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Abstract

With tokamak devices developing towards higher heating powers, and carbon plasma fac-

ing components being increasingly replaced by high-Z materials like tungsten, impurity

seeding for radiative power dissipation gains more importance. This review summarizes

the core and divertor radiative characteristics of potential seeding species, namely noble

gases and nitrogen. Due to its radiative capability below 10 eV, nitrogen turns out to be a

suitable replacement for carbon as a divertor radiator. For typical plasma parameters and

high radiation levels, it becomes the most important eroding species for high-Z plasma fac-
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ing components. Nitrogen exhibits pronounced storage in near surface tungsten layers in

an about 1:1 W/N atomic ratio, which may effect W sputtering. While the inter-ELM ero-

sion of tungsten can be almost completely eliminated by electron temperature reduction,

type-I ELMs remain an effective sputtering source. Since a large ELM cannot be signifi-

cantly ameliorated by radiation, impurity seeding has to be integrated with a benign ELM

scenario, like the type-III ELMy H-mode or active ELM control by pellets or resonant

magnetic perurbations.

Key words:

PACS: 52.55.Fa, 52.55.Rk, 52.25.Vy, 52.40.Hf

JNM keyword codes: P0500, P0600, D0500, T1000

PSI-19 keywords: Radiation, Divertor, Impurity, Sputtering

�
Corresponding author address: Boltzmannstr. 2, D-85748 Garching, Germany

�
Corresponding author email: Arne.Kallenbach@ipp.mpg.de

�
Corresponding author phone: +49-89-3299 1721

�
Corresponding author fax: +49-89-3299 1812

2



1

1 Introduction

Impurity seeding has been used for a long time in tokamak research [1]. Originally, a major

focus was the improvement of energy confinement, which was often observed in radiative

regimes in combination with electron density profile peaking [2], [3], [4]. However, this

topic calmed down after these improved confinement regimes could not be fully reproduced

in larger devices under low collisionality conditions [5] [6] [7]. The reduction of limiter and

divertor power loads was also an early experimental goal in view of future devices [8], but not

an experimental necessity [9] [10] . This changed the first time for ASDEX Upgrade (AUG),

where the intrinsic impurity level decreased considerably after completion of the coating of

plasma facing components (PFCs) with tungsten (W) and wall conditioning by boronization

[11]. Feedback controlled radiative cooling became mandatory for high heating power sce-

narios [12]. The same is foreseen for the ITER like wall (ILW) in JET, where beryllium walls

and a tungsten divertor are expected to lead to reduced intrinsic radiative levels [13]. ITER

itself will heavily rely on impurity seeding, at least during its nuclear phase with high power

discharges and a tungsten divertor. A future reactor will have to radiate several hundreds of

megawatts [14] [15], and power exhaust is one of the major design issues.

The experimental task is more difficult than just puffing radiating species into a discharge,

since this has to be embedded into a tolerable edge localized mode (ELM) scenario. The

presence of seed impurities does not only reduce the plasma temperature in front of mate-

rial surfaces. It also adds a new plasma species which leads to surface material sputtering.

1 � See the Appendix of F. Romanelli et al., Proceedings of the 22nd IAEA Fusion Energy Confer-

ence 2008, Geneva, Switzerland
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Depending on the seeded species and surface material, modifications of the surface struc-

ture have been observed. Only noble gases and nitrogen are considered as seed impurities,

since non-recycling impurities such as carbon would lead to tritium co-deposition. Tungsten

is considered as the wall material, since plasma-wall interaction with seeding species is in

particular an issue for high-Z elements.

This paper is organized as follows. In section 2, basic data for seed impurity radiation un-

der divertor conditions and W and Mo sputtering yields are summarized. The integration

of radiative cooling into a small ELM scenario is addressed in section 3. Since nitrogen is

a promising candidate to produce partial divertor detachment without pronounced degrada-

tion of the energy confinement, some issues of nitrogen-tungsten plasma-wall interaction

investigated in laboratory experiments are discussed in section 4. Measured N � W sputter-

ing yields between and during ELMs are shown in section 5. Finally, some conclusions for

required future work in the field are drawn.

2 Basic effects during impurity seeding

2.1 Core and divertor radiative losses

Radiative power removal, with the ultimate goal of achieving partial detachment of the outer

divertor, can be regarded as a 3-stage process [8]. First, main plasma radiation is used to

reduce the power flux over the separatrix. The radiative loss function Lz of an impurity ion,

which can be calculated for core plasma conditions assuming coronal equilibrium, scales

roughly with the atomic charge Z3 (see figure 1c). Therefore, heavier species are the more

efficient seed species for core radiation, since they cause less fuel dilution. Core radiative

losses have generally to be limited to avoid negative effects on energy confinement, or a too
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close approach of the H-L transition power threshold. In first approximation, core radiative

losses are expected to scale linearly with the impurity concentrations.

The second step in radiative power removal is scrape-off layer (SOL) and divertor impurity

radiation. Here a relatively low-Z species is best suited, which has a favourable radiative

characteristics in the 10 eV temperature range, while it fully ionizes under core conditions

(dilution is not considered here). Since the impurity residence time in the divertor may be

shorter than ionisation and recombination time scales, the radiative losses cannot be calcu-

lated assuming coronal equilibrium. For these conditions, the ansatz of a radiative potential

[17] is more appropriate: A recycled or puffed neutral impurity atom enters the divertor

plasma. While being subsequently ionised to higher charge states, line radiation is emitted.

The radiated energy per atom can be calculated using atomic data and a collisonal-radiative

model (here, the ADAS database is used [16]). It is useful to specify a particle residence time

in the divertor plasma after which the evolution of the collisional-radiative processes is termi-

nated [8]. Figures 1a,b show the corresponding radiative loss function for species of interest

under divertor conditions for two different values of the product of the density and the resi-

dence time. The radiative losses for the conditions of figures 1a,b correspond to the particle

influx picture used in the spectroscopic S/XB method [18]: Photons are emitted from neutrals

or ions in low ionization stages during the time required for ionization to the next stage. Since

both the ionisation time and the excitation time depend about linearly on the electron density

(as long as multi-step processes are not important), the radiated power density per impurity

atom depends only weakly on the electron density for conditions where recombination is

not important. For long residence times and higher emitting ionization stages, the radiative

losses decrease towards their coronal values - the non-coronal conditions in a divertor plasma

increase the radiative losses. The divertor radiation does not generally increase linearly with
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the impurity concentration. This is caused by the reduction of the parallel conductivity due to

the rise in effective charge Ze f f , which leads to a steepening of the parallel electron temper-

ature gradient and which can therefore lead to a shrinking of the strongly radiating zone [19].

The final step towards acceptable peak power loads on a divertor target is the achievement

of partial, i.e. strike point detachment. This relies on momentum losses leading to a pressure

drop in front of the target. The most important momentum loss terms are recombination

(radiative and three-body) and charge exchange of hot ions with cold neutrals. A relatively

cold plasma is required to make these momentum loss mechanisms effective [20]. Due to the

strongly negative electron temperature dependence of recombination rate coefficients, this

process takes effect only below about 3 eV, the recombination rate equals the ionization rate

around about 1 eV. Charge exchange needs high neutral fluxes, which also occur under cold,

high recycling conditions. Besides direct power dissipation, a major task of seed impurity

radiation is to cool the plasma down to temperatures where momentum losses start to become

effective. It should be noted that momentum loss processes and the detachment observed in

tokamaks are currently not fully reproduced by edge modelling [21].

Inspecting figure 1 reveals that for Te below 10 eV, nitrogen and argon come closest to car-

bon, which is known as effective intrinsic coolant in devices with carbon plasma facing com-

ponents [22] [23] [24]. Neon exhibits a comparatively low cooling capacity at low electron

temperatures. Argon has to be ruled out as strong divertor radiator in devices with moderate

divertor impurity compression and low pumping speeds, since the required divertor concen-

trations in the per cent range are not compatible to the maximum allowed core concentration

of a few per mille. An exception is the DIII-D puff-and-pump scenario [25]. Here, strong

pumping achieved by placing the strike point at the entrance of the pump throat allowed to
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overcome the divertor-main plasma argon exchange rate. For devices without such strong

pumping (AUG, JET, ITER), a mix of at least 2 seeding species should be used to optimize

the spatial radiation distribution [10] [26], with N being the best option for the divertor.

2.2 Sputtering of the plasma facing material

Due to the high energy threshold of the deuterium sputtering yield (see figure 2), sputtering of

high-Z target materials occurs mainly by impurity ions [27]. High energy particles expelled

from the core by ELMs or other MHD instabilities may contribute to the sputtering rate.

Since the high-Z PFC material has to remain below a concentration limit in the plasma center,

care must be taken that the seeded species does not lead to too high sputtered fluxes. Figure

2 shows effective sputtering yields for seed impurity candidates for W and Mo. Shown are

effective yields, normalized to the hydrogenic flux, assuming typical impurity concentrations

in the impinging flux [28].

For the typical seed impurity concentrations assumed in the plot, quite similar W sputtering

rates are obtained for different impurities in the low electron temperature region. Overall,

the low-Z divertor radiating species appears to be the more important sputtering source com-

pared to potential core radiators. Sputtering yields for Mo are shifted towards lower temper-

atures and slightly higher values due to the lower mass of Mo compared to W. Obviously, the

absolute temperature (or ion impact energy) becomes very important when very low sput-

tered fluxes are aspired. The sputtering yield of W by nitrogen has been obtained from a

TRIM code calculation neglecting effects of nitrogen storage in near surface layers, which

may lead to a reduction of the sputtering yield [30].
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2.3 Energy confinement issues

A thorough discussion of energy confinement behaviour with impurity seeding is beyond the

scope of this review. Nevertheless, a few remarks are required since sufficient confinement

is a necessary boundary condition for each radiative scenario. Originally, in small-medium

size devices and at quite high collisionalities, impurity seeding often caused electron density

peaking and improved energy confinement [2], [3]. This behaviour has been attributed to the

reduction of ion temperature gradient mode (ITG) turbulence caused by a rise in the effective

ion charge in combination with steepening of the density gradients [31]. In larger devices,

both confinement improvement and density profile peaking appeared much more reluctant.

In JET as well as in different JT-60U long pulse scenarios, the radiative losses caused mostly

a reduction of energy confinement [32], [33], [10]. Again a different behaviour showed up

under high power conditions in AUG, where energy confinement increased by up to 30 %

with strong nitrogen seeding [34]. The improvement is caused by increased temperatures in

the core and at the pedestal, while no changes in the density profile shape occur. A related

behaviour may be the partial recovery of the confinement reduction associated with the type-

III pedestal observed in a nitrogen seeded JET hybrid scenario, where core temperatures

slightly increased with increasing radiative fraction [35]. Quantitative theoretical predictions

of the effect of impurity seeding on core plasma profiles are difficult, in particular in the

transitional region between dominant ITG and trapped electron mode (TEM) instabilities,

which have opposite trends of the collisionality dependence of the density gradient [36]

[37]. In the pedestal region, significant fuel dilution by nitrogen may increase the stability

via its influence on the ion pressure gradient. Core dilution has also been found to reduce the

ITG growth rates in gyrokinetic calculation with the GS2 code for AUG conditions [38].
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2.4 Global experimental observations

A pronounced reduction of the inter-ELM divertor heat load by impurity seeding has been

clearly observed on several devices. Figure 3 shows power load profiles from thermography

with N and Ne seeding [33] compared to the unseeded case with the same D puff level in

JET. An unpuffed case is also shown to demonstrate substantial heat load. Clearly for JET, a

price in terms of confinement reduction has to be paid when the heat loads are ameliorated

by impurity seeding. It should be noted that the N puff rate to obtain moderate power loads

is a factor of 10 higher than the corresponding Ne puff rate. This factor is larger than what

would be expected from the atomic radiation data, and is explained by the retention of ni-

trogen in plasma facing components (see Section 4). In early Alcator C-Mod experiments,

divertor radiation and detachment were achieved with nitrogen seeding, but not with neon

and argon [9]. Recent seeding experiments in enhanced Dα (EDA) H-modes showed com-

parable performance of N and Ne, both performing better than Ar [39]. In the fully tungsten

coated AUG, increased divertor radiation has been inferred from bolometry tomographic

reconstruction during N seeding, showing a similar radiation pattern compared to previous

carbon cases [34].

Summarizing the experience from AUG, earlier Alcator C-Mod experiments and JET (albeit

with less clear evidence), nitrogen appears to be an attractive seeding species for divertor

cooling, in agreement with the expectations arising from the atomic data. If core radiative

losses are to be enhanced, higher Z species should be added. A mixture of nitrogen with a

heavier noble gas should give optimum results, where the higher-Z species are expected to

play a minor role for PWI issues due to their lower wall fluxes.
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3 Impurity seeding and small ELM scenarios

Due to limitations of divertor target materials, only very small ELMs will be acceptable for

ITER. Radiative buffering of ELMs by intrinsic and seed impurities is only effective for very

small ELMs below about 20 kJ for JET conditions. This has been demonstrated in JET ex-

periments as well as with Edge2d/NIMBUS edge modelling [40], and is shown in figure 4.

Consequently, if low target energies are required, ELMs have to start at the pedestal already

as small ELMs. The radiative seeding scenario, which acts predominantly on the inter-ELM

power load, needs to be integrated with ELM mitigation. A small ELM scenario which is

compatible with impurity seeding and possibly suffices with ITER heat load limits is the

type-III ELMy H-mode [41]. Since it generally exhibits reduced confinement, it may require

ITER operation at slightly increased current of 17 MA to achieve Q=10. Small ELMs have

also been obtained in ASDEX Upgrade high power discharges combining strong D and N

puff levels. In the vicinity of the type-III - type-I ELM transition, an energy confinement

measure H98y � 2=1 has been obtained from both ELM types at small ELM sizes [42]. Type-II,

grassy or EDA ELM regimes also exhibit small ELM energies, but their feasibility in ITER is

questionable. Active ELM control is the most preferred option, if applicable to ITER. It has

also to be shown that these techniques comply with impurity seeding, which is necessary to

ameliorate the inter-ELM target heat load. No special problems regarding impurity seeding

are expected for mitigation techniques which reduce the ELM size by increasing the ELM

frequency, like pellet pacemaking, or vertical kicks. First compatibility studies with resonant

magnetic perturbation (RMP) ELM suppression have recently been performed on DIII-D

[43]. Figure 5 shows the peak heat flux in the inner divertor versus the radiative fraction.

Substantial peak heat fluxes during type-I ELMs are measured without RMP and gas injec-

tion (black squares). When the RMP coils are activated under prescribed conditions, ELMs
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are suppressed resulting in a low peak heat flux (green crosses). The ELMs reappear, as the

edge density is raised during deuterium and argon gas puffing (red circles). The D puff is re-

quired to maintain a low core Ar content when Ar is injected for radiative divertor operation.

The peak heat flux decreases with increasing radiative fraction. While ELM suppression so

far could not be maintained at higher D puff rates, RMP operation reduces the ELM peak

heat flux compared to pre-RMP cases with similar radiative fraction by about 25 %. Energy

confinement is degraded by a similar amount, but does not decrease with increasing radia-

tive fraction, H98 � y � 2 � is about 0.9 at the highest Prad /Pin= 0.8. Since this result represents an

initial study, significant gains can be expected for a future optimization of the combination

of RMP operation, D puff and (mixed) impurity injection.

4 Surface material modifications due to seed impurities

Divertor and limiter surfaces experience high fluxes of impinging impurity ions. These in-

evitably leads to sputtering, but may also cause more sophisticated changes in the near sur-

face structure. In particular nitrogen exhibits subtle effects like strong wall latency or even

chemical reactions with carbon [45]. Considering possible surface modifications by the im-

purity species, we first look at the penetration depth into tungsten for typical edge plasma

conditions as shown in figure 6a, where diffusion of the implanted species has been ne-

glected. The penetration scales approximately with the velocity of the seed species, and is

about 1 nm for nitrogen divertor conditons. Nitrogen is stored in tungsten very effectively via

the formation of nitride states. Laboratory measurements find saturation of nitrogen storage

at an atomic ratio of about 1:1 N:W over the penetration depth for room temperature condi-

tions. Implantations performed at higher temperatures indicated that WN becomes unstable

above � 600 K [30]. The formation of the nitride state is the reason for the much stronger
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N wall storage compared to noble gases. Figure 6b shows measured and calculated sputter

yields for tungsten under nitrogen bombardment. Measurements were taken on thin ( � 500

nm) tungsten layers on silicon substrates. A reduced sputter yield is predicted by the dynamic

TRIM calculations as observed in the laboratory experiment [30]. A reduction of the yield

compared to the static TRIM calculation, which does not take the effect of N storage into

account, is clearly visible. The reduction can be understood as the effect of collisions of the

impacting N with N in the material, which reduces the sputtering of W. Possible changes of

the microscopic stability of the nitridic material have not been taken into account.

Comparison of the laboratory results with tokamak conditions revealed a qualitatively sim-

ilar storage behavior. However, an order of magnitude higher nitrogen storage areal density

was found in AUG [12]. Since a different penetration is not expected, either a surface struc-

ture or effects related to deposited (B, C) impurity layers are supposed to be responsible for

the different behaviour.

Figure 7 shows a scanning electron micrograph (SEM) picture of an ASDEX Upgrade outer

divertor tile. A very rough surface structure can be seen, which is due to the crystalline

growth of the W layer during the manufacturing process. This roughness is much larger com-

pared to the N penetration depth of about 1 nm. The enhanced surface area caused by the

roughness at least partially explains the enhanced N storage capacity in the tokamak. How-

ever, the small-scale (few 100 nm) roughness due to the crystalic structure of the W layers has

vanished after an experimental campaign due to the combined effect of erosion/redeposition

processes. Only a larger-scale roughness (of the order of a few µm) at least partly caused by

the surface structure of the carbon substrate has survived. The re-deposited W layers were

found to contain co-deposited B, C and N. This co-deposition with N may form another

possibility for N storage.
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5 Tungsten sputtering by nitrogen under tokamak conditions

The pronounced differences in N storage behaviour between laboratory and tokamak con-

ditions discussed in the preceding section suggest a benchmark of the sputtering behaviour

under tokamak conditions. We compare two AUG discharges with low and high nitrogen

fueling level, feedback-controlled on inter-ELM divertor temperature [12]. Both discharges

have 11 MW heating power and a Greenwald density fraction of 0.6. The discharge with

the higher nitrogen seeding rate has an about a factor 2 higher ELM frequency, and a fac-

tor 3 shorter ELMs, showing pronounced ELM mitigation by nitrogen injection. Average

ELM energies and H-factors are WELM= 60 kJ and H98 � y2= 0.95 with low N level and about

WELM=20 kJ and H98 � y2= 1.1 with the higher level. Figure 8 shows the neutral tungsten influx

close to the spatial peak flux location a few cm in the SOL direction of the strike point. Mea-

surements are taken with 0.2 ms temporal resolution [27], coherent ELM averaging has been

performed over 0.6 s discharge time to improve the statistics. Obviously, the measurement of

the inter-ELM W flux is a challenge, taking into account the very large ELM peaks and the

weak inter-ELM signal. Negative individual data points are caused by detector noise and the

subtraction of background spectra without plasma. On the positive side, with nitrogen almost

complete suppression of inter-ELM W sputtering in the divertor is possible. Time dependent

divertor parameters, measured by a Langmuir probe very close to the WI emission location,

are shown in figure 9. The combination of the data shown in figures 8 and 9 allows to calcu-

late the sputtering yield assuming Ti=Te if the nitrogen fraction in the impinging ion flux is

known. We take the corresponding main plasma N concentrations, derived from Ze f f mea-

surements, multiplied by the divertor enrichment factor, which is assumed as 2. The resulting

N fraction in the ion flux is 1 and 4 per cent for the low and high N cases, respectively. Ob-

viously, the procedure described above bears significant uncertainties. The evaluation of the
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Langmuir probes is more uncertain during ELMs, where non-thermal electrons may influ-

ence the derived electron temperature. During ELMs, deuterium ions lost from the pedestal

may increase the sputtered tungsten flux. Further sources of uncertainty are the very transient

signals during an ELM and the marginal neutral tungsten line (WI) signal in between ELMs,

as shown in figure 8. The sputtering yields derived under the described assumptions shown

in figure 10 are compatible to the theoretical curves. The large errror bars do not allow to

conclude on possible variations of the sputter yield due to the presence of N in W. The tung-

sten divertor source is dominated by the ELM contribution under these conditions. It is not

easy to assess the influence of the ELM W divertor source on the plasma tungsten content.

Due to the higher divertor temperature and density during an ELM, the ionisation length of

sputtered neutral tungsten decreases and the promptly redeposited fraction increases [48].

Until these effects have been included into current 2D codes, only qualitative comparisons

with measurements are possible. Regarding the sputtering yields inferred from tokamak ex-

periments, the large uncertainties involved do not allow to decide on a modification of the

erosion yield by the nitrogen stored in the near-surface tungsten layer.

6 Conclusions

Impurity seeding in future high power devices, with plasma facing components probably

covered with tungsten or a tungsten alloy will require a well adapted and optimized scenario.

Ar or Kr are suitable core and pedestal radiators, with concentrations in the per mille range.

In ASDEX Upgrade, nitrogen seeding enhances the divertor radiation, while Ne and Ar ra-

diate predominantly in a radiative mantle. This behaviour is compatible with the atomic data

presented in figure 1. The core/mantle radiation causes a reduced power flux into the diver-

tor, which typically leads to a net decrease of divertor radiation. The situation is less clear in
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C-Mod and JET. In JET, a reduction of energy and particle confinement by strong seeding

may even lead to a reduction of radiation caused by a reduced electron density. In DIII-D, an

increase of the divertor radiation with Ar could be achieved in scenarios with high divertor

compression. Detailed bolometry tomographic deconvolutions and systematic inter-machine

comparisons are needed to obtain a universal picture and a more robust extrapolation to fu-

ture devices. More work is also required to disentangle the effect of impurity seeding on

energy confinement. Different effects of the seeding have been observed on pedestal temper-

ature and changes of the ELM frequency and size.

In case that high divertor seed radiation levels are generated with nitrogen, N concentrations

of several per cent occur in the divertor plasma, therefore nitrogen will be the dominant

sputtering species. The plasma core will be mainly affected by dilution and bremsstrahlung.

Moreover, the strong uptake and storage of nitrogen in the near surface tungsten layers could

even change its material properties, as it has been observed as blister formation in mixed D-

He bombardment of tungsten [49]. Extension of seeding scenarios to higher heating powers,

aiming towards the ITER P/R (power divided by major radius) value of 20 MW/m, will help

to identify limitations of the technique and highlight plasma-wall interaction issues. Impurity

seeding needs to be integrated into a small or suppressed ELM scenario. No particular prob-

lems related to impurities are expected for methods relying on increasing the ELM frequency.

Combination with RMP operation has just started, and first positive results with mitigated

ELMs have been obtained on DIII-D. Naturally mitigated ELMs are observed on ASDEX

Upgrade with strong nitrogen puffing, but portability of this effect to larger machines is open.
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Fig. 1. Radiative loss factors for different seed impurities for divertor (a, b) and core conditions (c)

from ADAS [16]. a) and b) are calculated following the radiative potential ansatz and depend in addi-

tion on the residence time τ. The parameter neτ is a measure for the ratio of the particle residence time

τ and the collisional-radiative evolution time, which is proportional to ne. Given is the radiated power

of an impurity atom started as neutral undergoing subsequent ionisation and excitation averaged over

the time τ. neτ= 0.1 corresponds to typical AUG divertor conditions, neτ= 10 to high density reactor

divertor conditions. For large values of neτ, coronal equilibrium conditions are approached. Multipli-

cation of the graphs shown with the assumed residence times τ= 0.1 and 10 ms, respectively, gives

the corresponding radiative potentials [17]. c) shows the coronal equilibrium radiative loss function

which is valid in in good approximation for core conditions
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W sputtering, E= 3ZT + 2T
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Fig. 2. Effective sputtering yields for tungsten by D, He and different potential seed impurities, the

molybdenum sputtering yield by He and C is indicated as dotted line for comparison. Yields have been

multiplied with typical impurity concentrations expected for radiative high performance plasmas as

indicated. These effective yields per hydrogen shown give the sputtered fluxes for the seed impurity

concentrations assumed if multiplied with the (hydrogenic) ion wall flux. Division of the yields shown

by the indicated concentration gives the absolute sputtering yield for the impurity species. Sputtering

data are revised Bohdansky formula fits taken from [29], with the exception of the nitrogen data which

have been obtained from TRIM calculations (see [30]).

21



Fig. 3. Left: Inter-ELM heat flux profiles along the horizontal JET outer target. The highest heat flux

is observed for unseeded conditions with very low D puff (labelled no D). The other cases have a D

puff of 2.6 1022 at/s with no seeding and additional Ne and N seeding. Ip= 2.5 MA, Bt = 2.7 T, Pheat �

16 MW. Mid: H98 vs. peak heat flux for Ne seeding. Right: same for N2 seeding. Data shown are from

MHD-quiescent discharges, i.e. without strong MHD activity [33].
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Fig. 4. Large ELMs cannot be buffered by radiation (from [40]). Left: ELM energy fraction arriving at

the target with and without Ar seeding in JET. Right: Edge2d/NIMBUS modelling of ELM radiative

buffering. Buffering is only effective for small ELMs below 20 kJ.
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Fig. 5. Peak heat flux at the inner target during ELMs vs. radiative fraction for argon radiative divertor

experiments in combination with RMP operation in DIII-D [43].
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Fig. 6. a) Penetration depths of various seed impurity species in tungsten according to TRIM calcu-

lations. Mean projected ranges Rp are given for 100 eV impact energy. For nitrogen, also the values

for 20 and 500 eV are plotted. The penetration depth increases approximately with the ion speed. The

vertical bars show the standard deviation of the projected range. The separation of W atoms in the

lattice is about 0.3 nm. b) Measured and calculated sputter yields of W per impinging N. The dynamic

TRIM calculation takes the stored nitrogen into account [30].
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Fig. 7. Scanning electron micrograph of a tungsten outer divertor tile close to the strike point before

and after plasma exposure. The W layer has a thickness of about 10 µm and has been produced

by CMSII (Combined magnetron sputtering and ion implantation [44]). Small scale roughness has

been smoothed by plasma interaction. Large scale roughness has been partly eroded and produced

redeposited W layers with B, C, N, O embedded. These layers may contribute to the enhanced N

storage under tokamak conditions. Measured net W erosion during a comparable previous campaign

was 3 µm.
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Fig. 8. WI flux from spectroscopy for 2 discharges with weak and strong nitrogen seeding. The lower

curves have just expanded scales to make the inter-ELM fluxes visible. A constant value S/XB=20

was used to estimate particle fluxes from the measured photon fluxes of the 400.9 nm WI spectral

line. No Te dependence is employed, since these atomic data are currently under discussion [46]. The

black line represents a coherent ELM average over 0.6 s, crosses denote individual data points.
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Fig. 9. Divertor parameters from a Langmuir probe over an ELM cycle close to the location of the

WI flux shown in figure 8. a), b): ion saturation current for the discharges with low and high N

puff rate. The second peak in the ion saturation current a few ms after the ELM is associated with

a transient phase of higher recycling conditions [47], where Te is reduced. c), d): corresponding

temporal evolution of the electron temperature.
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Fig. 10. Measured W sputtering yields for nitrogen seeded discharges versus an analytic fit of TRIM

calculations for N2 � and N3 � ions. Tungsten influx and plasma parameters from figures 8 and 9.

Solid symbols represent conditions close to N-saturated tungsten divertor surface. The open symbols

are not N-saturated, but here intrinsic impurities contribute to the sputtered W flux.
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