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1 FSC curves

Figure 1 shows the FSC curves between the references and the reconstructions.
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Figure 1: FSC curves comparing the references with the reconstructions. The references are the same as
shown in the main text, i.e. for the 50S ribosome, RNA Polymerase II and GroEL they are created from the
atomic structures at 25 Å, 20 Å and 20 Å respectively, for the 70S ribosome the reference was obtained by
the PRIME algorithm and for the last structure (APC/C) the reference is from another publication (EMD-
2354). The normalized cross-correlations for the same five pairs of structures are 0.990, 0.966, 0.900, 0.927
and 0.902 respectively.
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2 Movies

The first movie (movie1.avi) shows multiple pseudo-atomic models of the same structure (RNA Polymerase
II) with increasing numbers of pseudo atoms. It demonstrates that a small number of pseudo-atoms are
sufficient for representing low-resolution structures, and that the number of model parameters required are
orders of magnitude fewer than with the standard grid-based representation.

The second movie (movie2.avi) shows a reconstruction of the 50S ribosome, from the initial random
model to the final model. The trajectories of the individual pseudo-atoms as well as those of the individual
rotations can be seen. For the rotations, only the projection direction is shown (the first two Euler angles),
not the in-plane rotation component (the third Euler angle).

3 Computing the posterior distribution

Here we give a more formal description of the different components of the Bayesian framework, starting with
the data D.

The i’th deconvolved class average is a non-negative grayscale image (Iij)1≤j≤n with 2D pixel coordinates1

(xoij)1≤j≤n, where the pixels are indexed by j, and n is the number of pixels per image. The Iij ’s for a given
i are then multiplied by a constant scaling factor α ≥ 0, and rounded to the nearest integer to obtain
yij := round(αIij). The constant α is chosen such that

∑
j yij ≈ C for a previously fixed constant C.

The Iij ’s are discarded, and we continue with the yij ’s.
The observed data is now considered as 2D points, with yij points at each pixel centered at xoij . Every

pixel gives rise to a yij-dimensional data vector

dij = [xoij1, . . . , x
o
ijl, . . . , x

o
ijyij ]

with identical entries xoijl = xoij , where l runs from 1 to yij . All the data vectors dij together form the
observed data D = xo = {xoijl}.

Before describing the forward model, we introduce the latent variables. These are the assignments z as
typically used for Gaussian mixture models, and the missing z-components xm.

The assignments z = {zijl} consist of one assignment zijl for each point xijl, indicating the mixture
component responsible for generating the point. We use 1-of-K notation, whereby zijl is a length K vector
(zijlk)k with zijlk ∈ {0, 1} and

∑
k zijlk = 1. I.e. the k for which zijlk = 1 indicates the component that

generated xijl.
The missing components xm = {xmijl} consist of the z-component xmijl for each sampled 3D point xijl =

[xoijl x
m
ijl]. Since we only observe the first two coordinates, i.e. xoijl, the z-component is referred to as missing.

We write Z = {z, xm} for all latent variables together.
Given a model parameterized as described above, the observed data can be generated as follows: for a

given direction i compute the 2D density Ii(x). Sample C points from this density, and create a 2D histogram
with bins centered at the grid points xoij . Then yij is defined as the number of points in the j’th bin. If the
grid is sufficiently fine, we can make the following assumption to simplify the forward model: all the points
in the j’th bin are replaced by the center of the bin, xoij . In other words we assume that we sampled yij
copies of xoij , for each j.

This forward model can also be described in a slightly different way which will be used below in formu-
lating the sampling algorithm. Instead of first projecting the 3D density to 2D, and then sampling C points,
we could equivalently first sample C 3D points, and then project them to 2D. The 3D points sampled from
the rotated density are denoted by xijl = [xoijl x

m
ijl], where xoijl ∈ R2, and xmijl ∈ R. Projection along the

z-axis means discarding the z-component xmijl, i.e. xijl is projected to xoijl.

1The superscripts o and m stand for observed and missing respectively, as will be explained shortly.
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The above forward model describes the extended likelihood for the data and latent variables:

p(D,Z|θ) = p(xo, xm, z|µ, s, w,R, t) (1)

=
∏
ijlk

w
zijlk
k f(xijl|Riµk + ti|

1

s
I)zijlk . (2)

Marginalizing out the latent variables gives the data likelihood:

p(D|θ) = p(xo|µ, s, w,R, t) (3)

=

∫∫
p(xo, xm, z|µ, s, w,R, t)dxmdz (4)

=

∫
p(D,Z|θ)dZ. (5)

The prior is assumed to factorize over the model parameters:

p(θ) = p(µ, s, w,R, t) = p(µ)p(s)p(w)p(R)p(t), (6)

where the means p(µ) =
∏
k f(µk|0, 1r I) follow normal distributions, the precision p(s) ∝ sa−1e−bs a gamma

distribution, the weights p(w) ∝
∏
k w

λ−1
k a Dirichlet distribution, the rotations are distributed uniformly,

and the translations p(t) =
∏
i f(ti|0, 1r I) follow normal distributions. The hyperparameters r, a, b and λ

are kept fixed.

4 Gibbs sampling

Here we give the equations for performing Gibbs sampling. These are uniquely determined given the forward
model and prior defined above. We use Gibbs sampling to sample from the extended posterior p(Z, θ|D),
and then discard the latent variables Z to obtain samples from the posterior. The extended posterior is
proportional to the product of the extended likelihood (Equation 2) and the prior (Equation 6). To sample
from this extended posterior using Gibbs sampling we compute the conditional distribution for each of
the parameters, conditioned on all the other parameters. They are all standard distributions (Gaussian,
multinomial, Dirichlet and gamma) except for the rotations, which are of the form exp[tr(ATR)].

The conditional for each assignment is a multinomial distribution:

p(zijl|xoijl, w, µ, s,R, t) =
∏
k

w
zijlk
k f(xoijl|P (Riµk + ti),

1

s
I)zijlk .

where

P =

[
1 0 0
0 1 0

]
.

The conditional for the missing z-component for a single point is a 1D normal distribution:

p(xmijl|xoijl, zijl, µ, s, R, t) =
∏
k

f(xmijl|Pz(Riµk + ti),
1

s
)zijlk ,

where
Pz =

[
0 0 1

]
.

The conditional for the weights is a Dirichlet distribution:

p(w|xm, z, µ, s,R, t) ∝
∏
k

wnk+λ−1
k
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where
nk =

∑
ijl

zijlk.

The conditional for each mean is a normal distribution:

p(µk|xm, z, s, w,R, t, xo) = f(µk|µ,Σ)

where

µ =
s

snk + r

∑
ijl

zijlkR
T
i (xijl − ti)

Σ =
1

snk + r
I.

The conditional for the precision is a gamma distribution:

p(s|xm, z, µ,R, t) ∝ sa
′−1e−b

′s,

where

a′ = a+
3

2
N

b′ = b+
1

2

∑
ijkl

zijkl
[
‖xoijl − P (Riµk + ti)‖2 + (xmijl − Pz(Ri + ti)µk)2

]
.

The conditional for each rotation is

p(Ri|ti, xm, µ, s, xo) ∝ exp
[
tr(ATi Ri)

]
,

where
Ai = s

∑
jlk

zijlk(xijl − ti)µTk .

The conditional for each translation is a normal distribution:

p(ti|x, µ, s,R) = f(ti|µ,Σ)

where

µ =

∑
jlk zijlk(xijl −Riµk)∑

jlk zijlk

Σ =
1

s
∑
jlk zijlk

I.

5 Prior hyperparameters

The prior distribution on the pseudo-atom size σ is given by a gamma distribution over the precision s = 1/σ2:

p(s) =
βα

Γ(α)
sα−1e−βs.

The mean α/β and variance α/β2 of this distribution encodes our prior knowledge about the size of the
pseudo-atoms. In Figure 2 on the left are a few examples for different values of α and β, with β chosen
such that the mean is 1/102 (i.e. β = 102α). In the same figure on the right are the effects of the different
choices of the hyperparameters on a reconstruction of the 50S ribosome from simulated data. It shows that
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Figure 2: Varying the prior on the pseudo-atom size. On the left are different prior distributions over the
pseudo-atom precision s, which is related to the pseudo-atom size σ by s = 1/σ2. They correspond to a
wide range of different choices of the hyperparameter α. The other hyperparameter β determining the prior
distribution is chosen to ensure that the mean of s is 1/102. Low values of α place effectively no restriction
on the pseudo-atom size, while very high values of α restrict the pseudo-atom size to be very close to 10 Å.
This can be seen on the right, where a 50S ribosome model inferred from simulated data is compared to a
reference model. When a broad prior on the pseudo-atom size is used (i.e. α is low), then then final size is
around 6 Å. As the prior becomes narrower (i.e. α is high), the final size tends to the mean prior value of
10 Å. The figure shows that for α in the range 1 to about 1000, the quality of the result as measured by the
cross-correlation does not depend on the specific choice of α.

good results are obtained for all values of the hyperparameters, although the results deteriorate for very
high values of α (above 1000). We conclude that the specific value of alpha is not very important for our
algorithm, and recommend it to be chosen in the range 1 to 1000. We used α = 10 for our experiments.
The value of β can be chosen as was done here to ensure that the mean is 10, although a similar experiment
shows that the exact value of β is also not very important. For our experiments we used β = 102α = 1000.

The prior distribution on the pseudo-atom weights w = {wk} is a Dirichlet distribution

p(w) ∝
K∑
k=1

wλ−1k .

This distribution is parametrized by a single hyperparameter λ, which determines the allowable variation
among the weights for the different pseudo-atoms. Higher values of λ lead to less variation.

In Figure 3 we show the effect of varying λ on the quality of a reconstruction using the same data as
before. The figure shows that all values of λ in a wide range lead to similar results, although very small
values of λ (0.1 and 1.0) give slightly worse results. We therefore recommend choosing λ in the range from
10 to 105. We used the value λ = 1000 for our experiments.
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Figure 3: Varying the prior on the pseudo-atom weights. Multiple reconstructions using the same 50S
ribosome data as before were performed using a range of values of λ, the hyperparameter for the weights. At
the top are the resulting cross-correlations with the reference, measuring the quality of the inferred models.
The cross-correlations are slightly lower for very low values of λ, but stay relatively constant for λ above 10.
At the bottom are the individual pseudo-atom weights, showing that the variation in the weights decreases
with increasing λ.
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