on RBF neural networks are more reliable
than traditional quadratic response surface models.

2. The predictive accuracy of models based on literature
data suffers from the high diversity of such data, which

This journal is © The Royal Society of Chemistry 2015
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allows using only a part of the available information for
model training, most naturally catalyst composition, whereas
the remaining information, such as reaction conditions, is
ignored and not incorporated into the model.
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