|IPP-Report

Robert Bohle

Development of a Virtual Soft X-Ray Diagnostics and its Application
to Ideal Kink Instablilities

IPP 1/342
July, 2011



DEVELOPMENT OF
A VIRTUAL SOFT X-RAY DIAGNOSTICS
AND ITS APPLICATION TO
IDEAL KINK INSTABILITIES

Diploma Thesis
by
Robert Bohle

July 2011

s ﬁ |_ ; tuowie- g Max-Planck-Institut
w WLV Rl fiir Plasmaphysik

primary reviewer:  Prof. Dr. Hartmut Zohm
secondary reviewer: Prof. Dr. Harald Lesch



ABSTRACT

Magnetically confined plasma in a tokamak is a possible energy source for future fusion
reactors. The fusion plasma emits soft x-ray (sxr) radiation and occurring MHD insta-
bilities displace the spatial radiation distribution. The volume integrated emissivity and
its variation is measured in ASDEX Upgrade with pinhole sxr detectors.

In the scope of this thesis a virtual soft x-ray diagnostics is developed taking into account
the full three-dimensional geometry. A model for the emissivity of a mode perturbed
plasma is developed considering the poloidal displacement which depends on the toroidal
position.

The consideration of the full poloidal geometry is crucial since it is shown here that a
previously used model is incapable of reproducing observed phenomena but produces
unphysical mathematical artifacts.

Applying the virtual sxr diagnostics in combination with the model of mode perturbed
emissivity it is discussed, that the time dependent simulated signals depend on the back-
ground emissivity eg(p) (especially its gradient), the magnetic structure of the mode de-
scribed by the displacement function 5 and the geometry of the equilibrium flux surfaces.
It is also shown that there is coupling between the dependencies.

By keeping two of these three dependencies constant and varying the third, the resulting
effects on the time dependent simulated signals of idealized examples of ideal internal
(m,n) = (1, 1) kink modes are investigated. New insight is gained because the effects are
isolated from disturbing influences and they are studied under well defined conditions.

By the variation of the background emissivity and the displacement the simulated signals
are fitted to the time dependent signals which result from observed kink modes. Good
agreement has been achieved for peaked as well as for hollow emissivity profiles. However,
asymmetries due to non-constant radiation of flux surfaces can not yet be described. This
is recommended for future work.
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Abbreviations and names

Tokamak TOpoumansuas KAmepa 8 MArantabix Karymkax
which means translated toroidal chamber with magnetic coils

AUG ASDEX Upgrade

MHD magneto-hydro-dynamics

VOS volume of sight

LOS line of sight

AVOS axis of the VOS

SXR soft x-ray

ECE electron cyclotron emission

NBI neutral beam injection

CLISTE a code to calculate the plasma equilibrium

STRAHL a code to calculate the radial transport of impurities

LFS low field side

HFS hight field side

ELM edge localized mode

NTM neoclassical tearing mode

FFT fast Fourier transformation

RSS residual sum of squares
FWHM full width at half maximum



1 Introduction

The sun produces - by a natural occurring fusion process - the daylight we see and it is
the goal of fusion research to develop a way to control an artificial induced fusion process
so that energy generation is possible. In the following sections a very short introduction
in the physics of fusion is given.

1.1 Why do we need fusion research?

The worlds energy demand is predicted to increase by 33% between 2011 and 2035 [1].
The main options we have today to cover up the energy need can be ordered into the
three generation types and in the following the difficulties which are associated with
these production types are described shortly [2].

First, the use of fossil energy has destructive environmental effects and also the recourse
of it is limited and the consumption is creating a dependence on fossil-fuel-producing-
countries.

Second, nuclear energy is connected with the unsolved problem of the final disposal of
nuclear waste. Besides, the fact that weapons-usable plutonium can be produced there
is the remaining risk of a maximum credible accident and there are possible health risks
connected with the mining of uranium.

Last, renewable energies like wind and solar energy are only temporarily available, be-
cause an efficient storage does not exist. Hydropower depends on the local infrastructure
of an embankment dam. The use of biogas goes along with monocultures and generally
the consumption of resources is enormous.

It is the goal of fusion research to develop a fusion power plant - driven by an artificial
induced fusion process - which overcomes the above mentioned difficulties of present
energy production. A future fusion power plant will be intrinsically safe, because the
conditions required for energy generation are difficult to maintain [3]. Any deviation
away from these conditions will stop the fusion processes and no further fusion-energy
is released. Moreover, the activated atoms in the vessel only have a half-life of a few
hundred years.

The energy source would be quasi unlimited because there is plenty of deuterium ev-
erywhere, the needed tritium is self-produced in the breeding blankets from lithium;
another advantage is that there are no harmful environment effects [4].

Nobody knows whether nuclear fusion power plants will one day produce our energy;
but we do know that it is difficult to cover up the increasing energy need. Therefore it
is worthwhile to bring to light whether fusion is a practicable way for the energy supply
of our future.



1.2 Thermonuclear fusion, MHD equations and the Tokamak

Nuclear fusion is the process of merging two atomic nuclei to one new atomic nucleus.
There are fusion processes for which the mass of the resulting particles is smaller than
before the fusion. This mass defect Am results from released binding energy and it is
released in form of kinetic energy. Let us for example consider the fusion of the hydrogen
isotopes tritium and deuterium

2D +3T — 3He (3.5 MeV) +4n (14.1 MeV). (1.1)

The energy needed to overcome the classical Coulomb barrier (~ 380keV for D-T) is much
lower than the energy gained by the fusion process [5]. For fusion it is not necessary for
the nuclei to overcome the Coulomb barrier because of the quantum-mechanical effect
of tunneling.

According to the mass proportion of the neutron and helium, the neutron has a kinetic
energy of 14.1 MeV and future fusion reactors will gain the energy out of the particle
flux. Since the above introduced D-T reaction has by far the largest cross-section at the
lowest energies it is the most promising candidate for an energy-producing system [5].

In order to maximize the neutron flux the reactants are forced into the plasma state
in which almost all particles are ionized. With present fusion devices thermonuclear
fusion can be achieved with a temperature of about 10 keV (about 100 million degrees)
[6]. There is no material which could withstand this plasma and so it is confined with
magnetic fields.

Although the plasma consists at least of protons and of electrons, a magnetically confined
plasma can be described as a conductive and electrically neutral fluid which reacts to
magnetic fields [6]. This model is called Magneto-hydro-dynamics (MHD) and it consists
of a combination of Maxwell’s equations with the equations of fluid dynamics. In the
ideal MHD the resistivity of the plasma is neglected, therefore the magnetic field lines
can not reconnect and the topology of the field lines is maintained. The equations of
ideal MHD read:

mass conservation: Ampere’s law:
— +Vpu=0 1.2 =—VxB 1.3
ot VP (1.2) 1= (1.3)
adiabatic equation: MHD kinematic equation:
(at—l—v >p—|—3p U (1.4) 5 V x (U x B) (1.5)

. momentum equation:
absence of magnetic charges:

o o - .. -
VB =0 (1.6) p(a—l—W)ﬁ——Vp—i—ij (1.7)



1.2.1 Magnetic confinement and plasma equilibrium

Under several different geometrical setups to provide magnetical confinement the Toka-
mak is the most developed one and it is briefly described in the following section [5].

The constituent parts of a Tokamak are shown in figure The plasma is confined in a
torus-like volume by the toroidal and the poloidal fields. The toroidal field is produced by
the external toroidal field coils. It is much stronger than the poloidal field produced by
the toroidal plasma current which results from the change of the current in the primary
transformer circuit [6]. With the currents in the introduced external coils the shape and
the position of the plasma is controlled and determined [6].

Inner Poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer Poloidal field coils
(for plasma positioning and shaping)

Resulting Helical Magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

Figure 1.1 — Constituent parts of a Tokamak referring to [3].

In the state of equilibrium the time derivatives in the MHD equations [I.2] - [I.7] vanish.
With ¢ = 0 for the flow of the plasma ¢ (this is a good assumption if v < ¢, with ¢,
being the ion Sound Velocity) the momentum equation reduces to the force balance
equation Vp = j x B and there is an internal balance between the pressure of the plasma
p and the forces due to the total magnetic field B. The field lines of B lie in surfaces
of constant pressure. These surfaces are called flux surfaces and they are plotted in a
typical poloidal cross section in figure

In order to achieve high temperature the plasmas energy is increased with various heating
systems and, furthermore, the energy must be confined in the plasma and the efficiency

of the confinement of plasma pressure by the magnetic field is represented by the ratio
6 — 2uo{p) __ thermal pressure “6']

B2 magn. pressure




1.2.2 The flux coordinates p,, and 6*

Equations simplify by choosing proper coordinate systems. The torus coordinate system

is introduced in figure (1.2} R denotes the major
radius and r denotes the minor radius. The shape
of the confined plasma is deformed and in the fol-
lowing the radial (poloidal) flux coordinate pp,
and the straight field line angle 6* are introduced.

For the definition of p,y let us consider an arbi-
trary flux surface. Let C; be an arbitrary closed
curve on one flux surface which circulates once
poloidally and which does not circulate toroidally.
Let A be the area which is carved out by the curve
Cy. The poloidal flux v, which passes through
the surface A is given by ¢y = [ BdA and it is
independent of the chosen path and only depends

4 PLASMA SURFACE (r =a)

’ J
TOROIDAL MIDPLANE

Figure 1.2 — The torus coordinate system.

on the chosen flux surface. So v, is a flux surface quantity. The flux surfaces with

axis.

separatrix.

defined by

\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

AR R R RN R small (not minimal) 1, are, in a poloidal plane,
| | topologically circles. There are two border cases
which are visualized in figure 2.2 First, the point
(not surface) with minimal 1), is called magnetic

Second, for larger 1, the flux surfaces topology
in the poloidal plane is equivalent to a lemniscateﬂ
and an X-point is formed where the flux surface
reconnects; the corresponding flux surface is called

Finally, the position and the shape of the flux sur-
faces is taken into account by introducing the di-
mensionless radial flux coordinate pp,, which is

ppol(Ra Z) _ \/wpol<Ra Z) - waxis (18)

7vbseparatriac - waazis

The introduced radial flux coordinate, which is in
the following denoted by p is constant on a flux
surface and so it takes the poloidal geometry of
the flux surfaces into account.

Figure 1.3 — Shows a typical poloidal cross section with the flux
surfaces and their p,,-values. The separatrix at p = 1 is plotted
in blue and the magnetic axis at p = 0 is plotted with the + mark.

LA lemniscate refers to a curve which is shaped like oo.



With figure the straight field line angle #* is introduced which takes the poloidal
geometry of field lines into account.

Figure 1.4 — Visualization of two flux surfaces in flux coordinates. The field line section
f which is plotted with line style —. The field line plotted with line style — results
from the doubling of the toroidal field B;.

Let us consider an arbitrary flux surface inside the separatrix by choosing an arbitrary
p1 < 1.0 (the red surface in figure . Let f be the field line section which starts at
Py = (p1,61 = 0,¢1) and performs one full poloidal rotation until the endpoint of the
field line section which is given by the point P» = (p1,0s = 27, ¢9) is reached. On f we
assign each f-value a ¢-value and get the function ¢(6). We now introduce the quantity
0* so that the function ¢(6*) is a linear function passing through the origin. Hence 6* is
named straight field line angle.

Based on this an expression for 8* on the considered flux surface can be derived:

de
T = 1= const. (1.9)



Rearranging the equation and solving for 6* leads to the following definition:

. 1
0%(0) = ?b(e). (1.10)
The constant ¢ is called safety factor and for the field line section f the safety factor is
given by
q= @2_ o1 [6]. (1.11)
T

The safety factor in equation [1.10] provides a normalization so that §*(6 = 27) = 2 is
fulfilled and because of equation 6*(6 = 0) = 0 holds.

Although the g-value (and so the toroidal magnetic field B;) is used in the definition
[1.10, the straight field line angle 6* is independent of the toroidal magnetic field B,. It
is shown in [33] that 6* only depends on the radial field Bg, the vertical field B, and
the geometry of the considered flux surface. To better understand the independency
on B, let us raise B, by a factor of 2. Then the field line in figure with line style
— transforms into the field line with line style — and the straight field line remains
invariant because 1/q is lowered by the factor 2 and ¢(#) is raised by a factor of 2. Note
that the value of ¢ is necessary for the reconstruction of the toroidal field line geometry.
For this reconstruction the value of 6* in a poloidal plane is not sufficient because with
a given 6 it is not possible to calculate 4¢/¢6~ = ¢. This is because for the field line d¢
is unknown. In conclusion, in #* there is only poloidal information about the field line
structure, because 8* only depends on the vertical field B, and the radial field B, and
it is independent of the toroidal field B;.

To avoid unnecessary error propagation resulting from the error on B; and the error on
q the definition should not be used to calculate #*. The equation which is used to

calculate 8* reads
0 1 27 1 9/ -1 1 2
0*(0) = 2 —dy —d 1
) ”(/OJR >(/0 JR > (112)

whereas the Jacobian J is given by

J= <1 + (;:2’0>2> ) (RBZR_lRO - RBTﬁ> I33]. (1.13)

In equations and the calculation is performed in a poloidal plane and B, is the
vertical field and B, is the radial field. Moreover (R(0), z(0)) refers to the position of
the considered flux surface and the magnetic axis is denoted by (Ry, zo). It is shown in
[22] on page 20 that the definition in equation is equivalent with the equation [1.12]
which is used to calculate 6*.
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Figure shows that lines of equal 6* are curvilinear in real space because the
poloidal field line structure is taken

Shot: #26355 time: 2.15000 into account.

The rather mathematical definition
in equation [1.10] is in the follow-
ing refreshed by a physical motiva-
tion. Physical problems simplify if
they are stated in the right coordi-
nate system. The right coordinate
stands out due to the fact that equa-
tions become linear. Let us assume
a mode (which will be introduced
0.01 7 in the next section) moves along the
resonant flux surface with the angu-
lar velocity wy,-(p) in toroidal direc-
tion [22]. Such a toroidal mode ro-
tation can be induced - for example
—05F - - by neutral beam injection. Let the
mode rotate uniformly in toroidal
direction:

d¢
1 ‘ 1 1 ‘ 1 1 ‘ 1 1 ‘ 1 1 ‘ 1 1 dt
1.2 14 16 18 20 22

R in [m]

z in [m]

= Wy = const. (1.14)

The mode has the helical struc-
ture of the field lines. And if a
mode is observed in a poloidal plane
the mode appears to rotate with
the poloidal rotation velocity wyy in
that plane. Differentiation equation
with the respect to ¢t and using equation [1.14], it follows that the mode rotates
uniformly in 6*:

Figure 1.5 — Lines of equal #* in real space geometry and
the flux surface with p = 0.99 are shown.

do*

g = Wl = const. (1.15)

Plasma instabilities are described using the straight field line angle 8* considering the
poloidal field line structure and this is also discussed in section [4.4

11



1.2.3 Plasma instabilities and their displacement

The above introduced plasma equilibrium does not have to be stable. This is the case if
a perturbation of the equilibrium does not vanish or even grows as time evolves. These
plasma instabilities (also called modes) lower the total energy of the plasma and are
observed often in plasma discharges.

The instabilities play a dual role in fusion experiments [44]. On the one hand, the
instabilities can be instrumental to limit the impurity content in the plasma [44].

On the other hand, they can limit the operating regime of the tokamak by limiting - for
example - the maximal achievable 5. Furthermore instabilities can lead to disruptions
which destroy the plasma confinement uncontrolled. The plasma current decay can
give rise to large forces on the Tokamak vessel [5]. Instabilities enhance the level of
radial particle and energy transport which decrease the quality of the confinement of the
plasma. The successful ELM mitigation in AUG [45] is an example that the (fractional)
understanding of the physics of plasma instabilities can lead to techniques to mitigate
them.

—

The instabilities cause the equilibrium flux surfaces to displace. The displacement is
given by the vector field £(Z) which is illustrated in figure

@ (b)

—

Figure 1.6 — In (a) the undisplaced flux surfaces and the displacement vector field ()
are shown and in (b) the displaced flux surfaces are shown.

The vector field 5 represents the displacement of the plasma away from its equilibrium
position and the force on the plasma-fluid arising from this displacement follows from a
perturbation of the momentum equation and it is given by:

Lo 9% L 4 L o
F(f)zp_§:]1XBo+JOXB1—VP1 [15]. (1.16)

The potential energy change resulting from this displacement 5 of the plasma is given

12



by
1 — =
W =5 /ngv. (1.17)

In the framework of ideal MHD the total energy is conserved and the question whether
an equilibrium is stable or unstable can be determined by analyzing only the sign of W
[15]. An equilibrium is stable if §W > 0 for all (physically allowed) £ and it is unstable
if W < 0 for any (physically allowed) 5 If the equilibrium is not stable an instability
occurs and this instability drives the plasma to another equilibrium or to an unstable
situation [5].

The MHD instabilities are classified by the expansion of their boundary and by their
driving source: if the plasma-vacuum interface moves from its equilibrium position the
instability is called to be external and if the plasma-vacuum interface remains motionless
the instability is called internal [15].

It is convenient to split up the energy functional in equation OW = Wy + Wy

where W, = fpl %dv is the perturbed magnetic energy of the vacuum region and

0W, is the perturbed energy of the plasma which is given by

1 - = - - = 32 = =
Wa=3 [ [V + @mTE+ -G B x| av

pl

Only the two underlined terms can cause the energy functional 6W,; to be negative and
they correspond to two different sources of the instabilities: if the dominant destabilizing
term is proportional to (E %0)6{ the instability is pressure-driven and if the dominant
driving source is proportional to jo(él X 5) the instability is current-driven [15].

Let us concentrate on internal current driven instabilities. The most important fea-
tures of the current driven instabilities can be studied in the low-3, "straight tokamak”
approximation (i.e. periodic screw-pinch) considering cylindrical coordinates, in which

. B.
B = B.(r)e, + Boéy , q = ;_Be and e — % < 1 holds
0

where € is the inverse aspect ratio and a is the characteristic scale length of the minor
plasma radius [23]. Within this approximation the change in potential energy due to an
ideal MHD perturbation is given by

a

S — %/ (% - 3)2 [#’ (%)2 +(m? - 1)5%)] rdr (1.19)

where ¢ is the radial component of the displacement. A minimization with respect to
the other two components & and , leads to the condition for incompressibility V& = 0
[48].

13



For the (m,n) = (1, 1) case equation reads:

Wy | N2 . /de\?
5W:a—20/(1—5> e (5) dr (1.20)
0

For ¢ # 1 the energy functional in equation is minimized by % = 0. At the resonant
surface with ¢ = 1 the energy functional vanishes and % = 0 is not necessary for the
minimization of the energy functional.

Starting from the ideal MHD equations (no flux surface reconnection) and using the
low-3 approximation the following conditions for the displacement of the internal ideal
(m,n) = (1,1) kink are derived: the plasma is displaced incompressibly V€ = 0 and
inside the ¢ = 1 region % = 0 holds for the radial displacement ¢,. This leads to a
constant rigid displacement inside the ¢ = 1 region and because this instability kinks
the plasma out of its equilibrium position it is called kink. Since the internal kink is
considered there is an undisplaced flux surface inside the plasma and for all flux surfaces

outside of the undisplaced flux surface the displacement also vanishes.

The m = 1 kink plays a special role because only the m = 1 kink mode has the topology
of a torus. The m > 2 kinks are not homeomorphic to a torus. Furthermore the m =1
kink is unstable and the m > 2 kinks are commonly stable (for very high pressure or/and
current gradients also these modes can get unstable).

The kink-instability is an often observed instability in the AUG Tokamak in conventional
scenarios and large scale kink modes limit the operation regime of the Tokamak [5] [22]
[27]. Furthermore the kink-instability displaces a rather big area of the plasma and
the value of the displacement is big compared to other plasma instabilities, therefore
the kink mode is well suitable for investigations using the sxr diagnostic and its virtual
counterpart which are introduced in section [2] and (3| [46].

14



1.3 Motivation and Outline

Usually the searched quantity - in this case the emissivity - is calculated by solving the
equations directly but for the case of the sxr diagnostics this means the following. The
signals of the ~ 200 channels result from the convolution of the emissivity eo(Z) with
the point response function of the detector over the VOS:

S; = / QF)e(F)AV and i = 1, ..., ~ 200, (1.21)

2eVOS;

In order to calculate the spatial emissivity distribution e(Z) these ~ 200 equations must
be solved for e(Z). This is the ill-posed problem of tomography [13] and in plasma
physics sophisticated algorithms are developed in order to solve it.

In this thesis a different approach is considered to quantify the emissivity: a virtual
diagnostics in combination with a model for the emissivity is used.

In the following the two approaches are briefly compared. For a tomographic inversion
no model of emissivity is needed. This can be advantageous if the model is unknown like
for the emissivity of the bolometer diagnostics. But the use of a model of emissivity is
very useful because important additional information like the displacement can be gained
on the way. Using tomographic inversion the final result is the emissivity distribution
e(Z,t) and if important additional information like the displacement is needed it must
be calculated starting from e(Z, ).

There is prior information about the detector like the three-dimensional geometry of
the VOS and the point response function. Furthermore there is quasi prior information
about the spatial emissivity distribution of the plasma. For example it can be assumed
that the emissivity is displaced accordingly to the mode numbers (m,n).

Referring to [31] and to [32] it is possible but rather complicated to consider the (quasi)
prior information in rotation tomography. In this thesis the (quasi) prior information is
considered as explained in section [3.1] and

In conclusion, using the virtual diagnostics in combination with a model for the search
quantity has the advantage (compared to tomography), that the implementation of
(quasi) prior information is straight forward. With tomography it is only possible to
derive the spatial emissivity distribution. It is discussed in the following that the virtual
diagnostics is not limited to this purpose.

15



With a virtual diagnostics in combination with a model for the search quantity the
following goals can be achieved:

e [t is possible to quantify the search quantity. In this thesis the search quantity
is the emissivity and the perturbation of it which corresponds to the magnetic
structure of plasma instabilities. The described approach is applied is section [6.1}

e With the help of the virtual diagnostics it is possible to gain knowledge about the
features and the properties of the real diagnostics. In this thesis this aspect is
touched in section [5.3

e [t is also possible to investigate the optimal position, alignment and dimensions
of the pinhole-detector-array in order to measure certain predefined effects. The
method is used to design a new diagnostics and this objective is not followed up
in this thesis.

e With the help of the virtual diagnostics a validation of data analysis tools is pos-
sible.

e For this thesis most important, working with a virtual diagnostics in combination
with a model for the measuring quantity an investigation of idealized examples is
possible. With this method it is possible to isolate effects from disturbing influences
and investigate isolated effects under well defined conditions. The signal depends
on many parameters and the virtual allows to vary these parameters specifically.
By varying only one parameter and setting all other parameters fixed the pure
impact of this variation can be investigated and new insight can be gained. There
are cases where the interpretation of the raw data is impossible. With the help
of the virtual one can get an idea of the effects which play a role and one can
investigate the impact of the effect on the signals. This helps to understand the
functionality of the diagnostics and also the physics of plasma.

Outline

The purpose of this thesis was to design and implement a virtual sxr diagnostic and
a model for the mode displaced emissivity. This thesis is organized as follows: first in
section 1| a short introduction aiming to explain the motivation for fusion research, the
fundamentals of a Tokamak and introducing the kink MHD instability is given.

After the real sxr diagnostics is described in section [2] in section [3| the approach and the
implementation of its virtual counterpart is explained.

Section [] derives a model for mode displaced plasma considering the full poloidal dis-
placement and compares the results with two approximations used in the literature.

In section 9| idealized examples of kink modes are defined and under well known condi-
tions the impact on the simulated signals is investigated.

Section [6] applies the simulation to observed kink modes.
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2 The soft x-ray diagnostics at AUG and the
quantity emissivity

In this section the main properties of the soft x-ray diagnostics at AUG and its measuring
quantity, the emissivity, are introduced (a more detailed description is given in [12]).

An important plasma diagnostics in current fusion research are soft x-ray cameras which
measure the sxr radiation. This is because the analysis of sxr diagnostics signals pro-
vides information about important plasma properties for example plasma instabilities,
equilibrium configuration and impurity transport.

2.1 The pinhole detector array and its geometry

At AUG the sxr cameras consist of semiconductor diode arrays with a pinhole geometry
as visualized in figure 2.1} Simplifying the notation several pinhole-diode-arrays at the
same poloidal position and at roughly the same toroidal position are referred to a camera

labeled with the letters F, G, H, I, J, K, L and M.

VOS

Pinhole center

; <
N, pinhole width ~ pw = 0.3mm
pinhole length  pl = 5.0mm
diode width dw = 0.96mm
diode length dl 4.6mm
diode separation sep = 0.03mm
focal length fl = 14mm
be-foil thickness 0t = 0.075mm

R PO

detector array

Figure 2.1 — The geometry and the dimensions of the pinhole-detector-array arrange-
ment.
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The outer border of one diode of the detector-array and the pinhole span a pyramid-like
volume. This volume is called volume of sight (VOS) and it is plotted in figure in
blue. The line connecting the center of the pinhole and the center of the diode is called
axis of the VOS (AVOS) and it is plotted in figure in green. The radiation inside
the VOS contributes to the measured signal and the origin of the radiation is discussed
in section 2.3

According to the data sheet of the detector (centronic LD35-5T) [20] it is sensitive
to radiation with lower energy (for example visible light which is also emitted by the
plasma). In order to block low energy photons up to around 1 keV from the detectors
a beryllium-foil is installed between every pinhole and the detector array [12]. The
beryllium foil has a cylindrical shape such that the effective thickness is approximately
equal for every channel of the diode array.

The sxr diagnostics is a passive diagnostics in the sense, that it does not affect the
plasma. The diagnostics has been designed to have a high time resolution (in order
N o e e R to resolve fast plasma instabilities) and a
high number of channels (in order to pro-
vide a good spatial resolution). The AUG
sxr diagnostics consists of 8 cameras which
provide ~ 200 independent channels.

In figure[2.2]the AVOS and the correspond-
ing channel names of the I-camera are vi-
sualized. A visualization of all channels is
given in the appendix C. In figure [2.2] also
the two flux surfaces with p; = 0.44 and

are plotted. The AVOS of the
channel I 043 is tangent to the flux sur-
face p, and the two AVOS of the channels
I 047 and I 061 are tangent to the flux
surface p;. The emissivity eg(p) and the
displacement £(p) is plotted over p, there-
fore it is convenient to label also the chan-
nels with the corresponding p-value of the
flux surface on which the AVOS tangents.
With the following convention it is possible
to distinguish the channels which tangent
the same flux surface (for this example the
channels I 047 and I _061). For the chan-
nels of the I camera, the channels which
tangent the flux surface below the mag-
netic axis are labeled with +p and those
which tangent the flux surface above the

\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\
o2 416 18 200 220 24 ggmetic axis are labeled with —p. For the

Figure 2.2 — Visualization of the AVOS of the
I-camera and of two flux surfaces. The mag-
netic axis is plotted with 4. The value of the
x-axis is R in [m| and for the y-axis it is z in
[m].
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By modifying the pinhole dimension and its position with respect to the detector the
optimal compromise between a maximal signal-to-noise ratio (larger the larger the VOS)
and a maximal spatial resolution (larger the smaller the VOS and larger the smaller the
out-fanning of the VOS) can be found.

The spectral response (and so the spectral range) is defined by the semiconductor diode
and by the thickness of the Beryllium-foil.

In the following two peculiarities of the sxr diagnostics are discussed. First it provides
a non-local measurement of the emissivity (introduced in section because the signal
results of the convolution of the emissivity eg(Z) with the point response function of
the detector over the VOS as described in section [3.1} Second the measured quantity is
the emissivity which contains no information of the energy distribution of the radiation.
It is not possible to unfold this information because every channel has nearly the same
spectral response (the spectral response depends on the angle of incidence of the radiation
on the detector surface [17]). Which leads to a slightly different spectral response for
different diodes.

2.2 Pinhole-camera-tile arrangement

The VOS of the cameras F,G, L and M is not only limited by the detector and the
pinhole area but also by tiles which protect the ves-

Camera _d[em] 7[°] blem) sel from the plasma. The geometry of the detector-
F 3.4 0.0 1.2 pinhole-tile arrangement is vizualized in figure 2.3
G 3.4 0.0 1.17 The positions and orientations of the tiles are sum-
L 4.0 36.9 0.64 marized in table 1. The length d is the distance
M 36 —16.75 0.54 between the pinhole center and the tile surface in
Table 1 - Orientation and z-direction. The angle v is the angle between the
Position of tiles. normal vector of the tiles surface plotted in yellow

in figure 2.3] and the vector z plotted in blue. The
length (in toroidal direction) of the gap between the tiles is denoted by b. The vector
z points approximately toward the plasma center and a positive (negativ) angle v cor-
responds to a tilt in clockwise (counterclockwise) direction considering a poloidal plane

like in figure

19



Figure 2.3 — Geometry of the tiles limiting the VOS of the cameras F, G, L. and M.

2.3 Creation mechanisms of soft x-ray radiation

Electromagnetic radiation in the spectral region from approximately 1keV to 20keV is
called soft x-ray (sxr) radiation. In plasma discharges it results from three different
creation mechanisms. Considering the scattering of an electron on an atom or nucleus
the mechanisms can be characterized by the initial and the final state of the electron:
free-free bremsstrahlung, free-bound recombination radiation and bound-bound line ra-
diation. The last process results in line radiation and it is due to impurities with high
nuclei-charge which are not completely ionized because the plasma temperature is not
high enough. It is important to consider the line radiation because there are plasma
discharges in which the power of the line radiation overcomes the Bremsstrahlung. In
most discharges the contribution of recombination radiation can be neglected in the core
plasma [26].

The information of the spectral distribution of the radiation is given by the power
spectral density 4P/dr of the plasma and it depends on the following physical quantities:

neyTe;Zeffanimplanimew" (2-1)

where Njmp1, Nimp2, - - . are the densities of all impurities and Z.py = 2 niZ} /5 niz; is the
effective nuclear charge.

The measured quantity of the sxr diagnostics is the emissivity and in the next section
it is derived from the power spectral density 4F/dE.
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2.4 The emissivity

The response of electromagnetic radiation on the detector depends on the energy of the
radiation, because the signal depends on the design of the solid state detector and the
thickness of the beryllium-filter. A measure for this response is the spectral response
function f(E).

Let 4P/ar be the power spectral density of the plasma and let f(FE) be the spectral
response function of the detector-beryllium-filter-arrangement. The emissivity is given
by:

o(F) = /0 h f(E)ng)dE with the unit [Wm3sr1] [12]. (2.2)

In this thesis the spatial emissivity distribution is modeled directly without considering
the physical source of it. This is because the power spectral density depends on many
physical quantities presented in[2.1/and the spatial distributions of the impurity densities
not well known. Furthermore the emissivity depends on the spectral response function
of the detector which is not precisely known. The complexity of a bottom up calcula-
tion of the emissivity limits the possibilities of comparing and crosschecking with other
measured quantities. So the uncertainty of the spectral response and the uncertainty of
the power spectral density are passed to the single uncertainty of the emissivity.

In this thesis the emissivity is considered to be constant on flux surfaces (which are dis-
placed as time evolves) and in the following the quality of this consideration is discussed.
The constancy of the emissivity on flux surfaces depends on the constancy of the physical
quantities given in[2.1} For most conventional tokamak scenarios at AUG we consider n,
and the electron temperature T, to be constant on flux surfaces. The constancy of Z.s¢
on a flux surface depends on the constancy of the impurity densities. And the constancy
of the impurity density on a flux surface depends on the toroidal angular velocity w;
of the plasma because in highly rotating plasmas the centrifugal-force forces the heavy
impurity ions into the LFS [39] and there are also up/down asymmetries of the impurity
density observed [40] [41] (compare section [6.1]).

Although the possible discrepancy of the constancy of the emissivity on flux surfaces, as
discussed in [38], is known, in this thesis the emissivity is considered to be constant on
flux surfaces (compare section |6.3)).

All the emissivity inside the VOS which is introduced in this section contributes to the
measured signal. An analytical formula for the signal will be derived in section [3.1]
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3 The virtual soft x-ray diagnostics

In this section the implantation of the virtual sxr diagnostics is explained starting from a
derived analytical formula for the signal considering the full three-dimensional geometry.

3.1 An analytical formula for the signal

Starting from the spatial emissivity distribution e(Z) (section [2.4]) in this section an
equation for the signal of a channel is introduced.

In the virtual soft x-ray diagnostics which are developed in [2I] and [42] the spreading
of the detector and of the pinhole are neglected. This leads to the approximation, that
the signal results from the integration over a line of sight which is visualized in figure

(a).

In reality the diode and the pinhole has a spread and the measured signal result from the
convolution of the emissivity eq(Z) with the point response function of the detector over
the VOS which will be explained in this section. This VOS is a pyramid-like volume
which is visualized in figure (b). In this thesis the full geometry of the pinhole-
detector-array arrangement is considered like in [50]. For the cameras F,G,L and M the
situation is even more complex because the VOS is additionally limited by tiles which
protect the vessel from the hot plasma. This pinhole-detector-array-tile arrangement is
considered in section 3.3

Figure 3.1 — A visualization of the line of sight (a) and the volume of sight (b) approach.
The grid-points of integration are plotted with the plot mark @. In (a) the camera
coordinate system is defined.

The grid-points of integration which are plotted in figure [3.1] are defined in the camera
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coordinate system which is also visualized in this figure. The numerics will be explained
in section

Now we change the perspective by considering a single point source of (soft x-ray) radi-
ation inside the VOS. Let the point source radiate an isotropic emissivity per steradian
of €point With the unit [W sr™'] and it is visualized in figure [3.2] by the green dot (®).

Figure 3.2 — Only the radiation from the point source (®) inside the blue pyramid reaches
the detector-chip because radiation with a different direction either propagates aside the
chip-area or is blocked by the pinhole.

The impact of this point source on the signal depends on the position of the point
source in the VOS because the radiation power which is emitted onto the detector area
is proportional to the solid angle €2 subtended by the detector-area to the point source.
The solid angle €2 is given by

Q) = 4 arcsin(sin(?/2) sin(/2)) with the unit [sr] [10]. (3.1)

whereas the angles o and § are defined in figure 3.2l The power which is emitted from
the point source onto the detector is given by €,,:,,:£2 with the unit [W]; it is proportional
to the solid angle 2 which depends on the position ¥ of the point source.
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We now turn to continuously in space defined emissivity density per steradian e(Z) with
the unit [W m™?sr~!]. Then the signal resulting from the emissivity in the volume dV is
given by e(Z)Q(Z)dV whereas the solid

T le () | sinuously i
‘ T angle Q(Z) is a continuously in space
//I ““‘\‘\‘\‘\\\‘\‘\‘\‘\‘\““\\““\“\‘\\ defined weight. This weight is also
10 i \\\\‘\\‘“{““\‘ﬁ called apparatus function or point re-

sponse function [I1] and in figure
the value of it is plotted for the channel
J 079 in the x-y plane for z=2.3cm.
In the figure the camera coordinate
system is used. Note that the solid an-

-7
1210

\\\\\\
A
““““\‘\\\‘““\‘\‘\‘\\\\\\S\S\‘\‘\\i\;\ gle at the border of the VOS is zero

{
JSAIT W
%’:’:‘:“ “““‘““‘\‘\‘\““\“\ -~ because emissivity in this locations is
o -ﬁ,ﬁ?’%":\‘\\“\\\\\\\\‘ N regarded to be totally blocked by the
S s -

R pinhole. A deviation can occur, be-

cause in this thesis the material in
Figure 3.3 — The solid angle of the seen detec- which the pjnhole is, is considered to
tor area (point response function) for different have zero thickness and is considered

positions in the x-y plane at z = 2.3 cm for to be totally absorbing. These ideal
the channel J_079. The axes correspond to the assumptions are of course not fulfilled

number of one grid point. in reality.

Since the electromagnetic radiation is not coherent and the pinhole is very big compared
to the wavelength, wave-effects like interference can be neglected. The plasma is optically
thin in the region of visible light [30] and it is a reasonable assumption that this is also
true in the sxr region; so the absorption of radiation by the plasma is neglected.

The total power S resulting from the emissivity density per steradian e(Z) which is
emitted onto a detector-chip is given by the following volume integration over the VOS

S= / e(7)F)dV. (3.2)
revVoSs

and the unit of the simulated signal S is W.

Note that there are detector properties which are not taken into account. Defining the
emissivity in equation it is assumed, that the spectral response function f(F) is
independent on the angle of incidence of the radiation. But it is discussed in [I7] that
the solid state detector consists of doped layers of semiconductors and the signal depends
on the effective thickness of the layers which is larger the steeper the angle of incidence
is. Because of the following reasons the effect is rather small. First, the diagnostics
is designed to have a minimal steepness of the angles of incidence. Furthermore the
radiation with low energy is absorbed by the beryllium-filter-foil in an angle-independent
manner, because the filter thickness is approximately equal for every channel. The
effective thickness of the active detection layer of the diode only slightly affects high
energetic photons above ~ 6keV, so mainly the signals of the diodes observing the core
plasma are reduced. Further effects can occur because of variations in the thickness of
the beryllium foil.
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3.2 Numerics of the camera simulation

It will be discussed in chapter [4| that the emissivity e(Z) is (finally) defined in flux
coordinates (p, 6%, ¢). Since the flux coordinates are calculated for discrete points in real
space it is necessary to carry out the volume integration of equation numerically over
a discrete grid.

The one dimensional midpoint-rule is given by
/ flayde ~ > Awf(;)  with 2; = Ty + Az(i — 1/2), (3.3)
Tmin =1

whereas the interval [Z,in, Tmez| 1s divided into n equal subintervals of length

A:L’ —= (Imaz_xmin)/n [9]

For one channel the signal S is calculated with the three dimensional midpoint-rule:

S = / O(Z)e(Z)dV (3.4)

Zmazx Imaz ymaz
= / / / (¥)dxdydz (3.5)

min 'ann Ym LTL

Y3 AV ) (3.6)
k=1 i=1 j=1
where Z; i, = (2;,y;,2) and where AV, is the volume element of the grid point

(%i,Y;, 2x). These volume elements are given by the geometry of the integration grid,
which can be chosen arbitrarily. In the used implementation the grid is chosen by the
following manner. In every x-y plane there is the same user defined number of grid
points which are equidistant in x-direction and equidistant in y-direction. All the x-y
planes are equidistant and have the same user defined distance Az; the grid is visualized
in figure (3.4}

Because the equation is discretized by choosing a grid, numerical limitations occur.
The bigger the Volume AV ;; the bigger is the deviation between the calculated signal
and the true signal, and the smaller the Volume AV];; the higher is the number of
grid points and the longer is the time needed for the calculation. It is necessary to find
a compromise between a sufficient accuracy of the calculated signal and an acceptable
calculation time. This compromise depends on the sizes of structures in the emissivity

e(T).

With the emissivity being time dependent also the signals depend on time and in the
following the numerics of the amplitude and phase calculation is explained. In order to
calculate the amplitude and the phase of the time dependent signal a time window with
the length of a multiple of one single period of the mode is chosen and within this time
window a time series of signals is calculated. This procedure increases the calculation
time (because many signals are calculated) but the procedure is necessary, since the
signals are in general not harmonic in time as discussed in section [4.4] and in appendix

25



A. The amplitudes and the phases of the time series of signals is calculated using a
standard FFT implementation. The same routine is used to calculate the amplitudes
and the phases of the measured signals.

In section it is pointed out, that a fit routine is used in order to find the emissivity
function ey(p) for which the measured and the simulated signals fit best. For this purpose
a numerical minimizer, in this case a standard implementation of the downhill simplex
method of Nelder and Mead, is used [14]. The parameters of the displacement function
(p1, p2, Co, p) are varied manually until measured and simulated amplitudes fit best. The
parameters are not included in the fitting routine because the amplitudes and the phases
are calculated using time traces which takes a much longer calculation time than one
single time step. This limitation can be removed by parallelizing the code.

We now turn to a remark about the numerics of the #*-calculation. The libkk-routine
kkEQqFL [8] calculates, based on equations and an array (07,03,05...,0%)
for input points (61, 6,,05...,6,) which lie on one single flux surface. Since generally
every grid point inside the VOS has a different p-value it would be necessary to call the
kkEQqFL-routine for every grid-point which takes about 5 minutes. To speed up the
calculation-time a numerical routine has been developed which provides a fast calculation
of (67,605,605 ...,6%) for points which are not on the same flux surface. This numerical
routine is based on the equations and just like the libkk-routine.

3.3 Test of the camera simulation

The correctness of the implementation of the numerical signal calculation in equation
is checked by the following two steps. First the correctness of the geometry of the
grid of integration is checked. The geometry of the VOS of the channels is implemented
a second time using the software MATHEMATICA. With this independently programmed
representation of the VOS geometry the VOS for channel I 055 is visualized in figure
in the color yellow.

For this example the border points of a volume element V; ;; are calculated with the
camera simulation which is implemented in the IDL programming language. The border
points and not the midpoints which are described in equation are calculated because
only the border points correspond to the border of the VOS. The calculated coordinates
of the border grid points are stored in a file which is loaded into the MATHEMATICA
visualization described above. Figure |3.4] shows that the border grid points plotted with
plot mark @ correspond to the independently implemented VOS in yellow. Therefore
the correctness of the grid point calculation is verified.

Second the correctness of the point response function is checked. The signals resulting
from an emissivity profile eg(p) are normalized to the signal of the central channel.
Then the geometrical calibration factor (section is also normalized to the central
channel. By comparing the normalized calibration factors with the normalized signals
the correctness of the point response function is checked.

26



Figure 3.4 — Visualization of the grid points @ of the channel I 055 in the camera
coordinate system.

For the VOS approach the full three-dimensional geometry is considered. This is ad-
vantageous because all the emissivity (with its structures) inside the VOS contributes
realistically to the signal. For the LOS approach this described feature does not hold.

By changing the three-dimensional geometry of the VOS it is possible to test wether an
effect is influenced by the geometry of the VOS (see section .
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The pinhole-tile-detector-array geometry

Figure 3.5 shows the grid points of the channel L_ 021 with a @ mark. The VOS which
results by neglecting the tile is visualized in yellow and its spread in y-direction is much

Figure 3.5 — Visualization of the grid points @ of
the channel L 021 in the camera coordinate system.
The VOS is limited in +y-direction by a tile.

larger than the gap in the tile. So
the actually used VOS with the
grid points is limited by the tile
in y-direction.

There are also limiting tiles for
the cameras M, G and F. The full
three-dimensional geometry of the
VOS is considered. The tiles limit
the VOS in +y-direction and in
the torus this is the toroidal di-
rection. For a channel with a VOS
which is limited by a tile the ge-
ometry of the VOS and the point
response function is more com-
plex.

For a point inside the VOS
the solid angle (point response
function) can be limited in
+y-direction by two different limi-
tations: tile-limitation or pinhole-
limitation. Because there is a lim-

itation in +y and in —y-direction, it is considered, that there are 4 different limitation
scenarios for one grid point and the smallest solid angle is realized.
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4 Models of emissivity

In order to calculate the simulated camera signal for one point in time the emissivity is
given by an emissivity function e(p, 6, ¢) for that time point. The emissivity function
is defined for every point (p, 6, ¢) inside the separatrix and the emissivity outside the
separatrix is assumed to be zero. This is a good assumption since the electron tempera-
ture is very low therefore almost no photon above the energy of 1keV are emitted, so the
radiation which contributes to the sxr signal can be neglected outside the separatrix. In
the following sections emissivity functions are introduced and discussed.

4.1 Emissivity as a flux surface quantity

Due to plasma instabilities the flux surfaces - with constant emissivity - are displaced as
time evolves (this is further explained in section . Let us consider the time average
over a time window with the length of a multiple (for example 3) of one single period
of the mode of the emissivity to be constant on an equilibrium flux surface. With this
approximation the time-averaged emissivity is an equilibrium flux surface quantity and
the emissivity is given by:

e =e(p).

Here, the function e(p) is considered to be a cubic spline with 11 nodes at p; = i/10
with ¢ = 0,1...,10. The emissivity e(p) should be differentiable everywhere (because
the derivative 4¢/dp is calculated for example in equation [4.25). Because (6, p) is a polar
coordinate system the differentiability of e(p) at p = 0 is provided by choosing 4¢/dp = 0 at
p = 0. With the virtual sxr diagnostics it is possible to reconstruct the emissivity profile
e(p). The 11 parameters of the cubic spline are varied with the algorithm described in
section until the simulated signals and the measured signals fit best according to
the residual sum of squares (RSS) measure as explained in section [l In figure an
example of a reconstructed emissivity profile e(p) is presented.
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Figure 4.1 — This example shows the simulated (x) and the measured (#) camera signals
for all available channels. The simulated signals result from one single emissivity profile
eo(p) which is plotted as a continuous line (—). For clarity only the signal names which
are explicitly mentioned in the text are plotted.
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In the following the results in figure are discussed. The VOS (volume of sight) of the
L, M, F and G camera is limited by tiles as explained in section This is the reason
why the maximal signal of the L and M camera is smaller by a factor of approximately 0.4
than the maximal signal of the H camera. The maximal signal of the F' and G cameras
have the same magnitude as the maximal signal of the H camera. This is because the
tile-effect is compensated by the longer VOS of the F and G cameras which point to the
top.

Although the VOS with the signal-names ®J 055 and €J 079 (and also ®J 056 and
®J_080) are roughly identical, the signals of . 079 and €.J 080 are much lower. The
reason for this is discussed in the following. Let us consider that all the channels of
one camera see the same homogeneous emissivity. Then the channels with border chip
position have a smaller signal because the point-response-function (introduced in section
3.1) is lower (in the same x-y plane in camera coordinates) and the VOS is smaller.
Because the signals €.J 079 and J 080 result from a chip with border-position the
signals are much lower. This effect also arises at camera K and H.

Since the described geometry-effects are due to detector properties and not due to plasma
properties they are often eliminated with a geometrical calibration ([22] equation 3.15).
This geometrical calibration causes the signals to have the unit Wm™? instead of the
unit W.

Because the camera-simulation (which is described in section [3|) takes the full three-
dimensional geometry into account (and the simulated camera signals have the unit W)
the simulated signal should be compared with the geometrically-uncalibrated measured
signals (which also have the unit W).

In this section the reconstruction of an emissivity profile is explained using an example.
Note that the degree of non-uniqueness of the emissivity profile is high. This is especially
the case for hollow profiles which are discussed in section 5.2

The approach of constant emissivity in time is a first approximation. Due to the time
dependent perturbation of the equilibrium flux surface the emissivity changes over time.
This effect is considered in the next section.
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4.2 The emissivity of mode-perturbed plasma

In the last section we considered the time-averaged emissivity which is constant in
time. We now improve this first approximation by considering the emissivity of mode-
perturbed plasma. The flux surfaces are displaced due to the displacement function 5
and emissivity does not change on the displaced flux surfaces. First the representation of
the displacement in two different coordinate systems is explained. The first is a polar co-
ordinate system with the coordinates (p,§) which have been introduced in section [1.2.2]
The magnetic axis is the center of the polar coordinate system. The second coordinate
system is cartesian and it is defined by

v\  (pcos(f)
(w) N (p sin(@)) ' (4.1)
This coordinate system is not a real space coordinate system and should not be identified

with the spatial coordinates (R,z). The unit vectors of the polar coordinate system
€y, eg and the unit vectors of this cartesian coordinate system e,, e,, have the following

representation:
on () o () = (m ()

The degree of freedom of the displacement function 5 is reduced by {, = 0 for the

toroidal component of the displacement function &, (note that 5 still depends on ¢). This
restriction is justified by the fact that, the sxr diagnostics can only resolve the poloidal
displacement of flux surfaces. This is because it is expected, that the possible toroidal
displacement has the same magnitude then the poloidal displacement (= 0.05p =~ 2.5¢m)
and the toroidal width of the VOS (=~ 5¢m) is larger. Furthermore, there is almost no
emissivity gradient in the toroidal direction and a displacement in this direction has
almost no impact on the poloidal spatial emissivity distribution.

The representation of the displacement function E depends on the coordinate system:

€= €,8, + £ = Eu8y + Eubun (4.3)

To assure the divergence freeness of E as discussed in section we use the fact, that

—

V - (V x f) = 0 holds for every twice-differentiable vector field f [28]. In this thesis we
consider a two-dimensional displacement in the poloidal plane and therefore f ~ e, and
V x f = ey x V[, holds.

Finally the displacement E is represented by

—

5 =€¢ X Vf¢ (44)
Like in [27], let the radial component of the displacement be

&, = &o(p) cos(mb + ng + o + wt). (4.5)
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In order to reproduce equation the function f, is chosen to be

fo = %Pfo(ﬁ) sin(mé + n¢ + ¢o + wt). (4.6)

Using the nabla operator V in polar coordinates from and follows:

L (& %39f¢ So(p) cos(mb + ne + o + wt)
=& | = | =0fs | = | =5 sin(mb +no + o +wt)(&(p) + p&(p)) | . (4.7)
£o 0 0

So the displacement function E is totally defined by the poloidal mode number m, the
toroidal mode number n, the angular velocity w of the mode, the phase ¢y, and the
radial displacement &,. A change of sign of w causes the mode to rotate in the opposite
direction.

Switching to cartesian coordinates using and dropping the third component of
leads to:

E= (&) =0 (nle) +o (i) = (&) wiove= (55 ~2i8))

In the following a model for the emissivity of displaced flux surfaces is derived. Let us
consider a fixed position (p, 0) in the
representation of a cartesian coordi-

p nate system in flux coordinates:
o v)  (pcos()
(5) (o) = (i) 9
v The fixed position (v,w) is visu-
(W) alized in figure The p-value

of the corresponding flux sur-
v
(+)
where ||u]| = +/(u,u) is the Eu-
clidean norm of @. Then the flux
surfaces are perturbed from the
equilibrium due to a displacement
which is given by the displacement
function E The vector of the displacement vector field at the position (v, w) denoted by
£ (v,w) is plotted in blue in figure . With the framework of ideal MHD the topology of
the flux surfaces does not change and flux surfaces do not reconnect. For the considered
situation this means, that there is a unique position (o, p) from where the undisplaced

face is given by p =

)

Figure 4.2 — Visualization of two displaced flux
surfaces. The magnetic axis is plotted with
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flux surface (which is denoted by p’) is displaced with the displacement £(o,p) to the

position (v, w):
()= () +&on (49

The displacement 5 (0,p) is plotted with a green vector in figure . Due to the dis-
placement the p-value at the fixed position (v, w) changes from p to p’. The value of p

is given by
o= (1) - o) (110)

In order to calculate the position (o, p) the equation has to be inverted respectively

o (0,p). The analytical inversion exists because the flux surfaces do not reconnect and
there is a unique flux surfaces displaced to (v, w). But the analytical inversion is compli-
cated because of the form of 5 in equation . A numerical inversion is possible, but due
to the number of grid points (~ 20000 per channel) this procedure is very calculation-
time intensive. Therefore there is an approximation considered in the following. Using
equation [4.9| the displacement f is given by:

-A0)<0)

where the notation £(o, p) = E (;) is used. The Taylor expansion of equation [4.11{reads

() =e() -G o ()

where Je, ,, is the Jacobian matrix of € at (v, w). The neglect of the second order and
of all hlgher order terms is a good approximation if

36

also the first order in equation is neglected. This is a good approximation if

<1 (4.13)

&0, )] < | (el €0:P)) (4.14)

holds for every component ¢ = 1, 2.

This condition means that the vector field shall not vary much with respect to the length
of the vector field itself. This condition is visualized in figure [£.2] and it holds if the red
line — is short compared to the length of the vectors of the vector field around (v, w).

holds. So if the change of the vector field from (v,w) to (o,p) is small it is a good

approximation to set
(0 (v
19 (p) ~ & <w) ) (4.15)
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As discussed in section the displacement of a m = 1 kink mode is constant inside
the ¢ = 1 surface and for this region equation holds without being approximative.
Outside this region the radial displacement function changes and in this region [4.15] is
an approximation. For the example shown in figure [£.2) the possible difference between
(v, w) and (o, p) is visualized with a red line (—).

The flux coordinate p' (v, w, & (v, w)) describes the displaced flux surfaces and p’ is con-
stant on a displaced flux surface. Therefore p’ represents the structure of the displaced
flux surfaces (and the structure of the mode). In the following p’ will be derived in the
units of the undisplaced equilibrium.

With the appearance of a displacement E the radial flux coordinate p at (v, w) changes.
The new flux coordinate is denoted by p’ and it is described in units of the unperturbed
equilibrium:

=) - @)I-16EE) - (6)
- oy (o (&), (o) - (&)

Because M is a rotation matrix (Ma, Mb) = (@,b) and (Ma,b) = (@, M~'b) hold for
every @ and b. We also use and the equation for p’ reduces to

a \/p2_2<M( ) <Z§?§ )>+< > (4.18)
el () Y @)

= P -2+ 8+ (4.20)

- (1.16)

where £, and & are given by equation [4.7]

Let the equlhbrlum emissivity be described by an emlssnnty profile eg(p) like discussed
in section 4.1} Considering the dlsplacement due to &, the emissivity at (v, w) is given
by the emlssw1ty at the original point p':

¢(p.0) = eols) (4.21)
¢(p,0) = eo(\fr2—206+2+). (4.22)

This model of emissivity is called poloidal-perturbation emissivity model. Note that the
derivation is carried out using 6 but the derivation remains valid by replacing 6 by 6*.
In order to consider the poloidal structure of the field lines, in the implementation 6* is
used in equation 4.22

We now consider an example using the derived poloidal-perturbation emissivity model
in order to check whether the simulation and the model reproduces the expected results.
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Mean Signal [1072 W]

Amplitude at f, [1077 W]

We consider the two examples m=1 and m=2 and for reasons of simplicity we set w =
1,n = 1and ¢y = 0. Let the plasma emissivity be e(p) = —p*+1 and let the displacement
be given by the step-function:

0.1 for p<0.5

(4.23)
0 for p > 0.5.

with &o(p) = {

It is discussed in section that choosing &y to be a step-function can be physically
motivated for the m = 1 case. But according to equation (25) in [23] &(p) ~ p™ ! holds
and the step-function does not minimize the energy functional for the m = 2 case.
Figure [4.3| shows the results of the simulation.

shot #26355 time=[0.50000,0.50000] f, = 1.00000 Hz

2.0C 115 &7
- - £
1.5 <O> X X x 1 0
OO x X X X X « — ;
- x X X R
WOM NM 2
VRS X% .
N x40.5
0.5— ] <
= | 9]
[ 9]
0.0C ‘ ‘ ‘ ‘ ‘ Jo.o &
()
120 10.25
i X m=1 :
1.0 <b> —o.20
0.8F oM 3
= % X o —0.15 &
0.6 — x s o o LXK X ] £
r —0.10 €
0.4~ 8 R x . 0 ® © 1 9
[ <o — S
X > — ~
o 3 x 3 —0.05 o
0.2 % o < 9 o . b g
0.0 ° . X ° 40.00
2mL o N x 40.25
C ¢ © < <& o 7:0 ZO
— C AR a7 -
C B wn
. XXX X x ox i XXk S —0.15 +=
L %0 o o . x ] g
T < *:OWO °
o ¢ oo, B =
£ F x col Jo0s §
ok ‘ ‘ ‘ XX X X % oy J0.00
—0.6 —0.4 —0.2 —0.0 0.2 0.4 0.6

radial flux coordinate p

Figure 4.3 — (a) shows the mean emissivity profile (—) and the simulated signals (x).
In (b) and (c) the amplitudes and phases of the signals for the m = 1 (x) and the m = 2
(Q) case and the radial displacement & (—) are plotted. All values are calculated as
discussed in section [3.2]
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It is discussed in [22] that modes with the poloidal mode number m (inside a peaked eq
profile) cause m minima in the amplitude profile and each minimum in the amplitude
profile is connected with a phase jump of 7. Figure shows, that the expected results
are reproduced by the emissivity model and the camera simulation.
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4.3 A comparison of emissivity models

Since the equilibrium profile eq just depends on p one may be tempted to neglect the

tangential displacement &. The so called radial perturbation emissivity model is given
by

e=-eo(p+¢&,). (4.24)

Now we push the approximation even further by a first order Taylor expansion of equa-
tion to the first order around p = 0. This leads to the so called approximate model
for the emissivity of mode-perturbed plasma:

0
e = colp) + 56 (4.25)

This model was presented in [2I]. Now the three models of emissivity of mode perturbed
plasma which are given in equation |4.22] |4.24] and |4.25| are compared using an example.
Let & be a step-function and let the poloidal mode number be m=1. Without loss of
generality we set @9 = 0 and consider a time point ¢ = 0. The derivative freeness & = 0
and m = 1 implies, according to equation that fi + & = &2 holds. Using the known
values equation transforms to

p = \/ p* + 2p& cos(6 + ng) + &3 (4.26)

Let us now consider all the points (p, 6, ¢) with p < 1 for which cos(6 + n¢) = +1 hold.
These points represent a two-dimensional manifold (which is a surface) in space (for
the next example the intersection of it and the poloidal plane at ¢ = 0 is the x-axis in
figure . On the cos(f + n¢) = 1 manifold §, = £, holds and the equation m

transforms to

J=yJrtoh+&=pta. (4.27)

This means that the radial perturbation and the poloidal perturbation emissivity model
are not distinguishable on a cos(f + n¢) = +1 manifold. On the cos(6 + n¢) = £1
manifold the approximate model gives different values than the other two models.

On the cos(f + n¢) = 0 manifold (this is, for the next example, the y-axis in figure
the radial displacement vanishes and the emissivity given by the radial perturbation
model (equation and the approximate model (equation reduces to the equi-
librium emissivity eg(p). So on a cos(6+n¢) = 0 manifold the radial perturbation model
and the approximate model are indistinguishable from the equilibrium emissivity ey(p).
But a significant difference between the poloidal perturbation model and the equilibrium
emissivity eg(p) occurs.
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The general results are illustrated with an example: let the equilibrium emissivity profile
be
co(p) = 2.08(—(p/0.1)*) + ®(—(p/0.3)?) (4.28)

and let the displacement be defined by the step-function in equation [£.23] The resulting
displacement vector field is visualized in figure[d.4 Figure shows the contour plots of
the emissivity on a poloidal plane at ¢ = 0 in the cartesian coordinate system resulting
from the poloidal perturbation model (fig. [4.5(a’)), radial perturbation (fig. [£.5(b"))
model and the approximate model (fig [4.5(c")).

For the given example the cos(f + n¢) = £1 manifold corresponds to the x-axis and
the cos(f + n¢) = 0 manifold corresponds to the y-axis in figure . Furthermore, this
means that the values on the x-axes in figure [£.5a’) and [4.5(b’) are equal and the values

on the y-axes in figures [1.5(b"), £.5](c’) and [4.5(c) are equal.

P A s SN N —>>> > >

AN 7/
NN rrs s AN\ N
NN\ rrISA J A NN\ N
NN PSS 7SS A~ NN\
NSOSNSONNNN r A PP s S SN\
—SSSaN N\ A rrr 2NN L L
——— S B = 1 o -3 Voo
\\\\J—/'/ + | //+\\ —_ T
’W////T\\\\W ‘ AN\ ' - NN
A ARV NN e VAN ANN NS S
AT VNS VANNNN~S—T S S
AT SV NN NN\ S
AT SV NN NN\~ )
S [N NN ST P

©

;o VA (@) ~N———— 7 (b)

Figure 4.4 — Vector plots of the displacement resulting from equation . The displace-
ment consists of the radial displacement é,, (a) and the angular displacement éy&y (b).
The addition of both €,£, + és&y is called the poloidal displacement (c). A circle with a
radius of 0.5 is plotted and the + sign marks the origin. The vectors are not drawn to
scale.
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Figure 4.5 — Figure (c) shows a contour plot of the equilibrium emissivity which is
defined in equation In figures (a) and (b) the equilibrium emissivity is over plotted
with the vector field of the poloidal displacement (a) and the radial displacement (b)
function. Note that the vectors are not drawn to scale. Figures (a’), (b’) and (c’) show
a contour plot of the emissivity resulting from the poloidal perturbation model (a’), the
radial perturbation model (b’) and the approximate model (c¢’). The + sign marks the
magnetic axis.
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We now apply the developed virtual sxr diagnostic on the introduced example (which is
reminiscent of a snake structure [37]), given by equations and . The displace-
ment is considered to be time dependent like in equation and we set w = 1. The
results for the three different models for mode perturbed emissivity are compared and
discussed; figure shows the results of the simulations.

shot #26355 time=[0.50000,0.50000] f, = 1.00000 Hz
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Figure 4.6 — Comparison of the simulated signals resulting from the poloidal perturbation

model (x), the radial perturbation model (¢) and the approximate model (L) using the
same equilibrium emissivity (— in (a)) and the same displacement &, (— in (b) and (c)).
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Signal [W]

The comparison using the virtual sxr diagnostic leads to the result that the shape of
the amplitudes does not depend on the model. In the domain of a very high emissivity
gradient p € [—0.3,0.3] the amplitudes resulting from the radial perturbation model and
the approximate model are almost always increased. In the domain of a lower emissivity
gradient p € £(0.3,1.0] the magnitude of the amplitudes does not depend on the model.
Over the whole domain p € [—1, 1] there are no significant differences observable in the
simulated phases.

So far the amplitudes and phases of the simulated signals have been compared. Now we
turn to a comparison of time traces of the signals. In figure [£.7] the signals of the I_053
camera (the central channel at about p = 0.0 in fig. resulting from the three models
are plotted over the time.

shot #26355 channel: 1_.053
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Figure 4.7 — Comparison of time traces of the simulated signals of the I 054 camera
resulting from the poloidal perturbation model (x), the radial perturbation model (¢)
and the approximate model (CJ). A sine function (—) is fitted to the simulated signals
resulting from the approximate model (CJ).

The temporal evolution of signals resulting from different models are quite different. In
the time traces of the poloidal perturbation model (x) and of the radial perturbation
model (¢) frequency-doubling occurs; which means, that the maximal signal occurs twice
during one mode period.

It is no accident that the sine function (—) matches the simulated signals, resulting
from the approximate model (CI), so well. The signals resulting from the approximate
model are harmonic in time. This is proven in appendix A.

42



In conclusion, the consideration of the displacement only in p-direction £, (radial per-
turbation model) is an approximation although the equilibrium emissivity only depends
on p. The consideration of the tangential displacement &, and the associated detour of
introducing the cartesian coordinate system in equation [4.§] is necessary to derive the
poloidal displacement model.

The usefulness of the radial perturbation model is limited for several reasons:

e The displacement in #-direction &y is neglected. This causes in general the diver-
gence of £ not to vanish.

e As illustrated in figure [4.5] the approach changes the structure of the flux surface
(and so the emissivity) in an unphysical manner.

Now we turn to the approximate model. It is not possible to get the emissivity structure
which results from the approximate model (figure [1.5[(c’)) by displacing the equilibrium
flux surfaces (figure [4.5|c)) because the codomains of emissivity are different. The
codomain of emissivity resulting from equation is e € [0.0,3.0] (figure [4.5(c )) and
the codomain of emissivity resulting from the approximate model , for the introduced
example, is e € [—0.05...,4.19...] (figure [4.5(c")). It is not possible to generate emissivity
in the range of e € [3.0,4.19...] or e € [—0.05...,0.0] by displacing the equilibrium flux
surfaces (figure [1.5(c)). There is no possibility of negative emissivity for the radial
and poloidal displacement model because these models only effect the argument of the
equilibrium emissivity eg and eq is always positive by definition.

We interpret the emissivity in figure [4.5(c) as constant on displaced flux surfaces. Then
the lines of equi-emissivity are also lines of equi-flux. According to this interpreta-
tion the approximate model produces, for the introduced example, an additional us-
land (in the sense that the topology of the flux surfaces is changed) with the center at
(z,y) = (—0.109...,0.0) (figure 4.5(c )). The additional island is a mathematical artifact
which arises from approximation and it has no physical counterpart.

Besides the above listed limitations for the radial perturbation model which apply even
more strongly for the approximate model there are the following additional limitations:

e The time dependent simulated camera-signals resulting from equation have a
harmonic form in time. This is proven in appendix A.

e With this approach there is the possibility of negative emissivity which is unphys-
ical. In the example in figure (c’) negative emissivity actually occurs.

e [t is illustrated in figure that the phenomenon of frequency-doubling for snake-
like emissivity distributions in the central VOS cannot be described.

The quality of the two approximations degrades the larger the displacement is and the
larger the gradient of the equilibrium emissivity is.

From now on the poloidal perturbation model is used. Note that the approach can be
used to investigate the mode structure with other diagnostics. Assume the equilibrium
temperature and current profiles T,(p) and j(p) are known. Then the mode perturbed
values are given by T,(p') and j(p') with p’ as defined in equation [£.20]
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4.4 Properties of modes defined in flux coordinates

In this section the structure of the emissivity in flux coordinates is compared with the
structure of the emissivity in real space coordinates. Also the impact of the consideration
of 0* instead of 6 is discussed. The effects are exemplified using the following emissivity:

6

coon(p 0,1) = (%(Sm(m) + 1.0))14 (%(cos(@—{—%rt) + 1)) | (4.29)

Only for this example the ¢-dependence is neglected; in general the dependency is con-
sidered. Figure (a) shows a contour plot of the emissivity defined in equation [4.29]
in the cartesian coordinate system (z,y) = (pcos(f), psin(f)) using the

radial flux coordinate p.

0.5 0.5

psin(6)

0.0

psin(6)
=
(=]

@

-10 =05 00 05 1 -1.0 -0.5 0.0 0.5
peos(6) pcos(d)

(b)

Figure 4.8 — In (a) the emissivity eqon(p,0,t = 0) and in (b) the emissivity
econ(p, 0, = 0) + econ(p, 0, t = 0.5) is visualized in flux coordinates. The axes are given
by x = pcos() and y = psin(0).

In order to compare the emissivity on the LFS and on the HFS e, (p,0,t = 0) +
con(p,0,t = 0.5) is visualized in figure (b); the structure is symmetric with respect
to reflection on the y-axis. Figure (b) shows that this symmetry does not hold in
real space coordinates anymore because on one flux surface (with fixed p) the radial real
space coordinate r depends on 6.
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Figure 4.9 — In (a) the emissivity econ(p,0,t = 0), in (b) the emissivity e.on(p,0,t =
0) + econ(p,8,t = 0.5) and in (c¢) the emissivity eon(p, 0t = 0) + econ(p, 0*,t = 0.5) is
visualized in real space coordinates.

On the horizontal plane (z = 0) a change of dp on the HFS causes a change of dryp
in real space coordinates and dp on the LFS causes a change of drpr in real space
coordinates. Because of dr ~ %BQ it follows that dryp > drpp holds [33]. And as
visualized in figure (b) the structure of emissivity has a bigger width in p-direction
on the HFS compared to the width on the LFS.

So far the emissivity has been parametrized using the angular coordinate . But the
emissivity is considered to be constant on field lines and the geometry of field lines in a
poloidal plane is described with 6*. Therefore the emissivity is parametrized using the
straight field line angle #* and € in equation is replaced by #*. In figure [4.9] (c) the
resulting emissivity econ(p, 0*,t = 0) + econ(p, 0*,t = 0.5) is visualized.

Comparing[4.9) (b) and (c), the size of the emissivity structure in p-direction remains un-
changed. And there is almost no difference between the two emissivity structures on the
HFS econ(p,0,t = 0.5) and eqon(p, 0, t = 0.5). The emissivity structure e.o,(p, 0*,t = 0)
on the LFS is heightened in #-direction compared to the emissivity structure e..,(p,0,t =
0). The impact of the exchange of § by 6* is now investigated using the camera sim-
ulation. In figure the mean signals, amplitudes and phases resulting from the
simulation using e..,(p, 0, t) are compared with the simulation using e..,(p, 0*,1).
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shot #25854 time=[2.00000,2.00000] f, = 1.00000 Hz
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Figure 4.10 — The mean signals (a), amplitudes (b) and phases (c) resulting from the
camera simulation using the emissivity e, (p, ,t)(Q) and the emissivity e, (p, 0%, t)(Xx).
For a better resolution, additional virtual channels are introduced in this example. These
purely virtual channels are plotted without signal names.

Due to the exchange of 6 by 6* the amplitudes on the LFS increase and the amplitudes
on the HF'S decrease. Besides the changed position of the phase jump the phases change
only marginally. The increase of the size in #-direction on the LF'S has almost no effect
on the mean signals which is plotted in figure [£.10] (a). The reason for this effect is now
investigated considering time traces of virtual camera channels.

In order to see a clear single signal maximum the outer channels (in terms of p) G015
and G021 are chosen. The phenomena of frequency doubling which was already en-
countered in figure is investigated with a pure virtual channel G _vir. The channel
is purely virtual in the sense, that is has no counterpart in reality. The channel G vir
is constructed in order to avoid any possible disturbing effects arising from geometry.
The AVOS of the channel G vir goes exactly through the plasma center and the angle
of the axis of the VOS is § = 90°. Figure shows the simulated signals for the three
channels resulting from e..,(p,0,t) and from e, (p, 6%, t).
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Signal [W]

shot #25854 channel: G_015, G_vir, G_021
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Figure 4.11 — Shows the time traces resulting from e.,(p,0,t) with camera

G _015(—),G_021(—), and G _vir(—) and resulting from e.,(p, 0*,t) with camera
G_015(9),G_021(x), and G_ vir(CJ).

As visualized in figures (b) and (c) the structure of the emissivity on the HFS is
almost not effected by the exchange of # by #*. So in there are only marginal
differences between the signals with plot-mark — and the signals with plot-mark x.
It is visualized in the same figures, that the exchange of 6 by 6* causes the emissivity
structure to expand in f-direction on the LFS. This causes the maximum of the signals
with plot-mark ¢ to be higher than the maximum of the signals with plot-mark —.
This effect has almost no effect on the mean of the signals because the higher maximum
of the signals with plot-mark ¢ is compensated by the smaller FWHM. The FWHM is
smaller because the structure of high emissivity propagates faster on the LFS then on
the HF'S. This effect is investigated closer.

In the time range [0.5, 1.5] there are two maxima in the time trace of the G_vir camera
(plot-mark [J and —) because the structure of high emissivity passes trough the VOS
twice during one period 1" = 1. Because G_ vir is constructed to be the central channel
one maximum corresponds to the highest position (in z) P, and the other maximum
corresponds to the lowest position (in z) P, of the structure of high emissivity.

For the emissivity e..,(p, 0, t) the structure of high emissivity reaches the position P,
at the time point ¢;. The angular velocity is chosen to be positive so the mode moves
clockwise and reaches the position P, at t5. Then the structure of high emissivity passes
the HF'S and reaches P; again at t3. The time it takes for the structure of high emissivity
to move from P, to P, on the LFS A, is approximately the same time A, it takes to
move from P, to P; on the HFS. Figure [£.7] shows that A; ~ A, holds.

Considering the emissivity defined in straight field line coordinates e.o,(p, 6%, t) the time
it takes for the structure of high emissivity to pass the LF'S A7 is shorter than the time
A} it takes to pass the HFS. Figure 4.7 shows that A} < A} holds. So anharmonic
(localized) emissivity structures propagate faster on the LFS than on the HFS because
the steepness of the field lines By/B, is higher on the LFS then on the HFS [22].

This discussion showed that there is a significant change in the signals if 6* is considered
instead of §. Because 6* describes the (poloidal) field line structure it is used in the
implementation.
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5 Investigation of idealized internal kink modes

In this section idealized examples of ideal internal (m,n) = (1, 1) kink modes are inves-
tigated considering the (two-dimensional) poloidal displacement which is generated by
the displacement function &y(p) referring to equation This poloidal displacement 5
depends on the toroidal position ¢ pursuant to the defined toroidal mode number n. It is
discussed how the time dependent simulated signals depend on the magnetic structure
of the kink which is described by the displacement function £ (Z), on the background
emissivity profile eq(p) (and especially its gradient) and on the position of the equilib-
rium flux surfaces. By keeping two of these three dependencies constant and varying the
third the resulting isolated effects are studied under well defined conditions.

It is outlined in section [I.2.3] that the energy functional [I.19] is minimized by a dis-
placement which is divergence free and referring to equatl 7| the displacement § is
constructed from &(p) in such a way that the divergence freeness is inherently given.
With ¢ being the flow velocity of a fluid, the fluid is incompressible if and only if Vi=0
holds [29]. The flow velocity of the flux surface is ¥ = @/a and the divergence freeness
of E corresponds to an incompressible flow of the flux surfaces; an example is given in

section .11

The ideal internal kink instability is introduced in section [I.2.3] and so far it is char-
acterized by the following: there is a region p € [0, p;] in which the displacement &,
is constant and because the instability is internal and the plasma-vacuum interface re-
mains motionless so there is a region p € [ps, 1] in which the displacement vanishes.
The simplest approach is to set p; = po. This leads to the step function which has
been established (for p; = 0.5) in equation . With this approach flux surfaces merge
mathematically at p = 0.5 and magnetic reconnection occurs. Nevertheless the step-
function displacement is a well known approach in ideal-MHD because the infinitesimal
interval p € [p — 0, p + 0] where reconnection occurs is not taken into account.

We now remove this limitation by considering the simplest structure for the p; # ps
case. In order to study the structure of &, inside the p € [p1, po] region it is, in this
thesis, heuristically parametrized by:

Co p€l0, p1) i 0 p€l0, p1)
E0=1 3Co(cos(TL£=2-)+1) p€lpy, po] = d—[?: s G sin(T 222 pe[pr, pa] (5.1)

0 pE(p2, 1] 0 pE(p2,1].

The parametrization depends on the parameters p, ps and (. In figure the displace-
ment defined in equation is compared with the step function displacement.

In this thesis ideal MHD is considered and in this framework the flux surfaces do not
reconnect. In equation a displacement function &y(p) with non-vanishing deriva-
tive is defined and it is shown in the following that the maximal absolute slope of the

displacement
0

=) (52

Co

) =
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at Peent = p1 + %(pg — p1) given in equation is limited by the condition of non-re-
connectivity.

According to equation the radial flux coordinate p(r) is monotonically increasing
with the small radius  because 1, is monotonically increasing with the small radius
r. Reconnecting the flux surfaces would mean that p’ is not monotonically increasing.
Let us consider the cos(mf + n¢ + wt) = +1 manifold where the radial displacement is
extremal and, according to equation [£.27]

d=pte, (5.9
holds.

Since the flux surfaces do not reconnect it is required for p’ to be monotonically increasing
which means, that
d /
<0 (5.4)
dp

holds. Combining equations and [5.4] leads to
dg,

% >0= |—
dp dp
If the condition is fulfilled the flux surfaces do not reconnect (ideal MHD) and
this condition limits the maximal absolute slope of §,. The displacement functions
parametrized like in equation which are considered in this thesis (except the step
function) fulfill the above condition.

1+ <1 (5.5)

5.1 Impact of the displacement variation

Before we turn to the experimental investigation of internal (1,1) kink modes in sec-
tion |§] we investigate the properties of the virtual cameras (introduced in section
and the model for mode perturbed emissivity (introduced in section [4]) by varying the
displacement and the emissivity independently from each other.

The author of [22] discussed a simple analytical model for the emissivity of modes and
considered a line integration to calculate the resulting signal. With this procedure it is
possible to understand the mode amplitudes and the mode phases qualitatively.

In the following it is shown, that it is, furthermore, possible to describe the effects also
quantitatively using the virtual diagnostics (with all the three-dimensional geometry
considered) and a realistic model for the mode perturbed emissivity.

We start with the variation of the displacement and let the mean emissivity be fixed
and given by
2
e(p) = e )7 ¢t (5.6)

with e(1) = 0. The equilibrium in which the calculations are carried out is given by the
one which is calculated by the equilibrium code CLISTE for the discharge #26355 at
t=215s.
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Using the parametrization for the displacement &, in equation the impact of the
variation of the displacement on the (1,1) amplitudes and phases is investigated.

In the comparison visualized in figure the impact of different slopes of & is investi-
gated. In the region p € [£0.1,40.3] the different displacements cause a difference in
the amplitudes: the higher the displacement &y at pjoeq; is the higher is, the amplitude
of the channels which tangent at approximately pjocq. In the region p € [0.0,£0.1] the
different displacements cause no change in the amplitude although the VOS sees through
the region of different displacement. The changes in the phases are only marginally.
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Figure 5.1 — Comparison of displacements &, with different slopes. The parameters are
given by: (p1, p2, o) € {(0.08,0.32,0.05), ( ),(0.2,0.2,0.05)}.
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The two-dimensional displacement which results from the displacement-functions &(p),
and &(p) is visualized in figure

@ (b)
B s f
‘L’_’_’_’_‘)—’—P —,———3—3— >
-\—9—9—<)—<)—<)—<)7-<) ——> /> \
\—9—9—9—»—) =>4
S L\v/y
(d)
———=02p
—> =005p
Figure 5.2 — Displacement resulting from the displacement functions &,(p) (a), (b)
and &y(p) (c). The circle radii correspond to the parameters (py, p2) in figure[5.1} For (a)
= py= 0.2, for (b) , p2 = 0.26 and for (c) , p2 = 0.32. The scale

of the flux surfaces and the scale of the vector field is indicated in (d).

A similar flow-pattern of the internal m = 1 kink mode can also be found in [6] on page
331. The following discussion of figure is inspired by the author of [23]. Inside the
flux surface with radius p; there is a rigid displacement of the plasma and the plasma
outside the p, circle remains motionless. The displacement is constructed in such a way
that the plasma is incompressible. So in the region between and py the plasma is
pushed with a high displacement in 6-direction. And the smaller the [p, po] region is the
higher is the displacement &y in this region. Note that the impact of the displacement
in f-direction & on the signals is small compared with the impact of the displacement
&, because the emissivity profile ey(p) is symmetric in 6, i.e. e(p) has no #-dependence.
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In figure the height (y of the displacement is varied considering a constant decay
range [p1, p2]. The doubling of the displacement cause a doubling in the amplitudes.
There is no significant change in the phases.
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Figure 5.3 — Comparison of displacements &, with different height. The parameters
are given by: (p1,p2,() € {(0.14,0.26,0.025), ( ), (0.14,0.26,0.075)}. In
(a) the mean signals resulting from the displacement (py, p2, (o) = (0.14,0.26,0.075) is
shown with x.

For the situation presented in figure for the channel I 055 a time trace is plotted in

figure [5.4]
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In figure[5.4] the corresponding mean signals are plotted with a horizontal line. The larger
the displacement the lower the mean signal. Due to the displacement the maximal signal
is increased and the minimal signal is decreased and the effect is bigger the bigger the
displacement is. This is because the emissivity profile is peaked, which means, that the
emissivity rises monotonically towards the magnetic axis and the higher the displacement
is the more inner and the more outer regions of emissivity are seen by the channel I _055.
Finally, an increase in the displacement causes the mean signal to decrease because the
decrease of the signals is stronger than the increase of the signals.

This example shows, that the mean signal can depend on the displacement. In the
following it is explained that in general there is coupling between the mean signal and
the displacement. Let us assume, there is a measured time trace for channel I 055 which
is to be reconstructed. The mean signal of I 055 is lowered by the displacement. The
effect can be compensated by raising the emissivity profile function eg(p) which results
from the least square fit in the region where I 055 is tangent to the flux surface. But
the change of the emissivity profile may change the emissivity gradient, which will have
an impact on the simulated amplitude. So, the displacement is to be adjusted which
will again change the mean signal. There is an infinite loop which converges because the
coupling effect gets smaller from step to step.

The important point is, that in general the fitting of the background emissivity can
not be separated from the fitting of the displacement (and vice versa) because there is
coupling between them and an appropriate approach is to implement a fit routine where
the parameters of the background emissivity and the parameters of the displacement are
varied simultaneously in order to find the best fit result for both.
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In figure the expansion of the displacement is varied: with [p; + ¢, ps + ¢| being the
decay range c is varied. An increase of the expansion of the displacement causes the
amplitudes to expand and to increase in height. The value of the amplitude increases
because the volume of the emissivity which is moved increases. The changes in the
phases of the central channels are only marginally.
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Figure 5.5 — Comparison of different expansion of displacements &,. The parameters are
given by: (p1, p2, o) € {(0.065,0.185,0.05), ( ), (0.215,0.335,0.05) }.

It is shown in this section that, under the condition of an existing emissivity gradient,
different displacements &, cause different amplitude-values. For all examples the ampli-
tude is higher the higher the displacement is and the phases are almost independent of
a variation of the displacement. Note that all the results depend on the gradient of the
emissivity profile eg(p). This dependency is discussed in the next section.
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5.2 Impact of emissivity variation

Now the previous section is supplemented by an analogous investigation for the variation
of the mean emissivity. Let the displacement be fixed and given by equation [5.1] with
the parameters (pq, pa, (o) = (0.3,0.4,0.05) and let the emissivity (which will be varied)
be given by a natural cubic spline with 11 nodes at p; = ¢/10 and i = 0,1...,10. Let the
emissivity-values at the nodes p; be given by

e(p;) = 107*-[10.0,8.6,5.9,3.4,1.3,1.1,0.6,0.5,0.2,0.2,0.1];. (5.7)

Now the impact of the variation of the mean emissivity on the amplitudes and on the
phases is investigated. Starting with the emissivity profile ey which is a natural cubic
spline with node-values defined in equation [5.7|an ensemble of 22 mean emissivity spline-

functions e(()ﬂ) are created by the following procedure. The functions e(()iz) and eq differ

only at the 7 — th node p; by a constant: eéﬂ) (pi) = eo(p;) £ Ae. The constant Ae
is chosen to be 10% of the maximal emissivity Ae = 10~* and for nodes with a low
emissivity the constant —Ae is increased in such a way that the emissivity stays non-
negative. For every e(()ﬂ) the resulting signals, amplitudes and phases are calculated for
every virtual channel. For every virtual channel the minimal and the maximal signal,
amplitude and phase is considered and the colored areas in figure [5.6] are bounded by

these extremal values.

shot #26355 time=[2.15045,2.15045] f, = 5932.70 Hz
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Figure 5.6 — The mean emissivity is varied within the green colored area in (a). In (a)
the impact on the signals in (b) on the amplitudes and in (c) on the phases is visualized.
The displacement function &y(p) is shown in (b) and (c).
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According to the data which is plotted in figure |5.6/ a variation of £10% of the emissivity
profile cause a maximal change of only +8% in the signal. This is because the changed
region is only a small part of the overall emissivity inside the VOS and the VOS is
quite big. For the reconstruction of the background emissivity profile eq(p) it would be
beneficial, if it were the other way around. The above variation in the emissivity profile
cause changes of maximal £32% in the amplitudes. The maximal change of the phases
is only +6% at the most central channel at p ~ 0.

A deeper insight in the reason for the change in the amplitudes is given by the variation
of the emissivity at single node which is visualized in figure [5.7]

shot #26355 time=[2.15045,2.15045] f, = 1.00000 Hz
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Figure 5.7 — The emissivity is varied at the node py = 0.2. The impact on the amplitudes
and on the phases are visualized in the corresponding color.

The emissivity e(® with line-style —in figure (a) is a natural cubic spline which is
defined by the data in equation . For the emissivity with line-style the value
of the emissivity at py = 0.2 is decreased by Ae = 107 and the emissivity e with
line-style — it is increased by Ae. The resulting mean signals, amplitudes and phases
are plotted with the corresponding color in figure [5.7]
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First the impact on the mean signals in figure (a) is discussed. In the region
p € (£0.1,£0.3) the emissivity is smaller than the emissivity e®. This causes
the mean signal with the plot mark ¢ () in the region [0, £0.3) to be higher (lower).

The impact of the change of the emissivity on the mean signals of the tangent channels
I 050 and I 058 is comparatively small because the VOS of these channels see the
region with changed emissivity only once whereas the central channels I 052 to I 056
break-through the region with changed emissivity twice.

Now the impact on the amplitudes in figure (b) of the signals is discussed. In the
region p € (0.2,0.3] the absolute gradient of the emissivity e(® is higher compared to
the absolute gradient of the emissivity and in the region p € [0.1,0.2) it is the other
way around. This causes the amplitudes in the region p € [£0.15,£0.3] with plot mark
¢ to be higher than the amplitudes with plot mark [J. And in the region p € [0.0, £0.15)
it is the other way around.

The effect results from the fact that with a fixed displacement the change of emissivity
inside the VOS is greater, the greater the gradient of the emissivity profile is. Note that
the amplitude of a channel is a measure of the change of the emissivity in the VOS and
the amplitude is invariant under the transformation of the emissivity e — e + ¢ whereas
c is a constant.

A similar analysis of varying the emissivity spline at py = 0 shows that this results in a
small change in the central phase at p ~ 0. This corresponds to the phase change of the
most central channel in figure [5.6]

In the next comparison hollow emissivity profiles are studied. A background emissiv-
ity profile eg(p) is called to be hollow if the central emissivity eg(p = 0) is not the
maximal emissivity. For almost all observed cases of hollow emissivity profiles in AUG
the temperature profile 7,(p) and the density profile n.(p) are peaked (not hollow) and
therefore it is assumed that the hollowness is due to a hollow tungsten density [34]. Let
the emissivity be given by a natural cubic spline with the following emissivity-values at
the nodes p;:

e1(p:) = [4.5,6.0,5.7,2.0,0.3,0,0,0,0,0,0];
=[3.0,6.4,5.7,2.0,0.3,0,0,0,0,0,0];
es(p;) = [1.5,6.8,5.7,2.0,0.3,0,0,0,0,0, 0];

The results are visualized in figure
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Figure 5.8 — The hollowness of the emissivity profiles e;(p), and e3(p) plotted in

(a) are varied at the nodes p; and py. The impact on the signals (a), the amplitudes (b)
and on the phases (c) are visualized in the corresponding color.

First the mean signals resulting from the emissivity profile e;(p) and e3(p) are compared.
The emissivity of e3(p) is lowered in the region p € [0, 40.08] and it is raised in the region
p € [£0.08,£0.2] compared to e;(p). The impact of the enormous emissivity profile
change on the mean signals is marginal because the channels which see the lowered
emissivity also see the raised emissivity and the two effects compensate each other almost
totally. Therefore it is almost impossible to reconstruct the exact hollow structure of a
measured hollow background emissivity only with the mean signals given.

Note that the resolution of the plasma center is poorer compared to outer regions. This
is because a channel which tangents at py., sees all the plasma in the region p € [pian, 1].
And only a channel which tangent the center sees the center. So only a comparably
small number of channels see the plasma center.

Now we turn to a comparison of the phases. For the emissivity profile e3(p) there
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are two additional phase jumps at p ~ 40.08. There is a rather simple explanation
for the additional phase jumps which is here carried out for the channels I 055 and
I _054: the signal for I 055 and I 054 are inversely phased because a maximal signal
in I 055 correspond to a minimal signal in I 054. The additional phase jumps of the
emissivity profiles e;(p), are not fully developed because the region of hollowness
p € [—0.08,0.08] is small and the VOS also sees through regions of non hollowness
[£1, £0.08] so there are also contributions from non-hollowness-regions which have a
different phase.

The increase of the degree of hollowness also has an effect on the amplitudes: the
greater the hollowness the greater the emissivity gradient and the higher the simulated
amplitudes.

The impact of the hollowness on the amplitudes and on the phases is quite big and
therefore the amplitude and phase structure can be a criterion for the hollowness of an
emissivity profile.

In this section it has been shown, that the amplitudes depend very sensitively on the
emissivity gradient. This restricts the accuracy of the reconstruction of the magnetic
structure which is performed in section [0}
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5.3 Impact of the equilibrium variation

In this chapter the impact of a change of the equilibrium is investigated. For some
discharges the equilibrium geometry calculated with the used equilibrium code (CLISTE)
is not correct, especially in the plasma center.

The flux surfaces for the shot #26355 and for the time point 2.15 s are visualized with
black lines in figure [5.9) These flux surfaces are modified by a rigid shift in R-direction.
The resulting flux surfaces are visualized in blue for §R = —5cm and in green for
0R = 5cm. Using the background emissivity defined with the spline in equation the

rrTrrryfrrryrrr [ rrryror1r [ rr1r [ 1rr1T

0.5

00

1.0 12 14 16 18 2.0 2.2 2.4

Figure 5.9 — The unmodified flux surfaces in black and the shifted flux surfaces are shown
in blue and green. The axes correspond to R and z and the units are meters.

impact on the simulated signal is investigated. As explained in section [2.1] each channel
is labeled with a positive or negative p;u,. Where pyq, is the flux coordinate of the flux
surface on which the AVOS tangents. With the change of the equilibrium also the flux
surface on which the AVOS tangents is changed. For reasons of simplicity the signals
are plotted in x-direction at the p;q,-value of the unchanged equilibrium in figure
The simulation results are shown in figure [5.10
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Figure 5.10 — Results of the rigid equilibrium shift.

Camera I is located at the LFS and the VOS point to the HF'S. The central channels of
the camera point approximately towards the plasma center. The impact of a change of
the equilibrium position on the central channels is marginal. This is because the central
channels see the same flux surfaces with and without the equilibrium shift.

For the channels in the region p € [£0.175,40.6] the mean signals in figure [5.10] (a)
change. For the shift 6 R = 5cm (green flux surfaces) flux surfaces with higher emissivity
are shifted inside the VOS and the signals increase. Accordingly, for the shift §R = —5cm
(blue flux surfaces) the signals decrease. For the change of the amplitudes in figure
5.10 (b) the same explanation holds. Figure (c) shows that the rigid shift of the

equilibrium does not change the phases of the signals.

61



Instead of applying a rigid shift in R-direction the flux surfaces can also be shifted with
respect to each other. Let p,4 be the flux coordinate of the unmodified equilibrium.
The flux surfaces inside the pyq € [0, 0.3] region are displaced with a rigid shift (in R-
direction) and the flux surfaces inside the p,q € [0.7,1.0] region are not modified. In the
region p € [0.3,0.7] the change from the shifted to the unshifted flux surfaces is smooth.
This is accomplished by considering a linear combination of the (rigid) shifted flux ppew
and the unshifted flux pyq:

pold( R, 2) pora(R, z) < 0.3
pfinal(R7 Z) - pnew(Ra Z) Pold(R, Z) Z 0.7 (58)
pnew(Ra Z)fmzx + pold(Ra Z)(l - fmw) 0.3 < pold<R7 Z) <0.7

In the region of overlap the weight-function provides a smooth change from p,4 to
Pnew- Where the weight-function is given by f,i»(0.3,0.7,1.0) = £,(0.3,0.7,1.0) with
the parametrization of &y(p1, p2, (o) given in equation . The final coordinate pyinq in
the outer part of the plasma is given by prina = poia @and in the inner part of the plasma
the final coordinate is given by pfinai = Prew-

The resulting geometry of the flux surfaces are visualized in figure |5.11}
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Figure 5.11 — The unmodified flux surfaces in black and the shifted flux surfaces are
shown in blue and green. The axes correspond to R and z and the units are meters.
Note that only the inner flux surfaces are shifted and the outer flux surfaces are not
modified. There is a smooth change in between.
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The resulting signals, amplitudes and phases of the simulation are shown in figure [5.12;
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Figure 5.12 — Results of equilibrium shift with flux surface deformation.

The signals and the amplitudes in the region p € [£0.175,40.6] in figure [5.12] (a) and
(b) are changed just like discussed for figure [5.10 This type of plasma shift is more
realistic, because the position of the separatrix is much better defined than the position
of the magnetic axis and the positions of the inner flux surfaces.

The change of the inner flux surfaces cause an additional change in the central amplitudes
and, most important, the phases of all channels change. The phases distance of the
channels change if the positions of the inner flux surfaces are modified with respect to
the outer flux surfaces.

This is an interesting point, because the conditions for a change of the phases are very
specific: a hollow emissivity profile or a change of the inner equilibrium flux surface
position with respect to the outer flux surfaces changes the phases of the signals. The
phases remain unchanged by modifying the displacement function &y(p), by modifying
the gradient of the background emissivity eo(p) (except the change of sign which occurs
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at hollow profiles) or by a rigid shift of the whole plasma equilibrium.

In this idealized example the shift of AR = 5cm is exaggerated. In realty we expect the
shift of the plasma center to be approximately 2cm.

In order to test whether the phase change in the signals are effected by the geometry of
the VOS the pinhole width and the pinhole length are modified. It turned out, that the
phases remain unchanged by a significant change of the VOS.

The above change of the position of the inner flux surfaces is a simple model for the
the Shafranov shift. The Shafranov shifts moves inner flux surfaces with increasing /3
stronger to the LFS compared to outer flux surfaces The magnetic axis (center of mass
of the flux surface with p — 0) is moved to the LFS compared to the center of mass of
the plasma cross section.

The Shafranov shift calculated with the equilibrium code (CLISTE) is smaller than the
shift chosen for this idealized example. So with the blue shift in figure the Shafranov
shift is overcompensated. The resulting inner flux surfaces have a shift opposite to the
direction of the Shafranov shift.

With the green shift the Shafranov shift is boosted with an unrealistic high shift.

The phase change of this idealized example in comparison with the measured phases in
the next section [6]is a hint, that the Shafranov shift calculated with CLISTE may be to
high.
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6 Experimental investigation of (1,1)-kink modes

In section 5| the impact of a variation of the displacement and of the emissivity is dis-
cussed with the help of idealized examples. In this section the methods are applied to
measured data and educated guesses are made for the magnetic structure of the observed
kink modes. The magnetic structure of a kink mode is investigated with the following
two steps.

By varying the emissivity eq(p) and the displacement £y(p) the time dependent simulated
signals are varied until the chosen magnetic structure is consistent with the measured
signals.

Because the emissivity function eg(p) is needed in order to apply the model of mode
perturbed emissivity, first the equilibrium emissivity is reconstructed by varying the
emissivity function eg(p) (at the 11 nodes) until measured and simulated signals fit best
according to a least square test. This procedure is described in section [6.1] The signals
resulting from the emissivity of mode perturbed plasma are simulated using the mean
emissivity eg(p) from the first step and a displacement function &y(p). The displacement
function &y(p) is then varied manually until measured and simulated amplitudes fit best.
This procedure is described in section [6.2]

6.1 Fitting the equilibrium emissivity and its asymmetries

In this section the fitting of the equilibrium emissivity is exemplified. In the plasma
discharge with discharge number #26355 in the time range [2.1503s,2.1508 s] there is a
kink mode with the frequency of 5932.7 Hz.

In order to quantify the quality of a fit the residual sum of squares measure is used. The
residual sum of squares (RSS) is given by

RSS Z szm Sélxp ? (6' 1)

whereas Séxp and Sszm is the simulated and the measured signal of the i-th channel and
the RSS of N channels is calculated. The RSS-value is a measure for the quality of the
fit and the lower the RSS is the better is the agreement between simulated and measured

signals.

The fit-routine is started by loading the time-averaged measured signals of all the 192
camera channels. In order to calculate the simulated signal the virtual counterparts of
the channels are initialized. The emissivity is given by a spline. A minimizer-algorithm
varies the emissivity at the 11 nodes until an emissivity-spline is found which results in
a minimal RSS. The fit converges and the best fit result is given by:

eo(p;) = 107*-[9.5,8.6,5.9,3.4,1.3,1.1,0.6,0.5,0.2,0.2,0.1]; [Wsr—'m™3]. (6.2)

For this case the corresponding signals and the corresponding emissivity profile are
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Mean Signal [107> W]

plotted in figure [L.1 In order to concentrate on a certain aspect the data of figure
is replotted for the F and the I camera with signal names in figure [6.1]

shot # 26355 time = 2.15000
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Figure 6.1 — Emissivity profile (—) with the axis on the right side. Measured () and
simulated signals (x) are plotted for the F and for the I camera with the axis on the
left side.

In figure (a) the simulated signals with the plot-marks (xF 016, xF_018) are
called to be asymmetric to the measured signals which are plotted with the plot-marks
(®F 016, #F _018). This means the following. The signal (with plot mark) xF_016 is
higher than the signal #F 016 but the signal x 018 is lower then the signal £ 018.

This asymmetry of the measured signals limits the achievable fit quality using the par-
ticular equilibrium and using the model of constant emissivity on flux surfaces: If the
local emissivity at p ~ 0.2 is increased in order to get a better agreement between
(xF_018,9F 018) then the emissivity in the region p ~ —0.2 is also increased and the
agreement of the channels (xF_016,9F _016) gets worse. And if the local emissivity at
p ~ —0.2 is decreased in order to get a better agreement between (x F_ 016, 4F 016)
the agreement of the channels (xF_018,4F 018) gets worse.

In conclusion, the quality of the fit presented in figure [6.1]is bad and due to the asym-
metry it is not possible to increase the quality of the fit.
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On one hand it is advantageous to use as much channels as possible to consider as much
information as possible. On the other hand if there is an HFS/LFS asymmetry like in
figure[6.1] (a) and almost no up/down asymmetry like in figure [6.1] (b) the quality of the
fit considering only the I camera will be much better by considering only the measured
signals from the I camera for the fit.

The two possible reasons for the observed asymmetries are discussed:

The first reason for an asymmetry could be that the equilibrium calculated with the
used equilibrium code is not correct. These discrepancies are sometimes observed es-
pecially in the plasma center. If the asymmetry is exclusively due to discrepancies in
the equilibrium, then the asymmetry will disappear if the fit is performed in a correct
equilibrium.

Second the reason for an asymmetry could be an asymmetric impurity distribution.
The HFS/LFS-asymmetry due to heavy impurity ions in fast rotating plasmas on which
a centrifugal force acts is described in [39]. And the up/down-asymmetry due to the
asymmetry of impurity density is also often observed and it is described in [40] and in
[41].

Of course, these two reasons for an asymmetry can also be fulfilled simultaneously. If
there is a instability present it may be possible to distinguish the two possible reasons for
an asymmetry because the instability moves along the real equilibrium flux surface and
it may be possible to reconstruct the flux surface geometry with good accuracy using
the measured sxr signals. If the asymmetries do not disappear using the reconstructed
equilibrium the emissivity asymmetries are probably due to an asymmetric impurity
distribution.
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6.2 The investigation of the magnetic-structure of a kink mode

In the previous section an observed kink mode has been introduced and the emissivity
profile ey(p) is given by the fit which is described in section [6.1] The measured signals
of the observed kink mode are reproduced by the simulation by varying the displace-
ment. The displacement &y(p1, p2, (o, p) according to the parametrization in is varied
manually until the simulated amplitudes reproduce the measured amplitudes. The data
plotted in figure results from the emissivity spline given in equation [6.2] and from
the displacement given by:

(p1, p2, Co) = (0.27,0.37,0.052) (6.3)

shot #26355 time=[2.15030,2.15081] f, = 5932.70 Hz
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the camera I.
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The chosen background emissivity eg(p) and the chosen displacement function &, which
describes the magnetic structure of the kink reproduces the measured data quite well.

For the channels which see through the lower region of the plasma I _057,1 058,71 059
the amplitude fits the measured amplitude very well.

There is an asymmetry in the simulated amplitudes (xI 050, xI 058) with respect
to the measured amplitudes (#1 050,491 058). Just like discussed for the signals in
section [6.1], this asymmetry limits the quality of the fit result. With the model of equi-
emissivity on flux surfaces and with this particular equilibrium geometry it is impossible
to improve the quality of the amplitude fit.

Comparing the simulated amplitudes (x/ 052, xI 056) and the measured amplitudes
(@I 052,91 056) the simulated amplitudes are both too high and there are two possible
reasons for this. First it could be, that the displacement is lower in this region. This
would mean that there is a local structure at p &~ 0.15 in the displacement function
&(p) and it is not a constant function in this region. Second it could be, that the local
emissivity gradient of eg(p) is to high. This would cause the local amplitudes to be too
high.

6.3 Investigation of a kink mode with a hollow emissivity profile

It is discussed in section [b| that the measured or simulated amplitudes and the phases
of an instability depend on the underlying equilibrium emissivity. In this section a kink
mode which displaces a hollow equilibrium emissivity is investigated. We turn to the
discharge #25854. In the time range [2.8525s,2.8532 | a kink mode with the frequency
fo = 7050 Hz is present.

For this discharge the temperature profile T, (p) and the density profile n.(p) are peaked
and therefore it is assumed that the hollowness is due to a hollow tungsten density.

The procedures which are exemplified in section [6.1] and section [6.2] for a peaked emis-
sivity profile are applied and the results for the hollow emissivity profile are shown in
figure [6.3]
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Figure 6.3 — For the camera I the measured mean signals (a), amplitudes (b) and phases
(c) are plotted with plot mark ®. The results of the simulation is shown with plot mark
x. Note the phase behavior of the channels I 053 and [ 054.

As discussed in section [5.2] the hollowness of the emissivity profile changes the mean
signal of the central channels only marginally so it is nearly impossible to reconstruct
the hollowness of the background emissivity eq(p) only with the mean signals given. But
it is also discussed in section that the hollowness has a significant impact on the
phases of the central channels.

For this case the emissivity value eg(pg) at the central node py is reconstructed by a
comparison with the resulting simulated phase and the measured phase. This is possible
because the greater the hollowness the greater is the development of the additional phase
jumps of the central channels I 053 and I 054 in figure [6.3]

In order to find the background emissivity profile eg(p) which fits best, the fit has been
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performed three times with different fixed emissivity values at the central node:

0) =4.25-102
0) = 4.00 - 1072

ei(p
ea(p

and only the emissivity values at the remaining non central nodes are varied using a least
square fit routine. Comparing the central phases the values with plot mark [1 1 053
and (11 054 fit the measured phases €I 053 and €I 054 best and only the values for
the profile are presented:

=102 -[4.50,6.03,5.67,1.89,0.36, 0.06,0.12,0.00, 0.00, 0.00, 0.00]; (6.4)

The calculations are carried out with a displacement function defined according to equa-
tion [5.1] with the following parameters which are fitted manually:

(p1, p2,Go) = (0.35,0.50, 0.023) (6.5)

Now we turn to the comparison between the amplitudes. There are only small differences
between the simulated amplitudes in figure|6.3| (b): an increase in the emissivity gradient
causes the amplitudes to increase. The discrepancies between the measured amplitudes
and the simulated amplitudes are quite big. In figure (b) the simulated amplitudes
(CI'I_050,1 1 051,11 056,11 057) are asymmetric to the measured amplitudes
(@I 050,91 051,91 056,91 057). For the asymmetries in the amplitudes the same
remarks hold for the asymmetries in the signals which are given in in section [6.1] With
the used model of constant emissivity on a flux surface it is not possible to model the
measured asymmetries in the amplitudes.

Note that also the corresponding mean signals in figure (a) are asymmetric. It
is an open question whether a small asymmetry in the spatial background emissivity
distribution is sufficient in oder to describe such a big and broad asymmetry in the
amplitudes. Moreover the amplitudes of the channels €/ 053 and €I 054 are much
higher than the simulated amplitudes of these channels. Furthermore the phase distance
in figure (c) between a pair of channels which is tangent to the same flux surface at
+p is significantly higher for the simulation compared to the measured phase distance.
It seems likely that the discrepancies in the phases result from a discrepancy of the
position of the inner flux surfaces with respect to the outer flux surfaces. It seems also
likely that the discrepancies in the amplitudes are caused by asymmetries in the spatial
emissivity distribution.
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Recommendations for future work

There are open questions and the area of research of this thesis will remain fruitful. In
the following recommendations for future work are listed.

e Considering an asymmetric background emissivity. Asymmetries in emis-
sivity due to asymmetries in the spatial distributions of trace impurities are dis-
cussed in [39] (equation 10) for HFS/LFS-asymmetries:

ny (p,0) = nYy(p)exp [d(p)(R(p, 0)* — Ro(p)?)] (7.6)
i ()

where w(p) is the toroidal rotation velocity, Ry(p) is the maximal big radius for
a flux surface p and T;, T, are the temperatures of the hydrogenic ions and of
the impurity with the atomic number Z. The density distribution for up/down-
asymmetries is given in [40] and [41].

According to [16] equation (B.13) the emissivity resulting from an impurity - in
this case Argon - can be calculated by

iy (p,0) = ne(p)nar(p, 0) L7 (p, 0) (7.7)
where L% is the impurity total radiative power coefficient. This means that the
emissivity resulting from an impurity is proportional to the density of the impurity
and the equation for the density distribution of the impurities [7.7] can be rewritten
in terms of emissivity reducing the - maybe unnecessary - spectral information.
The final spatial emissivity distribution considering asymmetries is given by:

e(p,0) = ex(p) + e2(p) sin(0) + es(p)expld(p)(R(p, 0)* — Ro(p)?)] (7.8)

where e;(p) is the emissivity which is constant on the flux surface, es(p) and e3(p)
describe the up/down and HFS/LFS asymmetries. The function d(p) is defined
in equation and it is given by measured quantities like the temperature profile
and the toroidal rotation velocity w(p). The functions e;(p),e2(p) and e3(p) are
to be varied with a fit routine until measured and simulated signals fit best. Note
that it is also necessary to consider emissivity asymmetries due to discrepancies in
the equilibrium flux surface geometry.

e Mode perturbed asymmetric background emissivity. Considering asym-
metric emissivity distributions like described in the point above the question is
what the impact would be if there is a mode present? With an implemented asym-
metric emissivity distribution e(p,#) it is possible to consider a two-dimensional
poloidal displacement on it. This will result in asymmetries in the simulated am-
plitudes which may reproduce the measured amplitudes.

The question is, how the impurities are spatially distributed if there is a mode
present. Is there tungsten accumulation in magnetic islands and to what extend?
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By describing the measured asymmetric amplitudes with the above described ap-
proach, it is possible to draw conclusions on the spatial distribution of the impu-
rities with a mode present.

Determine the magnetic structure of instabilities. In this thesis the dis-
placement &y(p) and so the magnetic structure of the instability is chosen in such
a way that the measured signals are reproduced. The chosen magnetic structure
is consistent with the measured signals but it is not shown, that the chosen mag-
netic structure is necessary in order to fit the measured signals. In order to study
the magnetic structure of plasma instabilities more closely the magnetic structure
which is given by p/(p, 6) in equation can be compared with other measured
flux surface quantities. For example temperature 7T, (ECE diagnostics) or current
J (Mirnov diagnostics). With a displacement &,(p) determined by the sxr diagnos-
tics it is possible to crosscheck this magnetic structure with the other diagnostics
mentioned above.

Consideration of an angular dependent detector response. The angular
dependency of the spectral response function of the solid-state-detector is neglected
in this thesis. But it is observed - for example in figure -, that there are
discrepancies between the simulated and the measured signals which depend on
the angle of the incident radiation. In figure for the cameras H, K and J the
discrepancies between simulated and the measured signals are higher the steeper
the angle of incidence is. The possible causes for this effect are deviations in the
thickness of the beryllium foil, the dependency of the spectral response of the
detector on the angle of incident radiation and effects resulting from the thickness
of the material in which the pinhole is.

The discrepancy can be studied further by reconstructing emissivity profiles e(p)
using only central chips for many discharges and for many time windows (so that
the statistics is improved) and by comparing the simulated signals (resulting from
the profiles) with the measured mean signals resulting from non-central chips.

One can investigate how the discrepancy depends on the angle of the incident
radiation. Furthermore one can investigate to what extent the discrepancy depends
on the temperature T, of the plasma and therefore on the the spectral distribution
of the radiation.

For the reconstruction of the emissivity profile one can add a fit parameter to
consider the angel dependent response by multiplying the simulated signal with
a correction factor (1 — ca?), where « is the angle of incidence and the constant
¢ is to be determine with the fit routine. The above given correction factor with
quadratic dependency of « is motivated by figure 6 in [17].

Verification of the plasma center calculation. Efforts are being made to
calculate the plasma center in real time with the real time sxr signals given. With
the virtual sxr diagnostics it is possible to verify the method. The quality of the
calculated plasma center depends on the flatness of the emissivity profile and with
the virtual sxr diagnostics it is possible to investigate the quality of the result in
the dependency of the flatness of the profile.
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Summary and conclusion

In the scope of this thesis a virtual soft x-ray (sxr) diagnostics is developed including
the full three-dimensional geometry of the VOS in the calculation. The emissivity inside
the VOS contributes accordingly to the solid angle of the seen detector area. The code
is tested with the methods described in section [3.3]

The spatial emissivity distribution is displaced due to plasma modes. A model for the
emissivity of a mode perturbed plasma is developed considering the poloidal displace-
ment which depends on the toroidal position. It is discussed that the consideration of
the poloidal vectorial displacement in p and in #-direction is crucial, since it is shown
in section that with the radial perturbation model and with the approximate model
mathematical artifacts like negative emissivity and an additional island can occur.

Furthermore it is shown that the approximate model cannot describe the phenomenon
of frequency doubling. Because of these limitations these models should not be used and
the full displacement in p and in #-direction should be considered.

Idealized examples of ideal (m,n) = (1,1) kink modes are investigated in dependence
of the emissivity profile (especially its gradient), the displacement and the equilibrium
geometry. By keeping two of these three dependencies constant and varying the third,
the resulting effects (which are isolated from disturbing influences) on the mean signals,
on the mode amplitudes and phases of the simulated signals are investigated.

It turned out that a change of the emissivity profile only has a small impact on the
mean signals. Therefore it is difficult to reconstruct emissivity profiles just with the
measured mean signals given. The reconstruction of the measured time traces resulting
from observed kink modes is possible by varying the background emissivity eg(p) and
the displacement function &,(p). Comparing the measured with the simulated phases
the phase distance is not well reproduced.

A small change of the gradient of the emissivity profile causes a big change of the
mode amplitude. Furthermore there is coupling between the displacement and the mean
signal: a change of the displacement has an impact on the simulated mean signals.
In principal the background emissivity profile and the displacement function should be
fitted simultaneously.

For emissivity profiles, which are hollow in the core plasma, it is shown that it is almost
impossible to reconstruct the degree of hollowness with the measured mean signals given.
But it is also shown that the additional phase structure of hollow emissivity profiles can
be a criterion for the degree of hollowness. The additional structure in the phases of
the central channels which is observed for a kink mode in a hollow emissivity profile is
reconstructed with good accuracy by varying the degree of hollowness.

The investigation shows that for peaked profiles the relative phase between the signals is
independent of the gradient of the emissivity and it is independent of the displacement.
Furthermore it is independent of a rigid shift of all flux surfaces.
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It turned out that the relative phases depend very sensitively on the shift of the flux
surfaces with respect to each other. It is most likely that the systematic discrepancy
between the measured and the simulated phases can be removed by a shift of the inner
flux surfaces with unmodified outer flux surfaces. This shift also changes the mean
signals and the amplitudes. So the effect is also coupled with the background emissivity
and the displacement.

With a virtual sxr diagnostics it is possible to compare the simulated symmetric signals
resulting from a symmetric emissivity profile with the measured signals. With this
comparison it is possible to detect asymmetries in the measured signals, adjusted for
geometry effects of the VOS.

Asymmetries are caused by the emissivity not being constant on flux surfaces or/and by
errors in the calculated equilibrium geometry. The asymmetries due to the equilibrium
geometry could be removed by shifting the inner flux surfaces until the simulated agree
with the measured phases. It is very likely that the remaining asymmetries are due to
the emissivity which is not constant on flux surfaces. It is recommended for future work
to consider mode displaced asymmetric emissivity distributions.

For the variation of big emissivity structures for example due to the considered (1,1)
kink modes the change of the geometry of the VOS has no significant impact on the
simulated signals. For the variation of small localized emissivity structures, such as
snakes or islands, the VOS approach can show its potency in comparison with the LOS
approach.
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Appendix

Appendix A
Signals resulting from the approximate
model are harmonic in time

It is shown that signals resulting from the approximate model are harmonic in time.
Because the amplitude resulting from the time independent part of the emissivity is zero
we consider only the time dependent part of the approximate model. Then equation [4.25]
reduces to

d
e(p.0%,¢) = 50(p>d—; Cos(mb* +ne + ¢ +wt) (1)
— ::¢?(;7¢)
=:B(p)
= B(p)Cos(p(6", ¢) + wt) (-2)

Using B; = B(p;) and ¢; = ¢(0F, ¢;) the emissivity for every grid-point (p;, 0F, ¢;) is
given by:

e; = B;Cos(p; + wt). (.3)
According to section 5.4.1 the signal caused by the emissivity which is defined in (.3) is
given by:

N
Ssxr = Z Q;Vie; (4)
=1

Insertion of equation (.3) in equation (.4) and using D; = Q,;V;B; leads to

N
SSXR = Z QiVZ’BZ‘COS(QOZ‘ + wt) (5)

=1

Now we use the fact that a finite sum of harmonic waves with the same frequency w
result in a single harmonic wave with the same frequency [28]. This means that the

signal is harmonic in time: R
Ssxr = DCos(¢ + wt). (.6)

Note that this argumentation is independent of the values of the phases ¢; = (07, ¢;)
and the argumentation still holds if we consider 6; instead of 0.
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Appendix B

AVOS of the sxr channels in AUG
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