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1 RF-MW double-resonance experiments of carvomenthenol

In Figure 1, results for MW-RF double-resonance experiments on the lowest-energy conformer of 4-

carvomenthenol are shown. The respective rotational constants as obtained by broadband rotational

spectroscopy are A=2236.4058(23) MHz, B = 674.83573(65) MHz, and C = 647.30432(55) MHz. In

total, we identified three conformers in our molecular jet. We used a 1µs chirp spanning 2-6 GHz to

create coherence for a wide range of transitions and employed a 5µs single frequency pulse to pump

the 312 ← 313 transition at 165.2 MHz. We monitored the effect of the RF pumping on four different

connected transitions 312 ← 211, 312 ← 202, 413 ← 312 and 414 ← 313 (top part of Figure 1). The

corresponding microwave signal phases are displayed in the lower part of Figure 1 as a function of the

RF pump frequency that was scanned in 10 kHz steps. Note that the phase behavior for the 413 ← 312

microwave signal transition at 5342.89 MHz is just opposite to the other ones. This difference again

arises from the different energy level arrangement, which is progressive for the transition at 5342.89

MHz (J′K′aK′c
← JKaKc = 413 ← 312) and regressive for the remaining ones. This observation is in line

with the results observed for menthone and isomenthone illustrated in Figures 3 and 4 in the main

article. Note that for the signal transition at 5232.75 MHz (J′K′aK′c
← JKaKc = 414 ← 313) the energy level

arrangement is a regressive V-type one. As can be seen, it follows the same phase behavior as the

regressive Λ-type arrangement.

2 Three-level optical Bloch equations

The density matrix for a three-level system is a three-by-three matrix with diagonal elements ρii (i =

a, b, c) describing the population of the i-th level, whereas the off-diagonal elements ρi j (i , j = a, b, c)

describe the coherences between the states |i〉 and
∣∣∣ j〉. Relaxation terms are neglected, which is justified

due to the long T2 times of rotational coherences. The corresponding Hamiltonian of a double-resonance

experiment is the sum of the unperturbed Hamiltonian Ĥ0 and the interaction term V̂ describing the

interaction with the electromagnetic field Ĥ = Ĥ0 + V̂. The time evolution of the density matrix is then

expressed by the Liouville equation [1]:

i~
∂ρ̂ (t)
∂t

=
[
Ĥ (t) , ρ̂ (t)

]
, (1)

and the expectation value for the experimentally accessible polarization P is given by:

〈
P̂
〉

= N · Tr
{
ρ̂µ̂

}
, (2)

where N is the number of excited molecules and µ̂ is the transition dipole-moment operator. In the

following we provide explicit expressions for the Hamiltonian ˆHpro in the progressive regime and

the corresponding optical Bloch equations. The Hamiltonians and the optical Bloch equations for the

2



− π/ 4

0

π/ 4

re
l.

p
h

as
e

(r
ad

)

5624.49 MHz

− π/ 4

0

π/ 4

re
l.

p
h

as
e

(r
ad

)

4007.47 MHz

− π/ 4

0

π/ 4

re
l.

p
h

as
e

(r
ad

)

5342.89 MHz

164.0 164.5 165.0 165.5 166.0

radio frequency (MHz)

− π/ 4

0

π/ 4

re
l.

p
h

as
e

(r
ad

)

5232.75 MHz

202

414

312

211

313

413

165.2 MHz

4007.5 MHz

5624.5 MHz

5232.75 MHz5342.89 MHz

regressive Λ-type

regressive Λ-type

regressive V-type

progressive

Figure 1: MW-RF double-resonance experiments for the lowest-energy conformer of 4-carvomenthenol.
A scheme of the molecular structure as well as the corresponding energy level arrangement is given
in upper part. The color code of the arrows included in the energy-level arrangement is resembled in
the measurements of the phase dependence of the four different microwave signal transitions on the RF
pump frequency involving the 312 ← 313 transition at 165.2 MHz.
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regressive regime (Λ-type or V-type) are obtained in the same manner.

Ĥpro =


Ea −

1
2µabEab

(
eiωabt + e−iωabt

)
0

−
1
2µbaEba

(
eiωabt + e−iωabt

)
Eb −

1
2µbcEbc

(
eiωbct + e−iωbct

)
0 −

1
2µcbEcb

(
eiωbct + e−iωbct

)
Ec

 (3)

A few approximations have been applied to reduce the complexity. One is that the interaction volume

is small compared to the wavelength by neglecting the dependence of the electromagnetic field on the

wave vector k. Also the initial phases of both incoming waves were set to zero. Furthermore, the

assumption is made that each of the two incoming fields, the MW and the RF field, are exclusively

coupling to different transition dipole moment components µi j (with i , j = a, b, c). This assumption is

valid for this work, because the transition frequencies are well separated and the polarization direction

of the two incoming waves is perpendicular to each other in our experimental setup.

Set of the optical Bloch equations in the progressive regime:

i~
∂ρaa

∂t
= −

Eab

2

(
µabρba − µ

∗

abρab

) (
eiωabt + e−iωabt

)
(4)

i~
∂ρbb

∂t
=
Eab

2

(
µ∗abρab − µabρba

) (
eiωabt + e−iωabt

)
+
Ebc

2

(
µbcρcb − µ

∗

bcρbc

) (
eiωbct + e−iωbct

)
(5)

i~
∂ρcc

∂t
= −

Ebc

2

(
µ∗bcρbc − µbcρcb

) (
eiωbct + e−iωbct

)
(6)

i~
∂ρab

∂t
= −~ω0,abρab −

Eabµab

2
(
ρbb − ρaa

) (
eiωabt + e−iωabt

)
+
Ebcµ∗bc

2
ρac

(
eiωbct + e−iωbct

)
(7)

i~
∂ρac

∂t
= −~ω0,acρac −

Eabµab

2
ρbc

(
eiωabt + e−iωabt

)
+
Ebcµbc

2
ρab

(
eiωbct + e−iωbct

)
(8)

i~
∂ρba

∂t
= ~ω0,abρba −

Eabµ∗ab

2
(
ρaa − ρbb

) (
eiωabt + e−iωabt

)
−
Ebcµbc

2
ρca

(
eiωbct + e−iωbct

)
(9)

i~
∂ρbc

∂t
= −~ω0,bcρbc −

Eabµ∗ab

2
ρac

(
eiωabt + e−iωabt

)
−
Ebcµbc

2
(
ρcc − ρbb

) (
eiωbct + e−iωbct

)
(10)

i~
∂ρca

∂t
= ~ω0,acρca +

Eabµ∗ab

2
ρcb

(
eiωabt + e−iωabt

)
−
Ebcµ∗bc

2
ρba

(
eiωbct + e−iωbct

)
(11)

i~
∂ρcb

∂t
= ~ω0,bcρcb +

Eabµab

2
ρca

(
eiωabt + e−iωabt

)
−
Ebcµ∗bc

2
(
ρbb − ρcc

) (
eiωbct + e−iωbct

)
(12)

We simulated the intensity and the phase behavior using the respective set of optical Bloch equations

in a two pulse scheme. The first pulse is a short and intense π
2 -pulse at the resonance frequency of the

|a〉 → |b〉 transition to create maximum ab-coherence. Note that in the experiments we used a chirp

and excite both the |a〉 → |b〉 and the |a〉 → |c〉 transition. The second pulse used in the simulations is

a 5µs RF pulse with the corresponding detuning from resonance (in agreement with the experiment).

We adjusted the Rabi frequency Ωbc to match the experimental results e.g. the intensity and the phase

behavior for different detunings. For the initial populations of the states we assumed a Boltzmann

distribution and employed the rotational energies provided by the SPCAT program. In addition we

performed simulations to investigate the dependence of the strength of the RF pump pulse on the RF-

MW double-resonance experiments. Simulations of the amplitude and phase dependence are displayed
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Figure 2: Simulations of the (a) amplitude and (b) phase dependence of the microwave signal transition
on the RF pump detuning for four different RF Rabi frequencies. The Rabi frequencies are given in units
of D V

m/~.

in Figure 3. With increasing field strength, the decrease in signal amplitude becomes more pronounced

until the RF-pulse hitsπ and 2π conditions (complete coherence transfer at resonance) at a Rabi frequency

of 20 D V
m/~ or 100 D V

m/~, respectively. At a Rabi frequency of 50 D V
m/~ the pulse is between π and 2π

conditions and hence the signal decrease is significantly less compared to a Rabi frequency of 20 D V
m/~

or 100 D V
m/~. Because the oscillation of the populations depends on the generalized Rabi frequency,

off-resonance peaks appear. However, if a transition is driven off-resonance no full population inversion

or coherence transfer can be achieved.

As explained in the main article, the phase change reveals the shift of the energy levels due to the RF

pumping. For higher field strength the phase change becomes more pronounced, because the shift of

the energy levels is larger (due to the larger Rabi frequency Ω′).

3 Autler-Townes doublet and field-strength dependence of the RF-

MW double-resonance experiments

As mentioned in the main article, we cannot observe the Autler-Townes doublet directly, but its influence

on the phase of the MW signal. However, we performed simulations to illustrate the change in frequency

and intensity of the Autler-Townes doublet as a function of the detuning for the example of menthone

A. Figure 3a shows the spectrum of the ab-coherence for different detunings in a two-dimensional plot

and also for a smaller set of detunings in a one-dimensional plot (Figure 3b). The simulations reveal an

intensity ratio of:
Ic,N−1

Ib,N
= tan2

[1
2
· arctan

(
−

Ω′

∆RF

)]
(13)

where Ic,N−1 and Ib,N describe the intensities of the transitions between the state |a,N〉 and the dressed

states evolving from the undressed states |c,N − 1〉 and |b,N〉, respectively.
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Figure 3: Illustration of the Autler-Townes doublet for different detunings. (a) Two-dimensional plot
with the MW frequencies on the x-axis and the RF detuning on the y-axis for menthone (conformer A).
(b) Spectra of different detunings close to ∆RF = 0. Note the intensities of the doublet are equal for zero
detuning.
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