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Evaluation of database-derived pathway 
development for enabling biomarker discovery for 
hepatotoxicity

Hepatotoxicity assessment
Drugs represent an important risk factor for 
initiating liver injury or hepatotoxicity. More 
than 1000 drugs and toxins have been impli-
cated in drug-induced liver injury (DILI), which 
accounts for up to 10% of all adverse drug reac-
tions [1,2]. Included in this is a steadily increas-
ing number of herbal and natural supplements, 
which is a concerning development since these 
products are readily available without prescrip-
tion, yet most have never been subjected to 
scientific testing and do not undergo any stan-
dardization of the active components [3]. The 
clinical presentation of DILI varies consider-
ably and may mimic other phenotypes of acute 
or chronic liver disease. Acute presentations 
can range from mild asymptomatic liver func-
tion test abnormalities to an acute illness with 
jaundice that resembles viral hepatitis or acute 
liver failure (ALF) [4–9,101]. In fact, it is the most 
common cause of ALF in the USA, accounting 
for 20–40% of all cases [1,10,102]. For the major-
ity of DILI-associated ALF cases the under
lying cause is clear since it involves accidental 
or intentional paracetamol (acetaminophen) 
overdosing resulting in an accumulation of the 
highly reactive paracetamol metabolite N-acetyl-
p-benzoquinone imine (NAPQI), which causes 
extensive cellular and mitochondrial membrane 
damage in hepatocytes followed by increased 

oxidative stress, eventually resulting in acute 
hepatic necrosis [11–13,101]. However, up to 16% 
of DILI-associated ALF cases are caused by idio-
syncratic mechanisms and as such pose a signifi
cant health problem because of their poorly 
understood pathogenesis and potential to cause 
fatal outcomes (i.e., ~75% of the idiosyncratic 
drug reactions results in liver transplantation or 
death) [8,14–18]. Although susceptibility to DILI 
is thought to be influenced by certain patient 
characteristics, such as age, sex, genetic predis-
position, the number and type of medications, 
and underlying comorbidities, it remains highly 
unpredictable, which contributes to the fact that, 
currently, no specific biomarkers of idiosyncratic 
DILI are available [19]. There is also growing 
evidence that obesity predisposes to DILI [20]. 
Given the pandemic in obesity, DILI cases can 
be expected to rise in obese subjects. The rare 
incidence in humans (1 in 10,000–100,000) and 
the diverse mechanisms of toxicity complicate 
detection of DILI in preclinical or clinical test-
ing and contribute to the difficulty in predicting 
idiosyncratic events [16].

Due to its low incidence hepatotoxicity testing 
in animals is a financial burden, impractical and 
interferes with animal welfare given the number 
of animals that would be needed to detect hepa-
totoxicity. This difficulty in detecting DILI in 
a preclinical setting is why in humans DILI is 

Current testing models for predicting drug-induced liver injury are inadequate, as they basically under-
report human health risks. We present here an approach towards developing pathways based on 
hepatotoxicity-associated gene groups derived from two types of publicly accessible hepatotoxicity 
databases, in order to develop drug-induced liver injury biomarker profiles. One human liver ‘omics-based 
and four text-mining-based databases were explored for hepatotoxicity-associated gene lists. Over-
representation analysis of these gene lists with a hepatotoxicant-exposed primary human hepatocytes 
data set showed that human liver ‘omics gene lists performed better than text-mining gene lists and the 
results of the latter differed strongly between databases. However, both types of databases contained 
gene lists demonstrating biomarker potential. Visualizing those in pathway format may aid in interpreting 
the biomolecular background. We conclude that exploiting existing and openly accessible databases in a 
dedicated manner seems promising in providing venues for translational research in toxicology and 
biomarker development.

KEYWORDS: ‘omics databases n biomarker n DILI n diXa n drug-induced liver injury 
n hepatotoxicity n over-representation analysis n pathway development n text-mining 
databases n toxicogenomics

Dennie GA Hebels*1, 
Marlon JA Jetten1, 
Hugo JW Aerts2, 
Ralf Herwig3,  
Daniël HJ Theunissen1, 
Stan Gaj1,  
Joost H van Delft1  
& Jos CS Kleinjans1

1Department of Toxicogenomics, 
Maastricht University, 
Universiteitssingel 50, 6229 ER 
Maastricht, The Netherlands 
2Department or Biostatistics 
& Computational Biology, 
Dana–Farber Cancer Institute, Harvard 
School of Public Health, 44 Binney 
Street, Boston, MA 02115, USA 
3Department of Vertebrate Genomics, 
Max Planck Institute for Molecular 
Genetics, Ihnestrasse 63-73, 
14195 Berlin, Germany 
*Author for correspondence:  
Tel.: +31 43 3882127 
d.hebels@maastrichtuniversity.nl

For reprint orders, please contact: reprints@futuremedicine.com



Biomarkers Med. (2014) 8(2)186 future science group

Review Hebels, Jetten, Aerts et al.

often not detected until after the introduction 
of a drug to the market, making it also the most 
common reason for drug-related regulatory 
actions, including nonapprovals, restriction of 
use and drug withdrawal [21]. The general inade
quacy of animal models to detect hepatotoxicity 
due to its high rate of false-negative results and 
the high rate in which new drugs intended for 
potential clinical use are currently being synthe
sized calls for a different strategy [15,22–33]. Elu-
cidating the mechanisms of hepatotoxicity and 
predicting its occurrence has already been the 
aim of many studies and a very large body of 
information is available on this subject, espe-
cially within the area of toxicogenomics. Here, 
new approaches have been explored that may 
overcome the limitations of the current test-
ing methods and better predict whether newly 
developed compounds will cause (idiosyncratic) 
hepatotoxicity [34–36].

Besides research papers, online publicly acces-
sible databases also contain an enormous amount 
of data related to the study of liver toxicity. In 
particular, text-mining and ‘omics databases 
frequently contain (published and unpub-
lished) studies that focus on understanding the 
molecular mechanisms underlying hepatotoxic 
responses in humans. An innovative endeavor 
was started through the Data Infrastructure for 
Chemical Safety (diXa) project, funded by EU 
Seventh Framework Programme, to provide a 
single resource for the capture of data produced 
by toxicogenomics studies and databases, and 
to ensure sustainability of such a resource for 
use by the wider research community [103]. Such 
efforts are necessary, and timely, as demands for 
chemical safety are ongoing yet expectations are 
shifting away from traditional in vivo testing 
strategies towards increasingly computational 
methods, not only with regard to hepatotoxicity 
assessment but also in other fields of toxicology, 
pharmacology and molecular biology.

diXa aims at building a web-based, openly 
accessible and sustainable e-infrastructure for 
capturing toxicogenomics data, and at linking 
this infrastructure to available databases holding 
chemicological, physicological and toxicological 
information, and to databases on molecular med-
icine. As a result, this infrastructure enables the 
identification of possible biomarkers for safety 
risks. Work has so far focused on gathering this 
information for idiosyncratic drug-induced hep-
atotoxicity, but will also be extended to other 
pathological conditions. Users will eventually be 
able to analyze data available within the diXa 
infrastructure, as well as comparing their own 

data with biomarker profiles stored within the 
database. By exploring databases that have gath-
ered biomolecular information on hepatotoxic 
exposures, new pathways may be created that 
are relevant for hepatotoxicity and that may be 
used as specific indicators of hepatotoxic mecha-
nisms. Such profiles may be used to run dedi-
cated ‘omics analyses that will save a considerable 
amount of time, resources and test animals dur-
ing testing of new chemicals and drugs intended 
for human use.

It is the purpose of this review to investigate 
current publicly available databases in some 
depth and provide an overview of what is avail-
able and how this information might be applied 
to obtain biomarkers for idiosyncratic hepatotox-
icity based on gene lists derived from these data-
bases. As a use case, here we present an approach 
towards developing hepatotoxicity-specific path-
ways that may be indicative of the hepatotoxicity 
of new chemically engineered drugs before they 
reach the market. Although an exploration of 
the possible clinical use of such biomarkers in 
a diagnostic context is certainly relevant, this is 
outside the scope of this particular review.

Hepatotoxicity databases
When attempting to find biomarkers for hepa-
totoxicity, the existence of publicly accessible 
databases that collect experiment data offers an 
excellent opportunity to extract possibly relevant 
information. Currently, data on genes or pro-
teins that are potentially valuable as a biomarker 
for hepatotoxicity are offered in two types of 
databases: 

�� Databases that use text-mining approaches to 
identify genes or proteins that are associated 
with hepatotoxic conditions;

�� ‘Omics databases that collect ‘omics data, such 
as transcriptomic (mRNA, miRNA and 
high-throughput sequencing), proteomic and 
metabolomic data, in some occasions with 
corresponding metadata.

Both types of databases could be of great value 
for biomarker discovery; however, they operate 
according to different principles. Text-mining 
databases use text-mining algorithms and/or 
manual curation to search literature reposi-
tories such as PubMed for genes and proteins 
that are associated with specific pathological 
conditions. As a result, gene lists associated 
with hepatotoxic conditions that are derived 
from text-mining tools represent a more hetero
geneous approach towards biomarker discovery 
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since in most cases such databases will cover and 
combine both in vitro and in vivo data, a wider 
range of biomolecular techniques (e.g., ‘omics, 
real-time PCR, western blotting and animal 
knockouts), and possibly multiple species 
(e.g.,  human, mouse and rat). While ‘omics 
databases also contain a heterogeneous collec-
tion of data, querying these databases allows for 
a more dedicated approach where one can target 
only one species and technique, for instance by 
selecting only human liver tissue gene expression 
data. Such data are particularly interesting since 
they most accurately represent the human in vivo 
pathological situation and may therefore have 
the best potential for developing hepatotoxicity 
biomarkers. 

In this paper we analyzed text-mining and 
‘omics-based databases to review how gene lists 
derived from text-mining databases compare 
with human liver tissue-derived gene lists and 
how they might be used with regards to hepato-
toxicity biomarker discovery in nonanimal-based 
cellular systems. In order to do so, we screened 
a selection of both types of databases for gene 
sets related to a number of possible hepatotoxic 
conditions. In Box 1 the list of search terms that 
was used to find suitable gene sets is displayed. 
Although strictly not a hepatotoxic condition, 
hepatocellular carcinoma was also used as a 
search term given the predisposition hepato
cellular carcinoma has in relation to chronic liver 
disease [37]. Genes associated with this condi-
tion may still be related to expression changes 
occurring during the hepatotoxicity stages. 
For the same reason, hepatitis C, cholangio
carcinoma, liver neoplasms and hepatotoxicity 
related to alcohol abuse were included as search 
terms [38–40]. After collecting gene sets, they were 
tested for their possible relevance in biomarker 
discovery in cellular liver models by performing 
a custom-made pathway analysis using a large 
transcriptomic data set on hepatotoxic com-
pound exposure in primary human hepatocytes 
(PHHs), and comparing the results.

�� Text-mining databases
A large number of text-mining databases can be 
found online. Some of them specifically focus on 
hepatotoxicity, while others include a wide range 
of pathologies. For this review, we selected four 
text-mining databases that include gene sets that 
are linked with hepatotoxicity:

�� The Comparative Toxicogenomics Database 
(CTD) integrates data from scientific literature 
searched by professional biocurators, using 

text-mining processes to rank and prioritize 
articles for curation, to describe chemical 
interactions with genes and proteins, and 
associations between diseases and chemicals, 
and diseases and genes/proteins [104]. CTD 
includes curated data describing cross-species 
chemical–gene/protein interactions and 
chemical–disease and gene–disease associations 
to illuminate molecular mechanisms 
underlying variable susceptibility and 
environmentally influenced diseases [41,42];

�� The GATACA Gene Explorer database draws 
information from a large number of literature, 
gene and disease databases (e.g.,  PubMed, 
Kyoto Encyclopedia of Genes and Genomes 
[KEGG], Gene Ontology [GO] and BioCarta) 
and functions using concept unique identifiers 
that understand the intended meaning of each 
synonymous name in each source and link all 
names into a single entity [105]. It enables the 
exploration and prediction of pathways 
responsible for disease causation;

�� The Library of Medical Associations (LoMA) 
is a freely accessible database containing 
molecular associations of several hepatotoxic 
conditions [106]. This database has been 
established by searching the complete PubMed 
database by means of Medical Subject Headings 
(MeSH) terms and text-mining algorithms. 
After f iltering PubMed, the remaining 
publications were individually and manually 
validated for molecular associations [43];

�� MalaCards is an integrated database of human 
maladies and their annotations, modeled on 
the architecture of the GeneCards database of 
human genes [107]. MalaCards provides lists of 
affiliated genes found to be associated textually 
with the key disease, using the GeneCards 
search mechanism and also employs manual 
curation of data sets [44].

After searching these databases for the search 
terms displayed in Box 1, associated genes per 
hepatotoxic condition were downloaded. Most 
databases provided both Human Genome 
Organization (HUGO) Gene Nomenclature 
Committee gene symbols and Entrez Gene 
IDs, except for MalaCards, where only HUGO 
Gene Nomenclature Committee gene symbols 
were available. Annotation conversion was car-
ried out using the GeneCards® GeneALaCart 
batch-querying application [45,108]. 

Within the CTD, pathology-associated genes 
are scored according to their relevance using an 
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‘inference score’ and whether there is any direct 
evidence for a molecular marker/mechanism 
association between the disease and the gene. 
Only those genes with this direct evidence were 
extracted from the database. In LoMA, GATACA 
and MalaCards the complete lists of associated 
genes were used. In Table 1, an overview is pre-
sented of all gene lists (CTD: 11; GATACA: ten; 
LoMA: seven; and MalaCards: ten) that were 
extracted from the four text-mining databases.

�� ‘Omics databases
Public ‘omics databases are mainly represented 
by ArrayExpress [109] and the Gene Expression 
Omnibus (GEO) [110], developed and main-
tained respectively by the European Bioinfor-
matics Institute and the National Center for 
Biotechnology Information [46,47]. Both data-
bases contain functional genomics experiments 
that can be queried for specific pathological or 
experimental conditions, species, etcetera, and 
data can be downloaded for personal use. They 
include gene expression data from microarray 
and high-throughput sequencing studies while 
data have been collected according to the Mini-
mum Information About a Microarray Experi-
ment (MIAME) and Minimal Information 
about a high-throughput SEQuencing Experi-
ment (MINSEQE) standards. GEO experi-
ments are also imported within the ArrayExpress 
database.

ArrayExpress was searched for the hepatotox-
icity terms described in Box 1 and only studies 
analyzing human liver tissue specimens were 
selected. In the majority of selected studies, 
the associated publication was found through 

ArrayExpress or GEO, and gene lists reported by 
the authors to be associated with the hepatotoxic 
condition under investigation were extracted. 
Where needed annotation conversion was per-
formed using GeneALaCart. A total of 14 stud-
ies were included, covering 18 hepatotoxicity-
related gene lists [48–61]. In Table 2, an overview is 
given of all gene lists that were extracted from the 
selected studies and the hepatotoxic condition 
they are associated with. All lists of genes were 
derived from the tables and the supplementary 
data provided in the publications. Data analysis 
in these publications was performed using sig-
nificant analysis of microarray analysis, predictor 
of microarray analysis, linear modeling or t‑test 
analysis, and in all cases the lists of significantly 
modified genes passed a Benjamini–Hochberg 
false-discovery rate cutoff of 0.01 or 0.05.

Over-representation analysis of 
database gene lists
The next step in evaluating the relevance of hep-
atotoxicity databases for biomarker prediction 
in in vitro models was the assessment of their 
relevance by performing an over-representation 
analysis on the extracted gene lists. In order to 
do so gene lists were first converted to a Gen-
MAPP Pathway Markup Language (GPML) 
format within Cytoscape, an open source soft-
ware platform for visualizing complex gene net-
works [62,63]. GPML is a custom XML format 
compatible with gene list/pathway visualization 
and analysis tools such as Cytoscape, GenMAPP 
and PathVisio [64,65], the latter of which was used 
to perform a gene list over-representation analysis 
(based on z‑scores) with a publicly available test 
set of transcriptomic data related to hepatotoxic-
ity. The over-representation analysis employed by 
PathVisio assesses whether the number of differ-
entially expressed genes (DEGs) in the hepato-
toxicity test set in a given gene list (r) compared 
with the total number of genes in that gene list 
(n) is significantly higher than the background 
ratio of the total number of DEGs in the hepa-
totoxicity test set (R) compared with the total 
number of measured genes in the hepatotoxic-
ity test set (N), that is, it determines if there is 
an over-representation of the number of DEGs 
belonging to a particular gene list, compared 
with what could be expected by chance alone. 
This is calculated as a z‑score, which repre-
sents a measure of relative deviation of r from 
its expected mean value: r-(n*R/N) divided by 
the standard deviation. Its associated p‑value 
calculation is based on the hypergeometric dis-
tribution. In the analysis presented here using 

Box 1. Hepatotoxicity search terms.

�� Autoimmune hepatitis
�� Cholangiocarcinoma
�� Cholangitis
�� Drug-induced cholestasis
�� Drug-induced hepatitis
�� Drug-induced liver injury
�� Fatty liver disease
�� Hepatocellular carcinoma
�� Hepatomegaly
�� Lipidoses
�� Liver cirrhosis
�� Liver failure
�� Liver fibrosis
�� Liver neoplasms
�� Necrosis
�� Primary biliary cirrhosis
�� Steatosis
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a hepatotoxicity test set, a gene list with a high 
z‑score would thus indicate that it contains more 
DEGs than would be expected by chance. Such 
a gene list would therefore be of interest for its 
biomarker potential since it is over-represented by 
the DEGs in the hepatotoxicity test set.

�� Hepatotoxicity test data set
For over-representation analysis of results 
obtained from in vitro liver models, gene expres-
sion data from PHHs exposed to 64 different 
hepatotoxic compounds were selected from Toxi-
cogenomics Project-Genomics Assisted Toxic-
ity Evaluation system [111], a large-scale public 
database of transcriptomic and pathology data 
potentially useful for predicting the toxicity of 
new chemical entities [66]. The selection of these 
64 compounds was based on overlap with the 
list of compounds for which human liver toxic-
ity data (in the form of a DILI severity score or 
potential) are made available by the US FDA in 
their Liver Toxicity Knowledge Base. A list of 
these 64 compounds is displayed in Box 2. For 
all compounds the full gene expression data set, 
which included a maximum of three exposure 
times (2, 8 and 24 h) and three doses (low, mid-
dle and high), and their corresponding vehicle 
controls, was downloaded from the database 
and a MAS5 condensing algorithm was used to 
normalize the data. Nonexpressed probes were 
removed from the data set and further filtering 
was performed by selecting only genes that were 
significant for at least one of the 64 compounds 
in a linear model analysis that included expo-
sure time and dose as fixed variables (unadjusted 
p < 0.01). We subsequently continued with data 
from the 24 h middle- and high-dose exposures 
since most gene expression changes were found 
to take place under these conditions. From this 
filtered data set, DEGs were defined as having 
an absolute log2 ratio of 0.5 (i.e.,  the ratio of 
the gene expression level of compound-exposed 
PHHs versus the vehicle control gene expression 
level, followed by a log2 transformation to create 
a symmetric distribution).

In PathVisio, the DEGs were subsequently 
used to perform an over-representation analysis 
per compound and calculate the corresponding 
z‑scores as described earlier. Database-derived 
gene lists were considered to be significantly over-
represented at p < 0.01 (equivalent to z > 2.58). 
The results of the over-representation analysis 
are shown in Supplementary Tables 1 & 2 (see online 
at www.futuremedicine.com/doi/suppl/10.2217/
bmm.13.154) for the text-mining gene lists and 
the human liver ‘omics gene lists respectively. In 

these tables, all calculated z‑scores per compound 
and dose for each gene list are presented and sig-
nificant z‑scores (i.e., z > 2.58) are colored in 
red. The z‑scores of the text-mining and human 
liver ‘omics gene lists were subsequently used 
to perform a clustering analysis, which builds a 
hierarchy based on z‑score pattern similarity. The 
z‑score table is reordered in such a way that simi-
larly scoring gene lists and compounds are clus-
tered together. The hierarchical cluster shown in 
Supplementary Figure 1 visualizes the z‑score results. 
The average numbers of significant gene list hits 
per database are summarized in Supplementary 

Table 3 and visualized in Figure 1. A high average 
level of significant hits indicates a strong over-
representation in the PHH hepatotoxicity test 
data set of gene lists in that particular database. 
In Figure 1A this is shown as the average num-
ber of significant gene lists per dose group and 
in Figure 1B as the average number of significant 
compounds per gene list. The corresponding 
calculations are shown in Supplementary Tables 1 & 2.

Database comparison: text mining 
versus human liver ‘omics
The general pattern observed in the results 
from the over-representation analysis is that 

Table 1. Text-mining database gene lists.

Hepatotoxic condition CTD 
(n)

GATACA 
(n)

LoMA 
(n)

MalaCards 
(n)

Autoimmune hepatitis – – 27 –

Cholangiocarcinoma 6 98 275 696

Cholangitis 3 12 61 –

Drug-induced liver injury (cytotoxicity) 41 – – –

Drug-induced cholestasis 43 45 – 209

Drug-induced hepatitis – – – 22

Hepatitis 21 169 – 3055

Hepatocellular carcinoma – – 539 2031

Hepatomegaly 656† 123 – –

Lipidoses 41 43 – 7

Liver cirrhosis 138 142 – 335

Liver failure – 50 – –

Liver fibrosis – 70 157 195

Liver neoplasms 154 – – –

Necrosis (not liver specific) 10 – – –

Primary biliary cirrhosis (cholestasis) – – 60 259

Steatosis (fatty liver disease) 10 9 90 200
†The CTD hepatomegaly gene list is the only gene list where an inference score cutoff >20 was used 
to create a larger gene list. 
CTD: Comparative Toxicogenomics Database; LoMA: Library of Medical Associations.
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human liver ‘omics-based gene lists outperform 
text-mining-based gene lists. The human liver 
‘omics database gene lists score a higher aver-
age number of hits per dose group than any of 
the individual text-mining database gene lists 
(Figure 1A). In addition, high doses on average 
score approximately twice as high as the middle 
doses. When considering the average number 
of hits across all gene lists (for all compounds 
and doses), only the CTD lists score similar to 
the human liver ‘omics lists (Figure 1B). However, 
it should be kept in mind that this average is 
based on a lower number of gene lists for CTD 
compared with human liver ‘omics (11 and 18 
respectively, see Tables 1 & 2), thus rendering the 
human liver ‘omics gene lists still higher scoring. 
It becomes apparent that gene lists derived from 
‘omics data from human liver, that is, a setting 
that is as close to the human in vivo state as pos-
sible, is preferable when attempting to identify 
gene lists that may serve as a marker of hepato-
toxicity. This is also illustrated by the bottom 

clustering branch on the vertical axis in Supplemen-

tary Figure 1 (indicated in green), which contains 
the gene lists with the highest z‑scores (indicated 
in red in the heat map) and which are most 
strongly represented in a large number of high 
dose hepatotoxic compounds. Out of the 15 gene 
lists within this branch eight belong to a human 
liver ‘omics data-based gene list (out of a total of 
18, i.e., 44%; Table 2) while the remaining seven 
text-mining database gene lists (out of a total of 
38, i.e., 18%; Table 1) almost exclusively consist 
of CTD and MalaCards gene lists. It is therefore 
obvious that the human liver ‘omics data-based 
gene lists are disproportionately highly repre-
sented in the high scoring cluster. It also shows 
that the performance of the text-mining gene 
lists, with regard to the average number of sig-
nificant hits, differs strongly between the four 
text-mining databases (up to ~sevenfold between 
CTD and GATACA, Figure 1A & 1B). Another 
interesting observation is that approximately 
half of the gene lists in this cluster are based on 

Table 2. List of recent ‘omics data publications found in ArrayExpress from which 18 hepatotoxicity-associated 
human liver gene lists were extracted.

Study (year) PMID ArrayExpress ID Hepatotoxic condition(s) Genes (n) Ref.

Wurmbach et al. (2007) 17393520 E-GEOD-6764 Cirrhosis 8 [61]

Onomoto et al. (2011) 21603632 E-GEOD-11190 Nonresponding hepatitis C 31 [56]

Caillot et al. (2009) 19477948 E-GEOD-11536 Fibrosis progression 16 [51]

Bourd-Boittin et al. 
(2011) 

21826695 E-GEOD-24667 Fibrosis associated with hepatitis C or alcohol abuse 68 [50]

Liu et al. (2011) 21931690 E-GEOD-24807 Nonalcoholic steatohepatitis 1552 [53]

Andersen et al. (2012) 22178589 E-GEOD-26566 Cholangiocarcinoma 238 [49]

Affò et al. (2013) 22637703 E-GEOD-28619 Alcoholic hepatitis 102 [48]

Sia et al. (2013) 23295441 E-GEOD-32225 Intrahepatic cholangiocarcinoma associated with 
inflammation

160 [58]

Intrahepatic cholangiocarcinoma associated with 
proliferation

1402

Starmann et al. (2012) 23071592 E-GEOD-33814 Steatohepatitis 41 [59]

Steatosis 23

Rasmussen et al. (2012) 22278598 E-GEOD-34798 Severe fibrosis 35 [57]

Nissim et al. (2012) 23185381 E-GEOD-38941 Acute liver failure 643 [55]

Staten et al. (2012) 23270325 E-MEXP-2589 Fibrosis 7 [60]

Fibrosis-linked inflammation 12

Lake et al. (2011) 21737566 E-MEXP-3291 Phase I and II drug-metabolizing enzymes, phase 0 
uptake transporters and phase III efflux transporters 
associated with:

[52]

Nonalcoholic steatohepatitis 262

Steatosis 26

Marshall et al. (2013) 23527199 E-MTAB-950 Hepatocellular carcinoma associated with hepatitis B and 
C or hemochromatosis

17 [54]
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search terms that are not strictly DILI associ-
ated, indicating that also genes related to non-
DILI hepatotoxicity show promise as potential 
biomarkers.

While the size (i.e., the number of genes) of 
the high-scoring gene lists in the bottom cluster 
ranges considerably, the ‘omics data-based gene 
lists contain lower numbers (ranging from 17 
to 643 genes) compared with the text-mining-
based gene lists (ranging from 138 to 2031). This 
could be an indication that gene lists from ‘omics 
data represent a more specific response, which 
is especially interesting in terms of biomarker 
development based on dedicated ‘omics analyses.

In the horizontal compound axis of the hierar-
chical clustering analysis, two main branches are 
formed. The right branch contains mostly com-
pounds with a high exposure level, which is also 
accompanied by a higher frequency of significant 
hits (indicated in red), while the middle concen-
trations are mostly located in the left branch. 
The high doses of compounds therefore seem to 
elicit the strongest gene expression responses and 
are most strongly over-represented in the high 
scoring gene list cluster which also corresponds 
with the difference in average significant hits 
between middle and high doses seen in Figure 1A.

Critical considerations
�� Noise in text-mining approaches

The better performance of gene lists retrieved 
from human liver ‘omics data may be explained 
by the fact that these represent hepatotoxic 
responses in  vitro more closely than the het-
erogeneous gene lists derived from text-mining 
databases, which not only contain information 
from dozens to possibly hundreds of different 
studies, but also mix in vitro and in vivo experi-
ments and (possibly unintentionally) different 
species. While text-mining-based approaches 
seem to be quite promising for discovering new 
biomarkers and, as a result of the method used, 
cover a lot of ground, they might be prone to 
wrong interpretations during the curation pro-
cess, assigning genes to a hepatotoxic category for 
which the proof is limited, thus creating ‘noise’ in 
the data. The human liver ‘omics-based gene sets 
are all derived from single studies and the genes 
included within the list are all selected based on 
false-discovery rate cutoff criteria. However, it 
has to be considered that human liver tissue is 
also prone to inter-individual differences at the 
gene expression level, and as such will not always 
represent a uniform response when the number 
of liver samples is limited, which is often the case 
due to difficulties obtaining such tissue [67,68].

When examining the clustering dendogram 
more closely it is apparent that gene lists for the 
same hepatotoxic condition but generated from 
different databases do not cluster together. It 
would thus appear that these gene lists do not 
contain the same genes. While the numbers of 
genes present within each list already suggests 
this (Table 1), this dissimilarity also points at a 
low overlap between gene lists. Indeed this is 
the case, as illustrated by the Venn diagrams in 
Figure 2, demonstrating that the overlap between 
the same hepatotoxic conditions from different 
databases is very poor. While the text-mining 
methods in the databases reviewed here differ 
with respect to the algorithms used and any 
manual curation will undoubtedly be subject to 
differences too, it is still a surprising observation 
with important ramifications. It seems wise to 

Box 2. All 64 hepatic compounds selected from the 
Project-Genomics Assisted Toxicity Evaluation system database 
based on overlap with the Liver Toxicity Knowledge Base.

�� Acarbose

�� Allopurinol

�� Amiodarone

�� Azathioprine

�� Bendazac

�� Benzbromarone

�� Benziodarone

�� Captopril

�� Carbamazepine

�� Chlormezanone

�� Chlorpropamide

�� Cimetidine

�� Ciprofloxacin

�� Clofibrate

�� Colchicine

�� Cyclophosphamide

�� Cyclosporine A

�� Danazol

�� Dantrolene

�� Diclofenac

�� Disulfiram

�� Enalapril

�� Ethambutol

�� Famotidine

�� Fenofibrate

�� Flutamide

�� Furosemide

�� Gemfibrozil

�� Griseofulvin

�� Haloperidol

�� Hydroxyzine

�� Ibuprofen

�� Imipramine

�� Indomethacin

�� Iproniazid

�� Isoniazid

�� Ketoconazole

�� Labetalol

�� Methimazole

�� Methyldopa

�� Mexiletine

�� Moxisylyte

�� Naproxen

�� Nicotinic acid

�� Nifedipine

�� Nimesulide

�� Nitrofurantoin

�� Pemoline

�� Penicillamine

�� Perhexiline

�� Phenobarbital

�� Phenytoin

�� Propylthiouracil

�� Ranitidine

�� Rifampicin

�� Simvastatin

�� Sulindac

�� Tacrine

�� Tamoxifen

�� Terbinafine

�� Tetracycline

�� Ticlopidine

�� Tolbutamide

�� Valproic acid
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be cautious when using information from text-
mining databases. While this does not auto-
matically mean that this information is of less 
value, a better approach might be to just consider 
genes that overlap between different text-mining 
databases and therefore may represent a more 
robust signal. A careful examination of how 
text-mining databases work may also be helpful 
for determining where the most reliable signals 
can be obtained from. If we consider the four 
text-mining databases evaluated here, CTD and 
MalaCards might be preferred. Figure 1, clearly 
shows that gene lists from CTD and MalaCards 

outperform GATACA and LoMA if the numbers 
of significant hits are considered. It is therefore 
not surprising that the bottom clustering branch 
in Supplementary Figure 1, besides human liver ‘omics 
based gene lists, mainly contains CTD and 
MalaCards-based gene lists. CTD and Mala
Cards both employ sophisticated text-mining 
algorithms and are both extensively curated 
and kept up to date with progress in the field 
[41,44]. While LoMA also employs curation, this 
database has not been updated since late 2009. 
The GATACA database has no accompanying 
publication that describes their method of work 
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Figure 1. Average number of significant gene lists per dose group and significant 
compounds (middle and high dose combined) per gene list after over-representation 
analysis for each database or group of databases. (A) Significant gene lists per dose group; 
(B) significant compounds (middle and high dose combined). 
CTD: Comparative Toxicogenomics Database; HLO: Human liver ‘omics; LoMA: Library of Medical 
Associations; TM: Text mining.
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in more detail and there is no mention of man-
ual curation on the GATACA website. This is 
a strong indication that text-mining approaches 
towards database buildingheavily rely on con-
tinuous updating and accurate manual curating 
of found associations in order to be of value for 
biomarker discovery.

�� Liver injury classification
While not shown here, pathway z‑scores were 
also correlated (Spearman’s r) with DILI scores 
developed by the FDA [69]. DILI scores repre-
sent a classification system for hepatotoxic com-
pounds to assess their DILI potential. A high 

DILI score (representing a severe hepatotoxic 
response) might therefore be reflected by a high 
z‑score indicative of a strong cellular response to 
the hepatic injury. However, we could not find 
any statistically significant association (p < 0.01) 
between z‑score levels and DILI scores. This may 
be explained by the fact that DILI scores are 
based on hepatic injury that often only appears 
after long-term drug usage (usually weeks or 
months) by humans. The short-term exposure 
of only 24 h in the PHHs possibly does not elicit 
a response that reflects long-term exposure and 
therefore may not correspond with the DILI 
classification system.
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Figure 2. Four examples of the limited overlap between text-mining database gene lists representing the same hepatotoxic 
condition. 
CTD: Comparative Toxicogenomics Database; LoMA: Library of Medical Associations.



Biomarkers Med. (2014) 8(2)194 future science group

Review Hebels, Jetten, Aerts et al.

�� PHHs as a test data set
The Project-Genomics Assisted Toxicity Evalu-
ation system hepatotoxicity test data set we 
used to assess the relevance of the constructed 
pathways as possible biomarkers was derived 
from PHHs. However, these cells have some 
drawbacks such as their limited lifespan and 
availability. Furthermore, within the human 
population large interindividual differences in 
response to xenobiotic exposure are known to 
exist, which are often related to differences in 
the expression or activity levels of xenobiotic 
metabolizing enzymes and transporters [67,68]. 
To reflect human exposure most accurately, a 
data set based on fresh human liver; for exam-
ple, liver slices or even perfused liver, exposed to 
hepatotoxic compounds would need to be used. 
However, given the low availability of human 
liver this is difficult to realize and unpractical 
to perform experiments with [70]. PHHs have 
been used as a model system for the human liver 
for many years now, and while it is an in vitro 
system, it is the closest routinely used alterna-
tive to in vivo liver currently available [71]. PHHs 
can be isolated from liver tissue, and have the 
advantage that they can be cryopreserved and 
cultured in a sandwich culture simulating the 
natural environment in the liver, without dras-
tic functional changes compared with in vivo 
hepatocytes [72–74]. With regard to cellular pro-
cesses such as biotransformation, DNA-damage 
response, apoptosis and cell cycle regulation, 
PHHs resemble human liver considerably bet-
ter than commonly used liver cell lines such as 
HepG2 and HepaRG [75–79]. Therefore, PHHs 
are considered as a prime model for collecting 
molecular and mechanistic information for the 
evaluation of hepatotoxicity responses in humans 
[80]. For drug development purposes, PHHs also 
represent a crucial experimental model, allowing 
an early evaluation of human drug properties 
to guide the design and selection of new drug 
candidates while simultaneously increasing the 
probability of clinical success [81].

Gene list visualization in pathway 
format
After identifying potentially interesting gene 
lists (i.e.,  high-scoring gene lists in the over-
representation analysis) it may be helpful to 
visualize these in pathway format to assist the 
biological interpretation. To accomplish this, 
network creation tools such as Cytoscape are 
very useful [62,63]. Cytoscape offers the possibility 
of building networks using a network building 
plugin. This plugin, called Michigan Molecular 

Interactions, gathers data from well-known 
protein interaction databases and displays the 
interaction networks and attributes [82–84]. Inter-
action networks are created using several differ-
ent algorithms integrated within the Michigan 
Molecular Interactions plugin. Depending on 
the number of input genes (the query genes, 
i.e., a gene list extracted from a database) and 
whether intermediate genes (i.e.,  neighbors) 
are allowed to become part of the network, the 
following algorithms are available to create a 
network:

1	Query genes + nearest neighbors;

2	 Interactions among query genes (i.e.,  no 
neighbors are added);

3	Query genes + neighbors’ neighbors;

4	Nearest neighbors shared by more than one 
query gene.

After successful creation of a network, the net-
works can be exported as GPML files, which 
can later be used for pathway analyses. The 
GPML format is also used to store pathway 
content at WikiPathways, which is an open col-
laborative platform dedicated to the curation of 
biological pathways [85]. The pathway building 
workflow is illustrated in Figure 3, using one of 
the high-scoring human liver ‘omics gene lists 
(E-GEOD-33814, steatohepatitis) as an example.

Conclusion & future perspective
In this review we have examined an approach to 
use publicly available databases that have gath-
ered liver toxicity data, in order to develop bio-
markers for hepatotoxicity derived from in vitro 
liver systems, whichmay potentially be used 
to identify hepatotoxicity of newly developed 
drugs. After selecting hepatotoxicity-specific 
gene lists from four text-mining databases and a 
(human liver) ‘omics database, we investigated 
the relevance of these gene lists by performing an 
over-representation analysis with a large data set 
containing transcriptomic data of PHHs exposed 
to a large number of hepatotoxic compounds. 
The results show that the overlap of gene lists 
extracted from some online text-mining-based 
databases is limited and that their performance 
in the over-representation analysis differs greatly. 
In particular, gene lists extracted from the 
GATACA and LoMA databases appear to be 
of little use while CTD- and MalaCards-based 
gene lists perform much better. 

It seems likely that the performance of text-
mining-based gene lists is strongly influenced 
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by the efficiency of the text-mining algorithm 
to find the right associations, the ability to query 
many different data repositories, a thorough cura-
tion process performed by biomolecular experts 
and continuous updates. ‘Omics databases have 
the advantage of being able to select just hepa-
totoxicity studies that use human liver, thereby 
investigating the process of human liver injury 
in vivo. This is also reflected by a better perfor-
mance of these gene lists in the analysis presented 
in this paper, although the CTD and MalaCards 
text-mining gene lists also appear highly relevant 
given their average significant hit rate and should 
therefore certainly not be dismissed.

However, using ‘omics databases to obtain 
human liver data also has some disadvantages. 
First, the availability of such data is limited 
to the scarcity of human liver samples. This 

limits the number of specific hepatotoxic con-
ditions to choose from and puts a restriction 
on the sample size, and thus statistical power. 
Another important point is that interindividual 
differences create variability in the data, which 
complicates the finding of a robust response. 
This may be overcome by pooling data from 
all available studies and performing an overall 
statistical analysis. 

Still, the approach used here towards dis-
covering new biomarkers shows that both 
databases yield results that may be useful. 
While a preference might be given to human 
in vivo data, the vast amount of data related 
to hepatotoxicity in animal and in vitro stud-
ies presents a source of information that can 
be highly relevant. Indeed, in many studies 
animal and in vitro data have been shown to 
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Figure 3. From gene list to pathway, illustrated for the E-GEOD-33814 steatohepatitis gene list. (A) Gene lists are first 
downloaded from a database (in this case ArrayExpress). (B) The gene list is imported into Cytoscape. (C) A pathway is created in 
Cytoscape using the Michigan Molecular Interactions networking plugin. Algorithm 4 (nearest neighbors shared by more than one query 
gene) was used to construct the network. In the pathway the original input genes are displayed as diamond-shaped gene nodes, while 
added neighbor genes are displayed by circle-shaped gene nodes.
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be of relevance for understanding the process 
of hepatotoxicity and the services provided by 
the diXa project will enable a comparison of 
all these data sources to find the most robust 
and reliable genes with regard to human toxic-
ity testing [32,76,77,86–92]. Using an over-repre-
sentation analysis to find gene lists that both 
reflect exposure to hepatotoxicants and are 
linked with hepatotoxicity provides a specific 
signature that could be used for the identifica-
tion of the (idiosyncratic) hepatotoxic potential 

of newly developed compounds. Although the 
aim of this review was to provide a way of 
finding signatures related to the prediction of 
hepatotoxicity development, these same signa-
tures may also prove to be useful in diagnosing 
hepatotoxic conditions in early stages of disease 
development. This is especially relevant since 
there are currently no specific biomarkers of 
idiosyncratic DILI and its clinical presentation 
can mimic many other hepatological disorders 
associated with, for example, alcohol abuse and 

Executive summary

Hepatotoxicity assessment
�� Drug treatment is an important initiator of drug-induced liver injury, which accounts for up to 10% of all adverse drug reactions. It is 
the most common cause of acute liver failure in the USA, accounting for 20–40% of all cases.

�� Animal models are prone to misclassifying human hepatotoxicity.

�� Publicly accessible databases contain an enormous amount of data related to the study of liver toxicity and offer a possibility for a 
different strategy to elucidate the mechanisms of hepatotoxicity and predict its occurrence.

�� A change of strategy was initiated with the Data Infrastructure for Chemical Safety (diXa) project, which aims to provide a single 
resource for capturing data produced by toxicogenomics studies and databases, and ensure sustainability of such a resource for use by 
the wider research community.

�� diXa aims to build a web-based, openly accessible and sustainable e-infrastructure for capturing toxicogenomics data, and to link this 
to available databases holding chemico-/physico-/toxico-logical information and databases on molecular medicine. 

�� As a result, this infrastructure enables the identification of possible biomarkers for exposure and disease.

�� Here we review the applicability of pathways created based on hepatotoxicity-associated gene lists derived from hepatotoxicity 
databases to develop biomarker profiles and ultimately integrate them into the diXa data warehouse.

Hepatotoxicity databases
�� To find lists of genes associated with hepatotoxicity, databases that use text-mining approaches (Comparative Toxicogenomics 
Database [CTD], GATACA, Library of Medical Associations [LoMA] and MalaCards) and ‘omics databases that collect ‘omics data 
(ArrayExpress) were explored and gene lists were collected.

�� The numbers of gene lists per database were: CTD, 11; GATACA, ten; LoMA, seven; MalaCards, ten; and ArrayExpress, 18.

�� The gene lists’ relevance was assessed by performing an over-representation analysis on the extracted gene lists with a gene 
expression data set from primary human hepatocytes exposed to 64 different hepatotoxic compounds (middle and high dose, 24 h of 
exposure).

Over-representation analysis of database gene lists
�� High doses of compounds elicited stronger responses than the middle doses, on average scoring approximately twice as high.

�� Human liver ‘omics-based gene lists performed better than text-mining-based gene lists and were strongly represented in the most 
highly activated cluster of a hierarchical clustering analysis, containing 15 gene lists that comprised 44% of all human liver ‘omics gene 
lists versus only 18% of text-mining gene lists.

�� From the text-mining-based gene lists, CTD and MalaCards strongly outperform GATACA and LoMA gene lists as demonstrated by a 
difference in the average number of significant gene lists between these databases of up to sevenfold.

�� The difference in performance within the text-mining databases is illustrated by the low overlap between gene lists from different 
databases but representing the same hepatotoxic condition.

�� For biomarker development, gene lists derived from human liver ‘omics and the CTD and MalaCards databases all seem promising.

Gene list visualization in pathway format
�� Potentially interesting gene lists can be visualized in pathway format using network creation tools that show the interactions between 
genes.

Conclusion & future perspective
�� The approach shown here offers a way to generate pathway-level signature profiles relevant for hepatotoxicity that will be of use to 
the research community.

�� By continuing to expand the number of studies, chemicals and associated profiles one can maintain and perpetuate an extensive and 
up-to-date repository of (hepato)toxicity.

�� Exploiting in a dedicated manner existing and openly accessible databases seems promising in providing a venue for translational 
research in toxicology and biomarker development.
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viral hepatitis [93]. In addition, pathway mod-
eling of gene lists that are of interest provides 
insight into the biomolecular background of 
the exposures, which may also be useful in the 
clinic. However, to confirm the reliability of 
biomarkers found using this approach, further 
validation in other hepatotoxicity-specific data 
sets is first required and needs to be followed 
by extensive clinical research. This can prove 
difficult given the relatively low incidence of 
idiosyncratic hepatotoxicity, but once devel-
oped could screen a multitude of hepatotoxic 
conditions using a wide-range ‘omics-based 
diagnostic test. This would be an especially 
relevant tool when considering that some 
drugs can cause different patterns of hepatic 
injury between individuals [39]. Since idiosyn-
cratic hepatotoxicity has and will continue to 
be the subject of extensive investigation using 
‘omics-based approaches, the next decade will 
undoubtedly provide crucial insight to mini-
mize its occurrence and overcome the lack of 
standardized criteria or specific gold-standard 
diagnostic tests. By continuing to expand the 
number of studies, chemicals and associated 
profiles one can maintain and perpetuate an 

extensive and up-to-date repository of (hepato)
toxicity with applications in premarket DILI 
prediction, biomolecular understanding and 
clinical diagnosis.

In summary, the approach presented in this 
review, exploiting in a dedicated manner exist-
ing and openly accessible databases, seems 
promising in providing a venue for transla-
tional research in toxicology and biomarker 
development.
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