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ABSTRACT Single-particle cryo-electron microscopy is widely used to study the structure of macromolecular assemblies.
Tens of thousands of noisy two-dimensional images of the macromolecular assembly viewed from different directions are
used to infer its three-dimensional structure. The first step is to estimate a low-resolution initial model and initial image orienta-
tions. This is a challenging global optimization problem with many unknowns, including an unknown orientation for each two-
dimensional image. Obtaining a good initial model is crucial for the success of the subsequent refinement step. We introduce
a probabilistic algorithm for estimating an initial model. The algorithm is fast, has very few algorithmic parameters, and yields
information about the precision of estimated model parameters in addition to the parameters themselves. Our algorithm uses
a pseudo-atomic model to represent the low-resolution three-dimensional structure, with isotropic Gaussian components as
moveable pseudo-atoms. This leads to a significant reduction in the number of parameters needed to represent the three-dimen-
sional structure, and a simplified way of computing two-dimensional projections. It also contributes to the speed of the algorithm.
We combine the estimation of the unknown three-dimensional structure and image orientations in a Bayesian framework. This
ensures that there are very few parameters to set, and specifies how to combine different types of prior information about the
structure with the given data in a systematic way. To estimate the model parameters we use Markov chain Monte Carlo sam-
pling. The advantage is that instead of just obtaining point estimates of model parameters, we obtain an ensemble of models
revealing the precision of the estimated parameters. We demonstrate the algorithm on both simulated and real data.
INTRODUCTION
Single-particle cryo-electron microscopy (cryo-EM) is a
method used to determine the three-dimensional structure
of macromolecular assemblies (1). Many copies of the as-
sembly of interest are prepared in a thin ice layer, and
imaged using an electron microscope. Each image, called
a micrograph, contains non-overlapping two-dimensional
images of hundreds of particles, all assumed to have approx-
imately the same three-dimensional structure, but oriented
differently. Tens of thousands of these particle images are
extracted from a collection of micrographs. Such large
numbers are required due to the extremely low signal-to-
noise ratio (SNR) of the images.

The standard image formation model for this setting is to
model each image as the linear projection of the unknown
structure along an unknown direction, convolved with a
known point-spread function (due to the electron micro-
scope), and corrupted by noise (1). The reconstruction
problem is to infer the three-dimensional structure from
the two-dimensional images.

The workflow for solving the reconstruction problem can
be divided into two parts: obtaining a low-resolution initial
model, followed by a refinement of this model. A common
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refinement algorithm is three-dimensional projection
matching (2). It alternates between updating the three-
dimensional model and the image orientations. Given the
current three-dimensional model, its projections are calcu-
lated along a discrete grid of directions. Each image is
aligned to the best matching projection. Having updated
all the image orientations, a new three-dimensional model
is reconstructed using direct Fourier inversion for example,
and the steps are repeated until convergence.

A low-resolution initial model could be a previous recon-
struction of the same structure, or a model of a similar struc-
ture. However, in cases where a suitable initial model is not
available, it has to be reconstructed from the data using an
ab initio reconstruction algorithm. This is an important
step: if the initial model does not represent the structure
accurately enough, it may lead the refinement algorithm to
converge to an incorrect model.

As input data, many ab initio algorithms do not use the
individual particle images, but work with two-dimensional
class averages instead. Class averages are obtained by clus-
tering, aligning, and averaging the two-dimensional images
to improve the SNR (3). This significantly reduces the num-
ber of unknown image orientations to be estimated by the
algorithm.

Several ab initio algorithms exist. They include common-
lines-based algorithms (4–9), random-model methods
(10,11), methods using stochastic hill climbing (12) or
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nonlinear dimensionality reduction (13), and a Bayesian
approach (14).

A drawback of most of these ab initio algorithms is that
they have many ad hoc parameters whose effect on the re-
sults is difficult to interpret, and which are a potential source
of bias by the user.

This has motivated the use of statistical modeling in cryo-
EM reconstruction, first in the form of maximum-likelihood
methods (15,16), and more recently as maximum a posteri-
ori (MAP) estimates in a Bayesian framework (14,17,18).
Statistical modeling requires a complete description of
how the data (i.e., the two-dimensional images) are gener-
ated from the model (i.e., the three-dimensional structure
and image orientations). It distinguishes between parame-
ters used to describe the statistical model and algorithmic
parameters influencing, for example, how fast the algorithm
runs, but which cannot bias the results. Such an approach
therefore has parameters that are easier to interpret, and a
higher degree of objectivity.

The cryo-EM reconstruction problem is highly ill-posed:
different models can give rise to very similar data. The stan-
dard way of dealing with this is to regularize, for instance by
penalizing three-dimensional structures with too much high-
frequency content. From the Bayesian perspective, this is
equivalent to introducing prior assumptions about the model
(in this case that the three-dimensional structure should have
mostly low-frequency content). The Bayesian approach pro-
vides a systematic and theoretically well-grounded way to
combine such explicit prior knowledge about the model
with the data to find models (i.e., three-dimensional struc-
tures and image orientations) that are consistent with both
the prior knowledge and the data.

Bayesian approaches to reconstruction algorithms tend to
be very computationally intensive. Typical computation
times in CPU time range from days (14) to several months
(15).

We introduce a probabilistic ab initio algorithm that ad-
dresses the above-mentioned challenges. It uses a pseudo-
atomic model with several hundred pseudo-atoms that can
move around and change their size. As we will show later,
this significantly reduces the number of parameters needed
to describe the three-dimensional structure. Computing
two-dimensional projections of the three-dimensional struc-
ture also becomes much simpler and faster.

Our reconstruction algorithm uses a Bayesian approach.
The data-generation process is simple and intuitive, with
only a small number of adjustable parameters such as the
number of pseudo-atoms. Expressing prior knowledge be-
comes straightforward.

Instead of just generating the single model most consis-
tent with the data and prior knowledge (the MAP estimate),
our algorithm generates multiple similar models that are all
consistent with the data and prior knowledge. The ensemble
of models can be analyzed to obtain information about the
precision of the estimated three-dimensional structure and
Biophysical Journal 108(5) 1165–1175
image orientations. This approach also allows us to integrate
out the image orientations without the use of a discrete grid,
which slows down other Bayesian approaches.

We demonstrate our algorithm using simulated and exper-
imental data, and show that in all cases it can obtain suitable
initial models in a relatively short time.
MATERIALS AND METHODS

Model

Pseudo-atomic model

We use a coarse-grained representation of the three-dimensional structure

as a cloud of K pseudo-atoms. Each pseudo-atom is a spherical blob

centered at position mk with unknown radius s. All the pseudo-atoms

have the same (adjustable) size, and their positions can vary continuously,

i.e., they are not fixed to a regular grid. Each pseudo-atom has an unknown

weight wk. In analogy to high-resolution atomic structures, the mk vectors

are the Cartesian coordinates of the kth pseudo-atom, and wk and s are

its occupancy and temperature factor, respectively. In contrast to atomic

models, pseudo-atoms are much larger than atoms, and far fewer of them

are therefore required to represent a structure.

Pseudo-atomic models have been used to rigidly fit multiple subunits into

a given low-resolution three-dimensional density map (19), and to identify

possible conformational changes through a normal mode analysis (20,21).

In all these applications the pseudo-atomic model is fit to a three-dimen-

sional structure that has been reconstructed earlier using other algorithms.

In contrast, we are exploiting the advantages of the pseudo-atomic repre-

sentation for the reconstruction problem itself: the parameters of the

pseudo-atoms will be estimated directly from the two-dimensional images,

without any reference to three-dimensional volumes on regular grids.

If we choose our pseudo-atoms to have a Gaussian shape, then from a sta-

tistical perspective our representation is known as a Gaussian mixture

model (GMM) (22). GMMs are widely used to estimate probability density

functions from observed data points, and are a smooth and efficient alterna-

tive to the common histogram estimator. The advantage of casting cryo-EM

reconstruction as a GMM fitting problem is that we can draw inspiration

from well-established statistical methods for estimating the parameters of

the pseudo-atoms.

Each pseudo-atom is represented by a Gaussian function G3D(x;mk,s)

describing the density at the three-dimensional point x of a pseudo-atom

centered at mk with radius s (the parameters mk and s are the mean and stan-

dard deviation of the Gaussian). The density map r representing the entire

three-dimensional structure is a weighted sum of K such pseudo-atoms,

rðxÞ ¼
XK
k¼ 1

wkG3Dðx;mk; sÞ

¼
XK
k¼ 1

wk

ð2pÞ3=2s3
exp

(
� kx � mkk2

2s2

)
; (1)

where jjx – mkjj denotes the Euclidean distance between any three-dimen-

sional point x and the position of the pseudo-atom mk. Equation 1 is used,

for example, in many flexible fitting algorithms that fit atomic structures

to experimental EM maps.

The pseudo-atomic model has many advantages compared to the stan-

dard three-dimensional grid based representation. The first advantage is

that it requires far fewer parameters (see Fig. 1 and Movie S1 in the Sup-

porting Material). Each pseudo-atom needs only four parameters to

describe its position and weight, whereas a three-dimensional grid has

one parameter for each three-dimensional voxel. The pseudo-atomic model

can also be evaluated on an arbitrarily fine grid for visualization purposes.



FIGURE 1 Comparison between the number of parameters required for

the standard grid-based representation and the pseudo-atomic representation

of RNA polymerase II. The normalized cross-correlation was computed

with respect to the original reference structure on a grid with dimensions

112 � 112 � 112. The reference structure was downsampled by factors of

2, 4, and 8 to obtain the grid-based representations. The number of parame-

ters is the number of voxels and four times the number of components (K)

for the respective representations. The figure shows that, for any specified

level of accuracy (quantified by the cross-correlation), the pseudo-atomic

representation needs <10% of the number of parameters needed by the

grid-based representation. See also Movie S1.
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Another important advantage is that computing two-dimensional projec-

tions is simple and fast. A given image orientation is described by a three-

dimensional rotation matrix R. The three-dimensional structure is projected

along the corresponding direction by first rotating it by R, and then inte-

grating along the z axis to obtain an image in the x,y plane. The in-plane

translation is denoted by the vector t. In-plane rotations are already ac-

counted for by the rotation matrix R.

Applying this procedure to our pseudo-atomic model is very simple: first

we apply the rotation by transforming each pseudo-atom position mk to Rmk.

Then we project to the x,y plane by just discarding the z coordinate.

Formally, we project Rmk to PRmk, where

P ¼
�
1 0 0

0 1 0

�
:

Finally, we translate the projection by t. The resulting translated two-

dimensional projection of all the pseudo-atoms is also a GMM, of the form
ðPRrÞðxÞ ¼
XK
k¼ 1

wkG2Dðx;PRmk þ t; sÞ; (2)

where ( )

G2Dðx;m; sÞ ¼ 1

2ps2
exp � kx � mk2

2s2

is a two-dimensional Gaussian. The weights wk and size s are the same as

for the three-dimensional model. The computation only requires a small
number of elementary matrix operations. There is also no need for any

interpolation.

The parameters of the pseudo-atomic model, together with a rotation Ri

and translation ti for each image, constitute our unknown model parameters,

q ¼ fm; s;w;R; tg;
where m ¼ {mk}, w ¼ {wk}, R ¼ {Ri}, and t ¼ {ti}.
We do not have to specify the size s of the pseudo-atoms because it is

estimated by the algorithm. Instead, we have to specify the number of

pseudo-atoms, K, which implicitly determines the optimal size s. We

choose K such that the estimated size s is approximately the same as the

pixel size of the two-dimensional projection images. A similar rule-of-

thumb has been shown to work when fitting atomic models to three-dimen-

sional volumes (20), by choosing the pseudo-atom size to be roughly the

same as the voxel size.

Using the Bayesian approach, we have to encode our prior assumptions

by defining a probability distribution p(q) (called the ‘‘prior’’) over all

possible models describing how plausible each model is before including

any data. For instance, we use a three-dimensional Gaussian distribution

as the prior for each position mk to encode our assumption that the

pseudo-atoms should be spread across a region roughly the size of the un-

known three-dimensional structure. For each rotation Ri we use a uniform

prior to model the assumption that each image orientation is equally likely.

Our distribution of the prior has only four additional parameters (hyper-

parameters) that determine the shape of the prior, and are fixed during the

reconstruction: one for the expected size of the structure (which can be esti-

mated from the size of the images), one determining how much the individ-

ual weights wk are allowed to deviate from the average weight, and two

specifying the range of plausible sizes s for the pseudo-atoms. The hyper-

parameters have only a minor influence on the final model, and the default

values will work for a large number of reconstructions. See the Supporting

Material for an analysis of the effect of the hyperparameters on the final

model.

Data-generation model

One way to create two-dimensional projection images is to project the

three-dimensional mixture model to a two-dimensional mixture model as

described above (Eq. 2), and then to evaluate this two-dimensional mixture

model on a two-dimensional grid. This approach will be used below to

generate simulated data.

Viewing our pseudo-atomic model as a GMM, wewould like to make use

of the powerful statistical algorithms that exist for fitting GMMs to three-

dimensional point clouds. Examples of such algorithms include expectation

maximization (23) and Gibbs sampling (24). Two complications prevent us

from directly applying one of these algorithms: we have two-dimensional

intensities instead of individual two-dimensional points, and a dimension

is missing (we have two-dimensional data instead of three-dimensional

points). To address these complications and connect with existing methods

for estimating GMM parameters, we adopt an alternative view of the data-

generation process (see the Supporting Material for a formal description).

Starting with a pseudo-atomic structure, we assume that the first step in

generating the ith image is to generate a three-dimensional point cloud with

C points covering the same region as the pseudo-atomic model. Each point

in the point cloud is created by first randomly selecting a pseudo-atom ac-

cording to its weightwk, and then randomly placing the point near the center

of the pseudo-atom. This is exactly how algorithms such as expectation

maximization and Gibbs sampling assume the three-dimensional point

cloud to have been generated in the standard application of fitting a

GMM to a three-dimensional point cloud.

The three-dimensional point cloud is then rotated and translated by Ri

and ti, and projected to a two-dimensional point cloud by discarding the z

coordinate. Finally, a two-dimensional histogram is formed by using the

two-dimensional pixels as bins. The two-dimensional histogram is viewed

as a quantized image, with the number of points in each bin being the image

intensity at that pixel. The input data D to the algorithm consists of all the

quantized images together.

The randomness in generating the three-dimensional point cloud trans-

lates into randomness in the generated data D. Given fixed parameters

for the pseudo-atoms and the rotations and translations, the probability

distribution over possible datasets that can be generated is denoted by

p(D j q). In statistical parlance, p(D j q) is called the ‘‘data likelihood’’

and defines a random forward model of how the observed images could
Biophysical Journal 108(5) 1165–1175
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have been generated. Estimation of the model parameters q is achieved by

inverting the data generation process with the help of Bayes’ theorem.

To use our ab initio algorithm we first have to convert the raw particle

images to quantized class averages. The preprocessing steps needed to

obtain nonnegative (real-valued) class averages are described below. The

nonnegative images are converted to quantized images by first scaling

them by a and then rounding to the nearest integer. The scaling factor a

is chosen such that the total number of points C in the image equals a pre-

determined constant.

The idea of the ab initio algorithm to be described below is to reverse the

above data-generation process: starting with two-dimensional points from

the quantized image, we first back-project them to three-dimensional points

by estimating their missing z coordinates. Then we assign each three-

dimensional point to a pseudo-atom that was likely to have generated it.

And finally we move the pseudo-atom to align it to its assigned three-

dimensional points. The last part of this strategy is the same as used in

the standard application of Gibbs sampling to three-dimensional point

clouds, and very similar to expectation maximization.

Data preprocessing

Similarly to many other ab initio algorithms, we use class averages instead

of raw particle images as input to our algorithm. This yields a computa-

tional advantage by significantly reducing the number of unknown rota-

tions, in addition to an increase in the SNR. It comes at the cost of

corrupting the high-frequency information in the images, but this is not a

drawback for ab initio methods, where we are only interested in low-reso-

lution reconstructions.

Our ab initio algorithm requires the class averages to be nonnegative.

This is a sensible assumption, given that in the standard model of cryo-

EM image formation, the images are taken to be nonnegative before the

contrast transfer function (CTF) is applied. If we apply commonly used

CTF-correction algorithms such as Wiener filtering or phase-flipping, the

resulting images typically still have negative values.

Here we describe an extra deconvolution step to correct for the CTF that

can be appended to the class-averaging algorithm to ensure that the result-

ing images are nonnegative (see Fig. 2). The deconvolution algorithm can

be applied either to individual raw images that have been clustered and

aligned, or to class averages as produced by any existing class-averaging

algorithm.

Let {zi} be the raw images from a single class that have been two-dimen-

sionally aligned relative to each other. We model each image zi ¼ fi � yþ ei
as the convolution of a nonnegative image y with a point-spread function fi,

with added independent and identically distributed Gaussian noise ei. Each

point-spread function is the inverse Fourier transform of the corresponding

CTF for that image, which is assumed to be known. The unknown image y is

the projection of the unknown density map along an unknown direction.
FIGURE 2 Preprocessing pipeline to prepare the data for the ab initio al-

gorithm. The raw images on the left are clustered and aligned using any of

the standard class-averaging algorithms. The deconvolution algorithm in

the text is then applied to every cluster or class average to obtain a decon-

volved image (on the right).
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A MAP estimate for y is found by minimizing the convex loss function,

LðyÞ ¼ 1

2

X
i

kzi � fi � yk2 þ 1

2
akVyk2; (3)

subject to the constraint that y be nonnegative. Here7 is the gradient oper-

ator, and a is a hyperparameter controlling the smoothness of y. The regu-
larization parameter a can be chosen manually, and was fixed to a value of

10 for all our experiments. We use the L-BFGS-B algorithm (25) to opti-

mize Eq. 3.
Algorithm

In the previous section we defined the model parameters q, the data D, the

prior distribution on the parameters p(q), and the data-generation model

p(D j q). Bayes’ theorem dictates how to compute the posterior distribution

p(q j D):

pðqjDÞ ¼ pðDjqÞpðqÞ
pðDÞ : (4)

The posterior is a probability distribution over all possible models, quanti-

fying how well each model explains the data without violating the prior
assumptions.

Gibbs sampling is a widely-used Markov chain Monte Carlo algorithm

for sampling from the posterior distribution, in other words for generating

model realizations that follow the posterior distribution and are therefore

consistent with both the data and the prior information (24).

The first step is to generate a random initial model by sampling the model

parameters from the prior distribution. The parameters are then updated in

turn: first, the assignments of points to pseudo-atoms and missing z coordi-

nates (back-projection); then, the pseudo-atom parameters (positions,

weights, and size); and finally, the rotations and translations. Each param-

eter update depends on the current values of the other parameters. This sin-

gle Gibbs sampling step is iterated several times until the parameters

converge to a stable region of parameter space that should be independent

of the initial random model.

Each group of parameters is updated according to their corresponding

conditional distribution. The conditional distribution quantifies the likeli-

hood of each possible value of a given parameter, assuming that all other

model parameters are known and fixed.

Importantly, in the Bayesian framework all the conditional distributions

are completely determined by just the prior distribution p(q) and the data-

generation model p(D j q). The only way to modify these distributions is by

making different prior assumptions or by using different data. Furthermore,

each conditional distribution is a well-known distribution for which is it

straightforward to generate parameters. For instance, the conditional distri-

bution for each pseudo-atom position is a Gaussian distribution. Less well

known is the conditional distribution for each rotation Ri, which is of the

form exp[tr(ATRi)] for some matrix A. This is a unimodal distribution,

which can be seen as the analog for three-dimensional rotations of the

well-known von Mises distribution for two-dimensional rotations. We use

the algorithm introduced by Habeck (26) to generate rotations from this

distribution.

We will first give an overview of the entire algorithm, which consists of

several Gibbs sampling steps, and then describe a single Gibbs sampling

step in more detail.

In the flowchart in Fig. 3, the algorithm is divided into two parts: an

initial stage and a refinement stage. A very low resolution structure with

only 100 or 200 pseudo-atoms is constructed during the initial stage, and

then refined with 500 or 2000 pseudo-atoms during the refinement stage.

See Movie S2 for a visualization of the algorithm.

The initial stage is reminiscent of the projection-matching algorithm

described in the Introduction. We alternate between multiple Gibbs sam-

pling steps to update just the pseudo-atom parameters, and multiple Gibbs



FIGURE 3 Algorithm flowchart showing initial and refinement stages.

The initial stage consists of 25 steps of updating first the pseudo-atoms,

then the rotations, each using 100 Gibbs sampling steps. The refinement

stage consists of 5000 Gibbs sampling steps, of which the first 2500 are dis-

carded as the burn-in phase. The number of steps is conservatively chosen

to be far more than is needed for the algorithm to converge in all tested

cases.
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sampling steps to update just the rotations. The rotation updates using Gibbs

sampling tend to make only small adjustments, and can sometimes get stuck

in local optima. Therefore we add a global rotation update during every

outer loop. During this global rotation update, each image is compared to

10,000 two-dimensional projections of the pseudo-atomic model in random

orientations. For each orientation, we compute the likelihood of the image

given the two-dimensional projection corresponding to the orientation.

These likelihoods form the coefficients of a discrete approximation to the

conditional posterior distribution over the rotation. We then sample an

orientation from this discrete distribution, and use it to update the rotation

for the image. In this way rotations can escape local optima.

For the refinement stage, we increase the number of pseudo-atoms to 500

or 2000 and then sample all parameters using Gibbs sampling. During this

stage, only minor adjustments are made to the rotations.

During both stages we can monitor the progress and convergence of the

Gibbs sampler via the log-posterior, defined as log p(q j D), where q is the

model being used (see Fig. 5 B).

The output of the algorithm is an ensemble of pseudo-atomic models

from the posterior distribution. This ensemble consists of every 50th model

generated during the refinement stage after discarding the first 2500 models

to exclude the burn-in period. To represent the result as a single volume we

evaluate each model in the posterior family on a three-dimensional grid, and

report either the mean of these volumes, or any one of the volumes (they are

all very similar).

We explain a single Gibbs sampling step in Fig. 4 using a toy two-dimen-

sional reconstruction example with only two pseudo-atoms and two images.

Each one-dimensional image is shown as a bar chart with the height of each

bar indicating the number of points at the corresponding one-dimensional

pixel. For clarity, most of the steps are shown only for the data lying below

the pseudo-atoms.

The first step (panels 2 and 3) is to evaluate the one-dimensional projec-

tion of each pseudo-atom at all the one-dimensional pixels, and assign

points to pseudo-atoms. At each pixel, the relative value of the two

pseudo-atoms determines the proportion of points to assign to each. For

instance, for pixels on the left, all points are assigned to the bottom-left

pseudo-atom, while for pixels in the middle, the points are distributed

equally among the two pseudo-atoms (only half the bar is shaded). The sec-

ond step (panel 4) is to estimate the missing y coordinates (missing z coor-

dinates in the three-dimensional case). For each one-dimensional point, its y

coordinate is chosen randomly near the y coordinate of the pseudo-atom to

which it was assigned. The next step (panel 5) is to update the pseudo-

atoms, i.e., their weights, positions, and size.

In this example, we update only their positions. The position of each

pseudo-atom is chosen randomly near the mean of the two-dimensional

points assigned to that pseudo-atom. After this update, the one-dimensional

projections of the new pseudo-atomic model match the input data more

closely. In the final step (panel 6), we update the rotations. The pseudo-

atoms remain fixed, and the two-dimensional point cloud is rotated about

the origin to better fit the pseudo-atoms. As a result of the rotation, the

one-dimensional projections match the input data very well.
RESULTS

We used five different datasets to test our algorithm: one
consisting of simulated class averages, one with realistically
simulated raw particles, and three with real data.

For the first dataset, we converted an atomic model of the
ribosome 50S subunit (Protein Data Bank (PDB): 1VOR) to
a three-dimensional volume at 15 Å using the software
CHIMERA (University of California at San Francisco,
San Francisco, CA) and projected it using random orienta-
tions to create 25 class averages. The size of the images
is 50 � 50 pixels and the sampling rate is 6 Å/pixel.
Biophysical Journal 108(5) 1165–1175



FIGURE 4 Simple two-dimensional reconstruc-

tion example to explain a single Gibbs sampling

iteration. (Solid lines) One-dimensional projections

of this model. (Dashed lines) One-dimensional pro-

jections of the previous model. Initially (1), the

one-dimensional projections differ significantly

from the one-dimensional data. They improve after

moving the pseudo-atoms (5), and once again after

updating the image orientations/rotations (6). The

final projections approximate the data quite well.
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Fig. 5 A shows the progression of the reconstruction,
including the positions of the pseudo-atoms. Also see Movie
S2. The computation took 22min on a single core, with 7 and
15 min for the initial and refinement stages, respectively. We
used 100 pseudo-atoms for the initial stage and 2000 for the
refinement stage. The models produced by the refinement
stage have a pseudo-atom size of ~5.0 Å, as can be seen in
Fig. 5, B and C. To evaluate the reconstruction, we created
a reference volume at res ¼ 25 Å. The reference volume
was created from the atomic model with CHIMERA’s
MOLMAP command, which describes each atom using a
three-dimensional Gaussian with size 0.225 � res z 5.6 Å,
i.e., almost the same as our final pseudo-atom size. Our final
reconstruction agrees very well with the reference: the
normalized cross-correlation between the two structures is
0.990, and they agree to a resolution of 15.9 Å as measured
by the FSC ¼ 0.5 criterion (27). The FSC curves are shown
in Fig. S1 in the Supporting Material. We also compared
our final estimated rotations with the true rotations, and
found that most of them agree towithin 0.5� with amaximum
error of <1.5� (see Fig. 5 D).

The second dataset consists of 5000 realistically simulated
RNA polymerase II (PDB: 1I3Q) particles with size 100 �
100 pixels at a sampling rate of 2.5 Å/pixel. The reference
volume was projected along random orientations, and
random translations were applied to the images. The CTF
was applied with a random defocus value for each image, fol-
lowed by Gaussian noise with SNR ¼ 0.2 (Fig. 6). We used
EMAN2 (28) to compute 41 class averages in 98 min, fol-
lowed by deconvolution, which took 73 min. Applying our
ab initio algorithm to the deconvolved images took another
38 min, a total of 209 min. The final reconstruction has a
cross-correlation of 0.966 compared to the reference model
at 20 Å, and they agree to a resolution of 14.5 Å atFSC¼ 0.5.
Biophysical Journal 108(5) 1165–1175
For the third dataset, we used publically available exper-
imental 70S ribosome data from the EMDB test image data
(15,29). The dataset consists of 5000 images with size
130 � 130 at a sampling rate of 2.82 Å/pixel. We used the
software toolbox ASPIRE (30) to compute 50 class aver-
ages, followed by deconvolution. The algorithm was initial-
ized with GroEL, an unrelated structure. Fig. 7 shows how
the algorithm eliminates the bias caused by the incorrect
initial model and quickly converges to the correct 70S struc-
ture. To provide further evidence of the robustness of the al-
gorithm, we successfully repeated the reconstruction with a
random initial model. We compared the final reconstruction
to the result obtained using the PRIME algorithm (12). As
shown in Fig. 7, the two structures are visually very similar,
certainly enough for each to be used as initial model for a
refinement. The normalized cross-correlation between the
two structures is 0.900, and they agree to a resolution of
31.1 Å at FSC ¼ 0.5. The computation of the first recon-
struction (starting with GroEL) took 102 min in total
(50 min for forming class averages, 24 min for deconvolu-
tion, and 28 min for the initial and refinement stages of
our algorithm). The class-averaging step used eight cores
on a desktop computer, while the other steps used a single
core on a laptop, a total of <8 CPU h. In contrast, the
PRIME reconstruction took ~10 h on a cluster with 40 cores.
In general, PRIME takes ~500–1000 CPU hours to compute
an initial model. This example shows that our algorithm pro-
duces comparable results in a fraction of the time required
by PRIME.

For the fourth experiment, we used a publically available
experimental GroEL dataset (31) consisting of ~5000 im-
ages with size 128 � 128 at a sampling rate of 2.12 Å/pixel.
EMAN2 was used to obtain 13 class averages in 19 min, fol-
lowed by deconvolution, which took 2 min. Applying the
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FIGURE 5 Results for the 50S ribosome. (A) Starting from a random initial model, the initial stage converges within <10 steps. The number of pseudo-

atoms (shown as small solid circles) is then increased from 100 to 2000, and multiple models from the posterior distribution are shown. These are averaged to

obtain the final reconstruction. The cross-correlation with the reference model at 25 Å is 0.990. (B) The log-posterior measures how well the estimated model

matches the data and the prior. It shows that both the initial and refinement stages converge rapidly. The estimation of the optimal pseudo-atom size converges

fast as well. The figure shows that increasing the number of pseudo-atoms leads to a decrease in their size from ~10 to ~5 Å. (C) Instead of a single value for

the pseudo-atom size, the algorithm gives us a distribution of plausible sizes. Comparing the distributions shows that the size is more precisely determined for

the refinement stage. (D) For each of the 25 images, we compare the Euler angles of the original rotation and the final rotation. All rotation estimates are very

accurate, with most of the angular errors <1�.
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initial and refinement stages of our algorithm took another
13 min, for a total of 34 min. We also took into account
the known D7 symmetry of the structure, which shows
that our framework is flexible enough to include symmetry
constraints as prior information. Our final result (Fig. 8) has
a cross-correlation of 0.927 with the reference model
(PDB:1OEL) at 20 Å, and they agree to a resolution of
17.5 Å at FSC ¼ 0.5.

For the fifth and final experiment, we tested the algorithm
using experimental data from the human Anaphase Promot-
ing Complex (APC/C) (32). Approximately 10,000 particles
of size 80� 80 pixels at a sampling rate of 4.9 Å/pixel were
Biophysical Journal 108(5) 1165–1175



FIGURE 6 Results for realistically simulated RNA polymerase II data.

At the top left are nine of the 5000 raw particles that were used to compute

41 deconvolved class averages, of which nine are shown (top right). The

final reconstruction agrees well with the reference at 20 Å, as shown by

the cross-correlation value of 0.966.
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processed using reference-free alignment to produce 61
class averages. As required for a realistic test case, no
knowledge of previous structures was used in computing
the class averages. As before, the class averages were de-
convolved to obtain nonnegative images, which were then
used as input to our ab initio algorithm. Our reconstruction
(Fig. 9) was compared to the reconstruction (EMD-2354)
published earlier using data from the same source (32).
The structures have a cross-correlation of 0.902 and agree
to a resolution of 24.8 Å at FSC ¼ 0.5.
DISCUSSION

Our algorithm differs significantly from other cryo-EM
reconstruction algorithms in the way in which three-dimen-
sional structures are represented. Typically one uses a cu-
bic three-dimensional grid comprising a large number of
voxels. An alternative approach is to use rotationally sym-
Biophysical Journal 108(5) 1165–1175
metric blobs (33), each roughly the size of a voxel, posi-
tioned on a regular three-dimensional grid. The blobs are
fixed in shape and size, the only free parameters being their
weights. Thus the voxel and blob representations require a
similar number of parameters, but projecting from three
dimensions to two dimensions is faster and more accurate
when using blobs instead of voxels. Blobs are used in the
software package XMIPP (34), and were reported to pro-
duce superior quality reconstructions at lower computa-
tional cost (33).

Our approach can be seen as an extension of the blob
approach, where we use pseudo-atoms instead of blobs,
and allow their positions to vary smoothly instead of fixing
them to a regular grid. This allows for a more parsimonious
representation (Fig. 1), as pseudo-atoms can be moved to re-
gions where they are more needed. Furthermore, the size of
voxels or blobs needs to be fixed before reconstruction. In
our case, the pseudo-atoms still all have the same size, but
the appropriate size is estimated during reconstruction
(Fig. 5). Instead of specifying their size, we have to choose
the number of pseudo-atoms. There is a strong inverse rela-
tion between the number of pseudo-atoms and their size: as
the number increases, the size must decrease to fill the same
volume. Therefore, choosing the number is equivalent to
implicitly choosing the size.

As mentioned before, our rule-of-thumb is to choose the
number of pseudo-atoms such that the resulting pseudo-
atom size is similar to the pixel size. For example, for our
ribosome reconstruction, during the initial stage the pixel
size is 9.4 Å and the final pseudo-atom size is ~9.9 Å, indi-
cating that 100 pseudo-atoms was an appropriate choice.
For the refinement stage, the corresponding values are
6.0 Å and 5.0 Å. Guided by this strategy, we used either
100 or 200 pseudo-atoms for the initial stage, and either
500 or 2000 pseudo-atoms for the refinement stage, for all
our experiments.

The significant reduction in the number of parameters
needed to describe a structure (Fig. 1) has two advantages.
The first is that the algorithm is very fast. Starting from
the class averages, the algorithm took <40 min for each
of the five structures. All experiments with the exception
of class-averaging with ASPIRE were done on a standard
laptop (Dell, Round Rock, TX) with a 2.40-GHz Core i7
quad-core processor (Intel, Santa Clara, CA) with 8 GB
memory. Except for the EMAN2 and ASPIRE class-aver-
aging steps, the entire algorithm runs on a single core. In
comparison, almost all other ab initio algorithms take mul-
tiple days, with only a single recent exception that is com-
parable to ours in terms of speed (13). Our algorithm was
implemented in the software PYTHON (Python Software
Foundation, python.org) with CYTHON extension
(cython.org), and is available upon request. The second
advantage is reducing the model complexity, i.e., reducing
the possible three-dimensional structures that can be repre-
sented using our pseudo-atomic model. During the initial

http://python.org
http://cython.org


FIGURE 7 Results for the 70S ribosome, using

real data. The algorithm was initialized with a model

of an unrelated structure, GroEL, and successfully

converged to the 70S structure. Shown below the

labeled models from the initial stage are multiple

models from the posterior distribution. These are

averaged to obtain the final reconstruction (last

two rows). We computed a second reconstruction

starting from a different, random initial model

(rightmost column). Once again the algorithm

converged to the correct structure, showing its

robustness to the choice of initial model. Shown as

the reference is the reconstruction obtained by the

PRIME algorithm, low-pass-filtered. The cross cor-

relation between each of our reconstructions and

the PRIME reconstruction is 0.900 for our first and

0.895 for our second reconstruction. The cross cor-

relation between our reconstructions is 0.986.
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stage of our algorithm when there are only a few large
pseudo-atoms it is impossible to represent high-frequency
information in the three-dimensional structure. Because
we are interested in a low-resolution model, this excludes
a large number of undesired models from our search space,
thereby simplifying the problem and making the algorithm
more robust. Some other reconstruction algorithms (both
ab initio (12) and refinement (35)) apply a low-pass filter
to the current volume at every iteration to achieve a similar
effect. However, in our case, this is a property of the model
itself.

Another principle difference to existing reconstruction
methods is that we use Markov chain Monte Carlo sampling
to generate an ensemble of models from the posterior
Biophysical Journal 108(5) 1165–1175



FIGURE 8 Results for GroEL, using real data. The final reconstruction

agrees well with the reference at 20 Å, as shown by the cross-correlation

value of 0.927.

FIGURE 9 Results for experimental APC/C data. Class averages were

computed from 10,000 raw particles in an ab initio setting, without making

use of previous structures. The final reconstruction has a cross-correlation of

0.902 with the reference. At the bottom is the distribution of rotations at the

end of the initial stage. Instead of estimating just a single rotation for each

image, we obtain a cluster of rotations consistent with the image. The width

of each cluster gives an indication of the precision of the estimated rotation.
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distribution. This allows us to assess the ambiguity of the
data when there are multiple reconstructions compatible
with the projection images. It also adds to the robustness
of our method. Moreover, we are able to estimate the preci-
sion of every model parameter including the pseudo-atom
positions and the rotations (Figs. 5 and 9). Yet another
advantage of sampling is that by computing the mean we
can represent the final structure more accurately than would
be possible using any single model, such as the MAP esti-
mate. Compare, for example, any of the posterior models
from the refinement stage with the final reconstruction in
either Fig. 5 or 7. The individual pseudo-atoms are no longer
visible in the posterior mean.

Using our pseudo-atomic model, it is possible to express
many different forms of prior information about the struc-
ture, and the Bayesian framework dictates how to incorpo-
rate such prior information. In this article, nonnegativity
and smoothness were used as prior information, by using
nonnegative weights for the pseudo-atoms, and restricting
all pseudo-atoms to be the same size. Another form of
prior information that we demonstrated using GroEL is
symmetry constraints, which can be imposed on the
pseudo-atom positions for inferring initial models with
known symmetry. Some extensions are straightforward,
such as using a known low-resolution version of the struc-
ture as a prior distribution for the pseudo-atom positions,
or using a nonuniform prior distribution for the rotations
in the case of structures with preferred orientations. A
more ambitious possibility for future work is to incorpo-
Biophysical Journal 108(5) 1165–1175
rate data from other sources, such as cross-linking/mass
spectrometry, or crystallography. Another direction of
future research is to modify the algorithm to handle
conformational heterogeneity by inferring multiple struc-
tural conformations.
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SUPPORTING MATERIAL

SupportingMaterials andMethods, three figures, and twomovies are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)

00064-8.
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1 FSC curves

Figure 1 shows the FSC curves between the references and the reconstructions.
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Figure 1: FSC curves comparing the references with the reconstructions. The references are the same as
shown in the main text, i.e. for the 50S ribosome, RNA Polymerase II and GroEL they are created from the
atomic structures at 25 Å, 20 Å and 20 Å respectively, for the 70S ribosome the reference was obtained by
the PRIME algorithm and for the last structure (APC/C) the reference is from another publication (EMD-
2354). The normalized cross-correlations for the same five pairs of structures are 0.990, 0.966, 0.900, 0.927
and 0.902 respectively.
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2 Movies

The first movie (movie1.avi) shows multiple pseudo-atomic models of the same structure (RNA Polymerase
II) with increasing numbers of pseudo atoms. It demonstrates that a small number of pseudo-atoms are
sufficient for representing low-resolution structures, and that the number of model parameters required are
orders of magnitude fewer than with the standard grid-based representation.

The second movie (movie2.avi) shows a reconstruction of the 50S ribosome, from the initial random
model to the final model. The trajectories of the individual pseudo-atoms as well as those of the individual
rotations can be seen. For the rotations, only the projection direction is shown (the first two Euler angles),
not the in-plane rotation component (the third Euler angle).

3 Computing the posterior distribution

Here we give a more formal description of the different components of the Bayesian framework, starting with
the data D.

The i’th deconvolved class average is a non-negative grayscale image (Iij)1≤j≤n with 2D pixel coordinates1

(xoij)1≤j≤n, where the pixels are indexed by j, and n is the number of pixels per image. The Iij ’s for a given
i are then multiplied by a constant scaling factor α ≥ 0, and rounded to the nearest integer to obtain
yij := round(αIij). The constant α is chosen such that

∑
j yij ≈ C for a previously fixed constant C.

The Iij ’s are discarded, and we continue with the yij ’s.
The observed data is now considered as 2D points, with yij points at each pixel centered at xoij . Every

pixel gives rise to a yij-dimensional data vector

dij = [xoij1, . . . , x
o
ijl, . . . , x

o
ijyij ]

with identical entries xoijl = xoij , where l runs from 1 to yij . All the data vectors dij together form the
observed data D = xo = {xoijl}.

Before describing the forward model, we introduce the latent variables. These are the assignments z as
typically used for Gaussian mixture models, and the missing z-components xm.

The assignments z = {zijl} consist of one assignment zijl for each point xijl, indicating the mixture
component responsible for generating the point. We use 1-of-K notation, whereby zijl is a length K vector
(zijlk)k with zijlk ∈ {0, 1} and

∑
k zijlk = 1. I.e. the k for which zijlk = 1 indicates the component that

generated xijl.
The missing components xm = {xmijl} consist of the z-component xmijl for each sampled 3D point xijl =

[xoijl x
m
ijl]. Since we only observe the first two coordinates, i.e. xoijl, the z-component is referred to as missing.

We write Z = {z, xm} for all latent variables together.
Given a model parameterized as described above, the observed data can be generated as follows: for a

given direction i compute the 2D density Ii(x). Sample C points from this density, and create a 2D histogram
with bins centered at the grid points xoij . Then yij is defined as the number of points in the j’th bin. If the
grid is sufficiently fine, we can make the following assumption to simplify the forward model: all the points
in the j’th bin are replaced by the center of the bin, xoij . In other words we assume that we sampled yij
copies of xoij , for each j.

This forward model can also be described in a slightly different way which will be used below in formu-
lating the sampling algorithm. Instead of first projecting the 3D density to 2D, and then sampling C points,
we could equivalently first sample C 3D points, and then project them to 2D. The 3D points sampled from
the rotated density are denoted by xijl = [xoijl x

m
ijl], where xoijl ∈ R2, and xmijl ∈ R. Projection along the

z-axis means discarding the z-component xmijl, i.e. xijl is projected to xoijl.

1The superscripts o and m stand for observed and missing respectively, as will be explained shortly.
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The above forward model describes the extended likelihood for the data and latent variables:

p(D,Z|θ) = p(xo, xm, z|µ, s, w,R, t) (1)

=
∏
ijlk

w
zijlk
k f(xijl|Riµk + ti|

1

s
I)zijlk . (2)

Marginalizing out the latent variables gives the data likelihood:

p(D|θ) = p(xo|µ, s, w,R, t) (3)

=

∫∫
p(xo, xm, z|µ, s, w,R, t)dxmdz (4)

=

∫
p(D,Z|θ)dZ. (5)

The prior is assumed to factorize over the model parameters:

p(θ) = p(µ, s, w,R, t) = p(µ)p(s)p(w)p(R)p(t), (6)

where the means p(µ) =
∏
k f(µk|0, 1r I) follow normal distributions, the precision p(s) ∝ sa−1e−bs a gamma

distribution, the weights p(w) ∝
∏
k w

λ−1
k a Dirichlet distribution, the rotations are distributed uniformly,

and the translations p(t) =
∏
i f(ti|0, 1r I) follow normal distributions. The hyperparameters r, a, b and λ

are kept fixed.

4 Gibbs sampling

Here we give the equations for performing Gibbs sampling. These are uniquely determined given the forward
model and prior defined above. We use Gibbs sampling to sample from the extended posterior p(Z, θ|D),
and then discard the latent variables Z to obtain samples from the posterior. The extended posterior is
proportional to the product of the extended likelihood (Equation 2) and the prior (Equation 6). To sample
from this extended posterior using Gibbs sampling we compute the conditional distribution for each of
the parameters, conditioned on all the other parameters. They are all standard distributions (Gaussian,
multinomial, Dirichlet and gamma) except for the rotations, which are of the form exp[tr(ATR)].

The conditional for each assignment is a multinomial distribution:

p(zijl|xoijl, w, µ, s,R, t) =
∏
k

w
zijlk
k f(xoijl|P (Riµk + ti),

1

s
I)zijlk .

where

P =

[
1 0 0
0 1 0

]
.

The conditional for the missing z-component for a single point is a 1D normal distribution:

p(xmijl|xoijl, zijl, µ, s, R, t) =
∏
k

f(xmijl|Pz(Riµk + ti),
1

s
)zijlk ,

where
Pz =

[
0 0 1

]
.

The conditional for the weights is a Dirichlet distribution:

p(w|xm, z, µ, s,R, t) ∝
∏
k

wnk+λ−1
k
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where
nk =

∑
ijl

zijlk.

The conditional for each mean is a normal distribution:

p(µk|xm, z, s, w,R, t, xo) = f(µk|µ,Σ)

where

µ =
s

snk + r

∑
ijl

zijlkR
T
i (xijl − ti)

Σ =
1

snk + r
I.

The conditional for the precision is a gamma distribution:

p(s|xm, z, µ,R, t) ∝ sa
′−1e−b

′s,

where

a′ = a+
3

2
N

b′ = b+
1

2

∑
ijkl

zijkl
[
‖xoijl − P (Riµk + ti)‖2 + (xmijl − Pz(Ri + ti)µk)2

]
.

The conditional for each rotation is

p(Ri|ti, xm, µ, s, xo) ∝ exp
[
tr(ATi Ri)

]
,

where
Ai = s

∑
jlk

zijlk(xijl − ti)µTk .

The conditional for each translation is a normal distribution:

p(ti|x, µ, s,R) = f(ti|µ,Σ)

where

µ =

∑
jlk zijlk(xijl −Riµk)∑

jlk zijlk

Σ =
1

s
∑
jlk zijlk

I.

5 Prior hyperparameters

The prior distribution on the pseudo-atom size σ is given by a gamma distribution over the precision s = 1/σ2:

p(s) =
βα

Γ(α)
sα−1e−βs.

The mean α/β and variance α/β2 of this distribution encodes our prior knowledge about the size of the
pseudo-atoms. In Figure 2 on the left are a few examples for different values of α and β, with β chosen
such that the mean is 1/102 (i.e. β = 102α). In the same figure on the right are the effects of the different
choices of the hyperparameters on a reconstruction of the 50S ribosome from simulated data. It shows that
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Figure 2: Varying the prior on the pseudo-atom size. On the left are different prior distributions over the
pseudo-atom precision s, which is related to the pseudo-atom size σ by s = 1/σ2. They correspond to a
wide range of different choices of the hyperparameter α. The other hyperparameter β determining the prior
distribution is chosen to ensure that the mean of s is 1/102. Low values of α place effectively no restriction
on the pseudo-atom size, while very high values of α restrict the pseudo-atom size to be very close to 10 Å.
This can be seen on the right, where a 50S ribosome model inferred from simulated data is compared to a
reference model. When a broad prior on the pseudo-atom size is used (i.e. α is low), then then final size is
around 6 Å. As the prior becomes narrower (i.e. α is high), the final size tends to the mean prior value of
10 Å. The figure shows that for α in the range 1 to about 1000, the quality of the result as measured by the
cross-correlation does not depend on the specific choice of α.

good results are obtained for all values of the hyperparameters, although the results deteriorate for very
high values of α (above 1000). We conclude that the specific value of alpha is not very important for our
algorithm, and recommend it to be chosen in the range 1 to 1000. We used α = 10 for our experiments.
The value of β can be chosen as was done here to ensure that the mean is 10, although a similar experiment
shows that the exact value of β is also not very important. For our experiments we used β = 102α = 1000.

The prior distribution on the pseudo-atom weights w = {wk} is a Dirichlet distribution

p(w) ∝
K∑
k=1

wλ−1k .

This distribution is parametrized by a single hyperparameter λ, which determines the allowable variation
among the weights for the different pseudo-atoms. Higher values of λ lead to less variation.

In Figure 3 we show the effect of varying λ on the quality of a reconstruction using the same data as
before. The figure shows that all values of λ in a wide range lead to similar results, although very small
values of λ (0.1 and 1.0) give slightly worse results. We therefore recommend choosing λ in the range from
10 to 105. We used the value λ = 1000 for our experiments.
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Figure 3: Varying the prior on the pseudo-atom weights. Multiple reconstructions using the same 50S
ribosome data as before were performed using a range of values of λ, the hyperparameter for the weights. At
the top are the resulting cross-correlations with the reference, measuring the quality of the inferred models.
The cross-correlations are slightly lower for very low values of λ, but stay relatively constant for λ above 10.
At the bottom are the individual pseudo-atom weights, showing that the variation in the weights decreases
with increasing λ.
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