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Abstract

The study of heuristics is an interdisciplinary and time-honored enterprise, with heuristics being examined across a wide
range of fields, some focusing on professionals’ decision-making. In psychology, two influential research traditions have
investigated which cognitive heuristics people use across various tasks. One tradition, which originated in the 1970s, has
focused on the circumstances under which heuristics cause deviations from classical norms of rationality. The other, starting
in the 1990s, has emphasized that heuristics are neither good nor bad per se, but that their success depends on how they are
matched to environmental structures. This view suggests that heuristics, rather than leading to irrationality, enable ecological
rationality.

What Is a Heuristic?

A heuristic is a simple but useful method for problem solving,
decision-making, and discovery. The origin of the term goes
back to the Ancient Greek verb heuriskein, which means ‘to
find out’ or ‘to discover.’ Heuristics are sometimes also
referred to as ‘mental shortcuts’ or ‘rules of thumb.’ One of
their key functions is to reduce the complexity of a problem by
ignoring part of the available information or searching only
a subset of all possible solutions. Traditionally, heuristics
have been regarded as necessary and efficient tools, but ones
that produce only second-best solutions. However, more
recent psychological research has shown that – under condi-
tions that are ubiquitous in the real world, namely, limited
knowledge and uncertainty – heuristics can in fact outperform
more complex strategies.

Heuristic methods have been considered in various scientific
disciplines (though what exactly is meant by a heuristic varies
across fields). Two key treatments of heuristic methods can be
distinguished. In philosophy,mathematics, operations research,
and artificial intelligence (AI), heuristics have primarily been
investigated as prescriptive procedures specifying how a
reasonable solution can be found given constraints such as
computational intractability and limited time. In biology and
psychology, by contrast, heuristic principles have also been used
as descriptive models, that is, as models that describe how
people and other animals sample information from the external
and internal (memory) world, and how they make decisions
based on that information. The next section gives a historical
overview of the discussion of heuristics within these two
contexts.

A Short History of Heuristics

Heuristics as Prescriptive Procedures

Heuristic methods were first developed in philosophy and
mathematics as a solution to the problems of algorithmic
approaches to complex problems. To illustrate the algorithmic
tradition, let us take the mechanical device developed by
the Catalan philosopher Raimundus Lullus (1232–1315) in

the thirteenth century. The device was able to automatically
generate all combinations of religious and philosophical
attributes that could be used in a debate (Figure 1). It consisted
of six concentric discs representing the basic classes of argu-
ments; each of these classes in turn had nine further attributes.
Rotating the discs against each other produced every possible
combination of attributes, thus automatically generating
different arguments and potentially producing new ones. The
German philosopher Gottfried Wilhelm Leibniz (1646–1716)
had a similar, though even grander goal in the seventeenth
century, namely to develop an algorithm for solving any
conceivable problem, using a universal language that would
allow every possible problem to be represented. It became
increasingly clear, however, that such algorithmic approaches
could easily lead to combinatorial explosion. Subsequent
scholars therefore explored heuristics as means to bring

Figure 1 A sketch of one of the discs of Lullus’ system for deriving
all combinations of arguments. Source: http://www.medienkunstnetz.de/
works/ars-magna/.
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problem solvers to a solution without the need to explore the
space of possibilities exhaustively.

René Descartes (1596–1650), the French polymath of the
seventeenth century, had formulated simple rules that were
supposed to guide the problem solver toward the relevant
aspects, rather than to all parts of a problem. In the nineteenth
century, the mathematician and philosopher Bernard Bolzano
(1781–1848), who proposed various heuristics for problem
solving in his renowned Theory of Science (Wissenschaftslehre),
further developed this approach for epistemic agents (e.g., the
method of attempting to find truths by means of something
that is not yet known to be true, as opposed to deducing truth
from known truths). These scholars’ heuristics consisted of
rather general procedures that were described in relatively
vague terms. Their main goals were to offer a road to knowl-
edge beyond proper deduction, to avoid an arbitrary solution
process, and to foster creative thinking. For instance, many
heuristics aimed at finding useful problem representations by
way of analogy or metaphor.

Heuristic methods for problem solving and discovery
received wider recognition inmodernmathematics through the
work of the mathematician George Pólya (1887–1985). Pólya’s
(1945) procedures consisted of simple rules, such as dividing
the process toward a solution into simple steps by, for instance,
finding an analogy to a problem, finding a more specialized
problem, or decomposing and recombining the problem.
Procedures inspired by Pólya later also informed the new field
of AI. Relatedly, heuristics proved to be of great practical value
in operations research, an applied field of mathematics. Here,
they have been implemented as computer-based tools for
planning and aiding decision-making in industry.

Methods for simplifying decision-making have also been
discussed in economics. Many decisions are made under
uncertainty, with key aspects of the problem remaining
unknown. In the absence of complete knowledge of the option
space and the probability distributions, normative principles of
rational choice are difficult or even impossible to apply.
Heuristics for making decisions under uncertainty have there-
fore been proposed (Savage, 1954). The maximin rule
(Coombs et al., 1970), for example, selects from a set of
options the one that would yield the most attractive outcome
under the worst-case scenario, ignoring both the outcomes to
be expected under better conditions and the (unknown)
probability distribution. The satisficing principle is a heuristic
for sequential decision-making (Simon, 1956). Instead of
aspiring to identify the globally best option, this principle
evaluates each option according to whether it meets a certain
minimum aspiration level, and the first option encountered
that satisfies that requirement is chosen.

Another research field of economics in which simple,
heuristic decision strategies have received attention is game
theory. One of the most frequently studied strategies is tit-
for-tat. This strategy, which can be applied in repeated games
(e.g., the iterated prisoner’s dilemma), determines whether or
not a player cooperates with his/her opponent. At the first
encounter with the other player, tit-for-tat cooperates; in
subsequent encounters, it simply copies the other’s behavior
(cooperate vs defect) in the previous encounter. In a classical
computer simulation tournament (Axelrod, 1984), tit-for-tat
proved to be the most successful – though simplest – of the

strategies submitted. As well as informing attempts to improve
conflict resolution, the study of simple strategies for coopera-
tion within game theory offers insights into how cooperative
societies might have evolved in the first place.

The advent of the computer as a computational tool and
metaphor of the mind in the 1950s spawned attempts to
simulate intelligent behavior in machines. The goal of the new
field of AI has been to develop computer programs that can
perform tasks such as playing chess, proving logical theorems,
or understanding language – and a common challenge is, again,
to find ways of limiting boundless and therefore prohibitively
expensive search of the problem space. In contrast to previous
treatments of heuristics, which often portrayed them in rather
vague terms, heuristic rules in AI research have been formulated
precisely, often in terms of computational models. A prominent
heuristic method for limiting search is means‒ends analysis,
which was developed in the context of Alan Newell and Herbert
Simon’s (1972) General Problem Solver system. To move from
a current state in the problem space toward a goal state (rep-
resenting the solution), means‒ends analysis reduces the
distance between the two by first addressing themost important
dimension on which the two differ, followed by the second
most important dimension, and so on.

Heuristics as Descriptive Models of the Mind

On the assumption that heuristics, though not perfect, are often
effective tools for dealing with a complex and uncertain world,
it seems reasonable to suppose that the mind employs them
naturally and spontaneously. Indeed, the psychologist Karl
Duncker (1903–40) argued that human problem-solving
strategies rest on heuristic principles (Duncker, 1935). Simi-
larly, Gestalt psychologists conceived of perception in terms of
heuristics. Max Wertheimer (1880–1943), for instance, iden-
tified a set of simple principles that organize sensory input to
yield object perception – such as the ‘laws’ of proximity,
closure, and similarity (Wertheimer, 1923/1938). As in other
contexts, these principles of perceptual organization represent
best guesses that usually can be trusted, although they do not
work all of the time. They are useful because they are adapted to
certain regularities in the environment; for example, elements
belonging to the same object are typically in close vicinity to
each other (the law or heuristic of proximity; see Figure 2).

Presently, cognitive heuristics are most commonly studied
in research on how people make decisions. Inspired by Herbert
Simon’s (1916–2001) seminal work on ‘bounded rationality’ –
the study of how people reason and make decisions with
limited computational and informational resources, and when

Figure 2 The Gestalt ‘heuristic’ of proximity: objects positioned close
together are perceived as belonging together.
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the conditions for rationality postulated by the model of
neoclassical economics are not met (Simon, 1956, 1989,
1990) – several research programs have set out to identify
and test simple decision strategies. Daniel Kahneman (1934 to
present) and Amos Tversky (1937–96) showed that people
assessing the frequency or probability of an event often use
simple mental shortcuts, such as the availability heuristic or the
representativeness heuristic, according to which a judgment
is based on ease of retrieval (availability) or on the similarity
of an event to a given class of events (representativeness)
(Kahneman et al., 1982). What these heuristics have in
common is that the cognitive system, when required to make
a computationally complex judgment (that necessitates appli-
cation of the laws of logic or probability theory), substitutes
a less complex heuristic attribute, such as similarity (Griffin
et al., 2002). Empirical support for the use of these heuristics
was provided by creating conditions in which the use of
heuristics resulted in systematic errors or lapses of reasoning
(‘fallacies,’ ‘cognitive illusions’; Griffin et al., 2002), suggesting
human irrationality. From the 1970s, heuristics therefore came
to be seen in cognitive and social psychology, and subsequently
in behavioral economics, as fallible cognitive shortcuts that
people – constrained by cognitive limitations – fall back on in
situations in which they would be better off using logic and
probability theory. The price of relying on these shortcuts is the
risk of committing systematic and severe fallacies of reasoning.

The heuristics examined in Kahneman and Tversky’s
heuristics-and-biases program were typically vaguely defined
verbal descriptions of mental processes. In the research
program on the ‘adaptive decision-maker,’ in contrast, Payne
et al. (1993) proposed heuristics for multi-attribute preference
tasks that were described in terms of process models. Using
computer simulations, Payne et al. tested the accuracy of
various preference strategies, both simple and complex, under
conditions of time pressure or when the inputs to the
strategies, the options’ attributes, were highly correlated. The
results were then compared with people’s actual strategy
selection under the same conditions. One key insight was that
people are adaptive decision-makers, switching between
strategies based on a trade-off between a strategy’s prospective
accuracy and the time and cognitive effort required to
implement it.

From the 1990s, a new research program on cognitive
heuristics emerged that challenged both the idea that heuristics
are error-prone mental tools (Kahneman et al., 1982) and the
notion of a general accuracy–effort trade-off (Payne et al.,
1993). Gerd Gigerenzer et al.’s (1999, 2011) research
program on ‘ecological rationality’ proposed that simple
heuristics represent prescriptive models of the human mind,
thereby connecting the science of heuristics in psychology to
earlier research (see Heuristics as Prescriptive Procedures).
This approach also suggested that heuristics take advantage of
environmental structures, and thus picked up on ideas first
introduced by Gestalt psychologists (see above).

The new approach to heuristics thus emphasizes that the
real world imposes circumstances on the cognitive system that
render optimization difficult or impossible (e.g., computa-
tional intractability; incomplete knowledge of alternatives,
consequences, and probabilities; and changing preference
structures). People therefore rely on heuristics not primarily

because of their cognitive limitations – although it is
indisputable that the human cognitive system is subject to
constraints – but because of inescapable properties of real-
world problems.

How Well Do Heuristics Work?

The new conception of heuristics in terms of ecologically
rational strategies (Gigerenzer et al., 2011) has also challenged
the deeply entrenched beliefs that heuristics are doomed to
produce second-best results and that optimization is always
better. It has been shown that, under some circumstances,
heuristics perform as well as or even better than complex
strategies involving extensive estimations and computations.
For instance, consider heuristics for inferring which of two (or
more) alternatives (e.g., cities, companies, sports teams) has
a higher value on a quantitative criterion (e.g., homelessness
rate, revenue, final score) on the basis of known pieces of
information (cues). The normative approach involves
weighting and combining all the available cues using complex
algorithms such as multiple regression, neural networks,
Bayesian networks, or classification and regression trees (see
Gigerenzer and Brighton, 2009). Although each of these
algorithms processes cues in very different ways, they are all
based on the shared premise that all available information
should be taken into account.

Models of cognitive heuristics dispense with this premise.
They can shortcut the demanding chore of processing and
integrating all available information in at least three ways. First,
rather than assigning an ‘optimal’ weight to each cue individu-
ally, heuristics can simply tally cues for or against each alterna-
tive (tallying heuristic), with each cue receiving the same weight
(Dawes, 1979). Second, instead of using all available cues, they
can consider just a subset of cues and ignore dependencies
between cues. Such ‘noncompensatory’ heuristics use the first
cue that permits a decision to be made and ignore all other cues.
This class of heuristics assumes some kind of cue ordering and
a stopping rule that specifies when search for information is to
be terminated. Cue ordering can, for instance, be based on some
measure of cue diagnosticity, such as validity (i.e., the proba-
bility that the cue correctly predicts the target variable). The take-
the-best heuristic assumes that cues are processed in order of
validity, and it compares both alternatives on a single cue, one
at a time, until a cue is found that distinguishes between the
alternatives (Gigerenzer et al., 2011). Third, some heuristics
radically winnow down the number of cues inspected to just
one. The recognition heuristic, for instance, only ever
considers the ‘recognition’ cue: when one alternative is
recognized and the other is not, it selects the recognized one
(Goldstein and Gigerenzer, 2002). The fluency heuristic makes
an inference based on the ‘fluency’ cue: when both alternatives
are recognized but one is recognized faster, it selects the one
that is recognized faster (Hertwig et al., 2008).

How well do heuristics that do not consider all information
perform? And when and why can they perform well?
Katsikopoulos et al. (2010) examined the accuracy of the take-
the-best, tallying, and minimalist heuristics across real-world
data sets drawn from domains such as biology, economics,
and sociology. For example, one inference problem required
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the strategies to predict which of two cities (e.g., Chicago or Los
Angeles) has a higher homelessness rate (criterion value) on the
basis of cues such as the cities’ average temperature. Two more
complex strategies were included as benchmarks: first, linear
regression, which weights and sums cues and estimates
dependencies between cues; second, naive Bayes, which
selects the alternative with the higher probability of having
the higher criterion value, given the alternatives’ entire cue
profile. To compare the accuracy of each of these models, the
authors split each data set into two parts and estimated the
parameters of each model (e.g., cue validity, cue weight) on
one part, the ‘training set.’ These parameter estimates were
used, for each model, to make inferences on the other part,
the ‘test set.’ This is called cross validation, a standard
procedure for assessing the predictive performance of models
of inductive inference. The size of the training set ranged
from just 2–10 objects in the population to 50% of the objects.

Figure 3 plots mean predictive accuracy, defined as a strat-
egy’s proportion of correct inferences in the test set, as a func-
tion of the training set size. Strategies are differentially
influenced by the information that small training sets provide.
The accuracy of linear regression and naive Bayes is compro-
mised, presumably because very small training sets provide
too few data points to reliably estimate the cue weights. The
heuristics, in contrast, are capable of managing with very
limited information: Tallying outperforms the other strategies
when the training set contains only two objects; the take-the-
best heuristic is the most accurate model for training sets of
between 3 and 10 objects. The results in Figure 3 appear to
be the rule rather than the exception. Simple heuristics such
as take-the-best have also been shown to perform well in
cross validation when compared with such complex and
resource-intensive strategies as linear perception and tree-
induction algorithms (Gigerenzer and Brighton, 2009).

These results suggest that more information, more compu-
tation, and more time need not always result in better perfor-
mance, and that the accuracy–effort trade-off does not generally
hold. A better understanding has recently emerged as to why and
when heuristics are more (or less) accurate than strategies that
require more information and computation.

Why Heuristics Work

There is more than one reason for the surprising success of
heuristics. Two of the most important are their ability to
exploit sophisticated evolved capacities, and the bias–variance
dilemma.

Evolved Capacities

Heuristics can exploit evolved human capacities. For instance,
the recognition heuristic and the fluency heuristic (see above
for definitions) take advantage of the evolved capacities for
recognition memory and systematic forgetting (i.e., pushing
aside information that is unlikely to be needed again; Schooler
and Hertwig, 2005). The simple tit-for-tat heuristic for making
decisions in social exchange situations – cooperate
first and then imitate your counterpart’s behavior
(Axelrod, 1984) – takes advantage of a suite of evolved
capacities, including memory (players must remember the
exchanged value and the accrued debt), numerical
discrimination (to evaluate whether an exchange was
equitable), and temporal discounting (as reciprocity involves
paying an immediate cost for future benefits, those future
benefits must be time-discounted appropriately; Stevens and
Hauser, 2004).

Ecological Rationality

According to Simon’s adaptive view of ‘bounded rationality,’
human rational behavior “is shaped by a scissors whose two
blades are the structure of task environments and the compu-
tational capabilities of the actor” (Simon, 1990: 7). This view
suggests that any cognitive strategy, heuristic in nature or
otherwise, is not inherently good or bad, successful or unsuc-
cessful (Gigerenzer et al., 1999). Rather Simon’s scissors
metaphor raises the following question: In which environment
will a given strategy succeed, and when and where will it fail?
Investigations that aim to uncover the environmental structures
that foster or are detrimental to a specific heuristic’s success
have been referred to as studying ‘ecological rationality’
(Todd et al., 2012). Ecological rationality brings a prescriptive
dimension to the psychological investigation of heuristics. One
key insight stems from the bias–variance dilemma (Gigerenzer
and Brighton, 2009).

The bias–variance dilemma is a well-known phenomenon
in machine learning (Hastie et al., 2001). The term ‘bias’
does not refer to the kinds of deviations from classical norms
of rationality that have been documented in the heuristics-
and-biases research tradition (Kahneman, 2011). Rather, it
refers to the theoretical bet that all inductive strategies,
including heuristics, make about the structure of the
environment. Bias is one of three components of the
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Figure 3 Mean predictive accuracy (averaged across 19 data sets) of
three heuristics (take-the-best (TTB), tallying (TAL), and minimalist
(MIN)) and two benchmark models (linear regression (LR) and naive
Bayes (NB)) as a function of the size of the training set (2–10 objects
and 50% of the objects in the population). For training samples as
small as 3–10 alternatives, the take-the-best heuristic is more accurate
than are the computationally complex models (or the other heuristics;
the minimalist heuristic randomly selects one cue until it finds one that
discriminates); here, the strategies’ best performing variants are plotted.
Adapted from Katsikopoulos, K.V., Schooler, L.J., Hertwig, R., 2010.
The robust beauty of ordinary information. Psychological Review 117,
1259–1266.

832 Heuristics, History of



prediction error produced by any inductive strategy. The total
amount of error is the sum of these three components:

error ¼ ðbiasÞ2 þ varianceþ noise

The bias and variance components of the total prediction
error can be understood by assuming an underlying (true)
function that a given induction algorithm aims to learn. The
algorithm’s window on the true function is a (potentially
noisy) data sample generated by this function. Averaged across
all possible data samples of a given size (see the size of
a training set in Figure 3), the algorithm’s bias equals the
difference between the true function and the mean function
inferred by the algorithm on the basis of various data samples.
If the mean function hits the mark perfectly (i.e., the true
function), bias will be zero. Variance, in contrast, quantifies the
algorithm’s responsiveness to the specific contents of the
samples. It is the sum-squared difference between the mean
function and the individual functions extracted from each of
the samples.

Ignoring noise, the total error of any induction algorithm
depends on these two components, and on how the algorithm
trades them off. Even an unbiased algorithm may suffer from
substantial errors to the extent that the individual functions,
possibly derived from few observations (see Figure 3), involve
a great deal of variance. Therefore, seeking low bias will not
always be adaptive for an organism. By means of illustration,
Figure 4(a) plots the mean daily temperature for London in
the year 2000, as well as two polynomial models aiming to
capture the true temperature function underlying the data:
a relatively simple degree-3 and a more complex degree-12
polynomial model. Figure 4(b) plots the mean error
resulting from inducing the true function based on
random samples of 30 daily observations (training set) as
a function of the degree of the polynomial model. A simple
relationship emerged: The higher the degree of the
polynomial model, the better the model ‘fits,’ that is, the
better it describes the mean function from the training set.
Here, more is better. In predicting the observations not
included in the training set, however, more is not always
better. Instead, the relationship between the degree of the
polynomial model and the models’ predictive accuracy
is U-shaped, with high-degree (>9) and low-degree (1)
polynomials suffering from large errors (due to variance).
The best predicting polynomial model has degree 4.

The bias–variance dilemma is one framework that provides
insights into when and why simple heuristics are successful in
some environments, but not in others (Todd et al., 2012). The
notion of ecological rationality and Simon’s scissors metaphor
emphasizes the importance of the match between the
structures of simple heuristics and the structures of the
environment. Heuristics can be surprisingly accurate relative
to computationally more complex strategies when their
structure matches that of the environment, and the bias
component of error is thus successfully kept at bay; the bias
component will not, however, be within acceptable limits
when heuristics and environment mismatch. The variance
component is at least as important for the success of
heuristics. Variance is likely to be the leading source of error
when the available observations about the environment are
sparse. Controlling this source of error is therefore crucial for

any inductive algorithm. An algorithm with many adjustable
parameters – and thus equipped with great flexibility to
accommodate myriad true underlying functions and keep the
bias component at bay – is likely to incur substantial
prediction error when the window on the environment (the
data sample) is fogged up. With sparse observations,
flexibility via parameters can become a burden and cause
‘overfitting’ of the function suggested by the small data
samples. In contrast, by forgoing high flexibility and not
extracting as much information as is possible from a limited
sample of data, simple heuristics control the variance
component.

These analyses have suggested a new answer to the question
of why humans have learned to use simple heuristics that ignore
part of the information and forgo complex processing: In
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uncertain worlds that often afford organisms only limited and
costly chances to make observations, heuristics appear to ach-
ieve robust inferences.

Taxonomies of Cognitive Heuristics

There are various ways to map the mind’s inventory of
heuristics, the building blocks of which they are composed,
and the evolved capacities that they co-opt. One taxonomic
dimension is the specific task a heuristic is designed to solve.
Across different research traditions in psychology, cognitive
heuristics have been proposed for tasks as diverse as probability
and frequency judgments in situations of uncertainty (Griffin
et al., 2002), preferential choices under risk and uncertainty
(Payne et al., 1993), inferential choices and estimates
(Gigerenzer et al., 1999), sequential search (Gigerenzer et al.,
1999), moral judgments and behavior (Hertwig et al., 2013),
and resource allocations in social games (Hertwig et al., 2013),
as well as for a wide variety of professional tasks, ranging from
predicting criminal offenders’ whereabouts to customer loyalty
(Gigerenzer et al., 2011).

Another way to carve up the mind’s inventory of heuristics is
in terms of the domains in which they can operate. Hertwig
et al. (2013) proposed that two broad domains be distin-
guished: ‘games against nature’ and ‘social games.’ Games
against nature refer to situations in which a person needs to
predict or outwit nature (e.g., identifying a good enough
location to set up camp or predicting tomorrow’s weather). The
outcome a person experiences in these games is determined
jointly by his/her decision and the true state of nature. In social
games, in contrast, how well a person performs depends not on
a dispassionate other such as nature, but on the decisions of
other players who pursue their own interests. Hertwig et al.
(2013) distinguished heuristics according to whether they are
bound to games against nature (e.g., the ancient rule of thumb,
“Red sky at night, sailors’ delight; red sky in the morning,
sailors’ warning”), to social games (e.g., tit-for-tat), or are able
to travel across social and nonsocial worlds (e.g., take-the-best
and the N�1 heuristic).

Still another taxonomic dimension is the route through
which a heuristic becomes part of a person’s repertoire of
cognitive strategies. Heuristics can be learned individually
(through trial and error), socially (e.g., from parents and peers),
and through evolution (e.g., possibly sequential searchheuristics
in the context of mate choice; Gigerenzer et al., 1999). They can
also be explicitly designed as cognitive tools to help profes-
sionals make better decisions in the real world. For instance,
fast-and-frugal trees that follow the template of heuristics such as
take-the-best (Gigerenzer et al., 1999) can be constructed to
foster accurate medical diagnoses (Jenny et al., 2013). Due to
their simplicity, such trees can be easily memorized and
understood and could be taught in medical schools.

Further Directions

The study of heuristics is an interdisciplinary and time-honored
enterprise, with heuristics being examined in a wide range of
domains, including applied fields such as operations research

and marketing. In psychology, two influential research
traditions have investigated the cognitive heuristics that
people use to make inferences, choices, and judgments in
social and physical environments. One tradition has focused
on the circumstances under which heuristics cause people to
deviate from classical norms of rationality (Kahneman et al.,
1982). Another tradition has emphasized that heuristics are
neither good nor bad per se, nor are they always inferior to
more complex strategies. Instead, the performance of
a heuristic depends on its match with the structure of the
environment (‘ecological rationality’; Gigerenzer et al., 1999)
and the amount of knowledge a decision-maker has about
that environment (bias–variance dilemma). Future research
should continue to explore the structures of decision
environments and choice architectures that foster the
usefulness of heuristics. Relatedly, the psychological issue of
how decision-makers choose between different heuristics
needs to be better understood. Finally, the insights into the
interplay between the design of environments and heuristics
should be implemented to help professionals in the real
world – who often operate under conditions of time pressure
and incomplete information – to make better decisions.

See also: Decision Making, Psychology of; Decision Making:
Nonrational Theories; Decision and Choice: Bounded
Rationality; Decision and Choice: Heuristics; Heuristics in
Social Cognition; Moral Reasoning in Psychology; Risk and
Uncertainty in the Social Sciences: Implications for Social Work
Theory and Practice.
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