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Abstract

The microstructure of tungsten samples is systematically modified by recrystal-
lization to investigate the structure dependence of deuterium (D) retention. After a
thorough characterization by scanning and transmission electron microscopy, non-
recrystallized samples and samples recrystallized by different degrees are loaded
with deuterium in a low-temperature plasma device. The deuterium inventory is
measured by nuclear reaction analysis and thermal desorption spectroscopy. The
post implantation surface morphology is investigated by scanning electron, optical
and atomic force microscopy. The modification by recrystallization allows a wide
variation in the crystallite size and has a strong impact on the measured D retention.
Both the total amount and the binding state of the retained D are changed.
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1 Introduction

Due to its favorable physical properties, such as low erosion yield and high
melting temperature, tungsten (W) is foreseen as a plasma-facing material in
fusion devices, such as ITER [1]. In these machines the surface material is
exposed to large fluxes and fluences of hydrogen isotope ions and energetic
neutrals. The hydrogen isotope retention in tungsten is generally considered
to be small. Despite substantial efforts to quantify hydrogen retention in tung-
sten the underlying mechanisms are not yet fully understood [2,3]. In partic-
ular, the influence of the microstructure can be significant. Therefore, it is
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necessary to perform dedicated experiments on tungsten samples with a sys-
tematic modification and characterization of the microstructure. For this pur-
pose, rolled polycrystalline tungsten samples of the same base material, from
a single manufacturing batch, were recrystallized to produce specimens with
different grain structures. The grain structure of the non-recrystallized and
recrystallized samples was analyzed by scanning electron microscopy (SEM).
The dislocation density of the non-recrystallized and recrystallized material
was investigated with scanning transmission electron microscopy (STEM). Af-
ter characterization the samples were implanted with deuterium in a fully
quantified low-temperature deuterium plasma with D3 as the dominant ion
species. After implantation the D depth profiles in the near surface region (up
to &~ 7 pm) were measured by nuclear reaction analysis (NRA). After NRA,
the binding states of the retained D were investigated by Thermal Desorption
Spectroscopy (TDS). Great care was taken during transfer and storage of the
sample between implantation and the NRA and TDS experiments. Air expo-
sure was avoided where possible to avoid excessive oxidation of the sample.
Before and after TDS, the surface morphology of the samples was investi-
gated by optical microscopy. The optical microscopy results were extended by
atomic force microscopy and SEM together with focused ion beam techniques
for selected details.

This article will first describe the sample preparation and how the structure
was modified by recrystallization. Then the D implantation setup and the ap-
plied analysis methods, NRA, TDS and microscopy will be described. In the
results section the paper will focus on the observed modifications of the W
microstructure and how they relate to the observed variations in the D depth
profiles from NRA and binding states from TDS. Also the formation of blisters
during D implantation and their disappearance during degassing of D in the
TDS measurements will be discussed.

2 Experimental procedure

The base material for all samples was polycrystalline tungsten! with a guar-
anteed purity of 99.97 wt.% rolled to a thickness of 0.8 mm. All samples were
cut from sheet metal (thickness 0.8 mm) from a single sintering batch to en-
sure the same initial microstructure and chemical composition. The samples
were mechanically polished to a mirror-like finish and cleaned in an ultrasonic
bath. Then part of the samples were recrystallized at different temperatures
in a graphite furnace with a protective gas atmosphere (Ar for up to 1700 K,
He for higher temperatures). They were wrapped in a tungsten foil envelope
to prevent carbide formation on the surface. The recrystallization tempera-
tures ranged from 1700 to 2000 K. The holding time was of the order of 20 to
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60 minutes and thus always at least twice the time necessary for recrystalliza-
tion as reported in the literature [4]. Repeated baking at the same temperature
showed that the influence of the holding time on the average grain structure
was small. Ostwald ripening was occasionally observed, but can be consid-
ered a minor effect on these timescales. SEM analysis after recrystallization
showed strong formation of small carbide grains on the outside of the envelope,
but none on the sample itself. The non-recrystallized samples were degassed
for 1 hour at 1200 K which is well below the recrystallization threshold, but
reduces stresses in the samples and removes hydrogen.

After polishing and, for part of the samples, recrystallization, the grain struc-
ture of the samples was analyzed by SEM. High grain orientation contrast was
achieved by using the annular semiconductor backscattered electron detector
(BSE). In order to probe the dislocation density, TEM samples from the non-
recrystallized and the recrystallized material were prepared by electrochemical
thinning. They were then analyzed with an electron energy of 30 keV in a high
resolution SEM which is also equipped with a STEM detector.

The samples were implanted with deuterium ions in a quantified plasma source
[5] which delivers mostly D ions. The implantation was performed at ~ 300 K
with a sample bias of -100 V DC. The sample bias together with the plasma
potential produces ions with an energy of about 115 eV, corresponding to a
mean energy of 38 eV per deuteron. The deuteron flux was 9 x 10 D m=2 s~
The non-recrystallized samples were exposed to different fluences between 3 x
102 and 6 x 10** D m~2. The samples recrystallized at 1700 and 2000 K
were implanted together with the non-recrystallized samples during the same

plasma exposure at a fluence of 6 x 10** D m~2.

Previous experiments [6] have shown that prolonged exposure of implanted
tungsten samples to ambient air can lead to a large fraction of the deuterium
being released during TDS not as Dy molecules, but as heavy water (HDO,
D,0). This is attributed to oxide formation on the sample surface during air
exposure. The reaction of desorbing deuterium with the surface oxide during
TDS analysis then leads to the formation of heavy water. This heavy water
fraction is very hard to quantify. In order to suppress surface oxidation, air
exposure of the samples was kept to a minimum. After implantation, the
samples were stored in a vacuum exsiccator whenever they were not needed
for analysis.

To determine the D amount and depth profile in the near surface region (up
to ~ 7 um) the D(*He,p)a nuclear reaction was used. By using energies of the
primary *He beam of 690, 1500 and 4000 keV different depth regions can be
probed for D due to the resonant nature of the cross section for this particular
nuclear reaction. Based on the shape and intensity of the proton spectrum for
each *He beam energy the depth distribution of D in sample can be determined



as described in [7].

The TDS measurements were performed in a dedicated experimental setup lo-
cated in a low D-background UHV chamber. The sample is heated by electron
bombardment and the temperature of the sample is measured by a K-type
thermocouple attached to the target. The sample was heated with a linear
ramp of 1.4 K/s to 1200 K. During heating, HD (mass 3), Dy (mass 4), HDO
(mass 19), and D,O/CD, (mass 20) molecules were recorded by a quadruple
mass spectrometer (Pfeiffer QMG700). The QMS signal was not calibrated
to absolute desorption fluxes. Nonetheless, the desorption spectra and total
desorbed D amount can still be compared between samples because identical
heating ramps were used.

The surface morphology of all implanted samples was investigated by optical
microscopy with differential interference contrast (DIC) before and after TDS.
For one of the non-recrystallized samples, markers were applied to the sample
surface with the focused ion beam (FIB) of a dual beam SEM/FIB, allowing
to investigate exactly the same spot before and after TDS. The dual beam
microscope was also used to probe individual blisters that were found on the
non-recrystallized samples.

3 Results and discussion

The analysis of the grain structure by SEM with BSE contrast showed that the
grains on the non-recrystallized material were small with typical dimensions
ranging from less than 1 gm up to about 2 ym (Fig. 1a). Many grains also
appeared distorted and were difficult to distinguish. The degassing at 1200 K
did not cause a detectable change of the sample microstructure.

After recrystallization at 1700 K the grain structure changed significantly. Now
many small (approximately 1 to 5 um) grains were present next to few larger
(approximately 10 to 20 um) grains (Fig. 1b). Note that even the smaller grains
are now very clearly visible in the SEM picture and do not appear distorted
anymore. Therefore, the sample can be considered fully recrystallized. After
recrystallization at 2000 K the grain size distribution has changed further.
Typical grain dimensions are now between 10 and 50 pm (see Fig. 1c), and
the regions with many small grains, which were present after recrystallization
at 1700 K, are no longer present. The sample now comprises much less, but
significantly larger grains.

The STEM image of the non-recrystallized sample shows a dense and clearly
visible network of dislocations distributed throughout the whole grain (see
Fig. 2a). The images of the recrystallized samples (Fig. 2b and 2c¢) show only



very few, faint and often blurred features inside the grains. These are likely
due to small dust flakes or chemical residue on the sample surface. Only the
grain boundaries are clearly visible.

The deuterium depth distributions determined from NRA for the non-
recrystallized material show a high deuterium concentration in a very narrow
region close to the sample surface and a small secondary peak at ~1 um (i.e.
far beyond the implantation range of several nm). Deeper into the bulk of the
sample, the deuterium content decays exponentially as can be seen in Fig. 3.
NRA yields an increase of the total retained deuterium amount with fluence
as shown in Fig. 4. Comparison with the TDS results (see below) shows the
same relative increase of the deuterium inventory.

NRA depth profiling of the recrystallized material revealed the same peaking
of the deuterium concentration near the surface as the non-recrystallized ma-
terial. The exponential decay of the D concentration at depths well beyond
1 pm was also observed. However, in the intermediate region up to 1 um,
significant changes in the depth profile were observed as Fig. 3 illustrates. In
particular the sample recrystallized at 2000 K showed a considerably lower D
concentration in this range, but a very clear secondary peak at 1 um. The
total amount of deuterium retained in the recrystallized samples is also shown
in Fig. 4. The total deuterium inventory of the sample recrystallized at 1700 K
closely matched that of the non-recrystallized sample implanted to the same
fluence, while for the one recrystallized at 2000 K the D inventory was reduced

by approximately a factor of 2. The same relative change was also found by
TDS.

TDS showed two D release peaks at 520 and 680 K which are typical for non-
recrystallized tungsten [2]. These release peaks were only rudimentary for the
lowest implantation fluence of 3x10%* D m~2. For increasing fluence, the 680 K
peak developed first. At 6 x 10** D m~2, both peaks were clearly identifiable
as can be seen in Fig. 5. For the sample recrystallized at 1700 K, only a single
broad release peak at approximately 600 K was observed. For the material
recrystallized at 2000 K, the release peak was roughly at the same position.
However, it was considerably lower and narrower, so that the total deuterium
retention was strongly reduced compared to the other samples exposed to the
same fluence.

Optical microscopy with DIC indicated strong blistering of the non-
recrystallized material already after implantation with 3 x 102 D m™2. The
number and average size of blisters increased with fluence. Most blisters
have an roughly circular circumference. The diameter of the blisters is up
to ~ 20 pum. Atomic force microscopy revealed that the blisters have a height
of up to ~ 200 nm. It was discovered that a large fraction of the blisters disap-
peared after TDS. Fig. 6 shows this for the sample exposed at 3 x 10** D m~2.



On this sample, T-shaped markers were cut with the FIB for orientation before
TDS. This observation points towards an at least partial elastic deformation
due to a high pressure D, gas filling of subsurface cavities. This assumption is
further supported by observations with the dual beam SEM/FIB. Small holes
were drilled into the lid of several blisters by the FIB. In regular intervals,
the drilling was interrupted in order to image the blister with the SEM. Af-
ter sufficiently long drilling time, all investigated blisters flattened completely.
Cross-sectioning of punctured and collapsed blisters with the FIB and subse-
quent imaging with the SEM revealed a thin crack system running along grain
boundaries at a depth of approximately 1 pm. On the surface of the recrystal-
lized samples no significant morphology changes, in particular, no blistering
was observed after plasma exposure.

4 Conclusions

This article reports the investigation of the dependence of the deuterium reten-
tion in tungsten on the tungsten microstructure. The crystallite size was varied
in a controlled fashion by high temperature recrystallization and subsequently
characterized by SEM and STEM microscopy. The STEM investigation also
revealed that recrystallization essentially removed most of the dislocations. In-
vestigating the binding states and depth distributions of D implanted into the
samples by TDS and NRA, respectively, revealed that recrystallization had a
strong impact on both. In addition, the total fraction of retained D was re-
duced in the sample recrystallized at 2000 K. In the non-recrystallized samples
strong blistering was observed after implantation of low-energy deuterons at a
sample temperature of approximately 300 K. Optical microscopy investigation
of these blistered samples before and after TDS showed that most of the blis-
ters had disappeared hinting towards elastically deformed gas filled cavities
as the dominant blister formation process in these samples. No blistering was
observed on the recrystallized samples. In bulk tungsten, D is mainly trapped
as an interstitial at crystal defects like dislocations and grain boundaries since
the solubility of D in a perfect W lattice is extremely low. The comparison
of non-recrystallized and recrystallized W clearly shows a correlation between
the D inventory and the density of these defects. In large cavities, i.e. blisters,
however, D is most likely trapped as D5 gas under high pressure, as the disap-
pearance of the blisters after TDS or after puncturing the blister with the FIB
suggests. This conclusion is also supported by the by the results presented in
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Figure captions

Fig. 1. Backscatter SEM images of W samples: a) non-recrystallized, b)
1700 K, ¢) 2000 K. All images were taken at the same magnification (1000x).

Fig. 2. Bright field STEM images of W samples: a) non-recrystallized, b)
1700 K, ¢) 2000 K. All images were taken at the same magnification (35000 ).

Fig. 3. NRA depth profiles of D retained in non-recrystallized and recrystal-
lized tungsten samples after bombardment with 38 eV /D at a sample temper-
ature of 300 K.

Fig. 4. Total amount of D retained in non-recrystallized and recrystallized
tungsten samples after exposure to a deuterium plasma with 38 eV/D at a
sample temperature of 300 K as determined by NRA.

Fig. 5. Dy release spectra from non-recrystallized and recrystallized tungsten
samples exposed to a fluence of 6 x 10** D m~2 with 38 eV/D at a sample
temperature of 300 K. The heating rate was 1.4 K/s for all samples.

Fig. 6. Surface of non-recrystallized tungsten sample after implantation (a)

and after TDS (b). T-shaped markers were applied to the sample surface by
FIB.

Figures

Fig. 1. Backscatter SEM images of W samples: a) non-recrystallized, b) 1700 K, ¢)
2000 K. All images were taken at the same magnification (1000x).



Fig. 2. Bright field STEM images of W samples: a) non-recrystallized, b) 1700 K,
¢) 2000 K. All images were taken at the same magnification (35000x ).
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Fig. 3. NRA depth profiles of D retained in non-recrystallized and recrystallized

tungsten samples after bombardment with 38 eV /D at a sample temperature of 300
K.
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Fig. 4. Total amount of D retained in non-recrystallized and recrystallized tungsten
samples after exposure to a deuterium plasma with 38 eV /D at a sample tempera-
ture of 300 K as determined by NRA.
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Fig. 5. Dy release spectra from non-recrystallized and recrystallized tungsten sam-
ples exposed to a fluence of 6 x 104 D m~2 with 38 eV/D at a sample temperature
of 300 K. The heating rate was 1.4 K/s for all samples.

Fig. 6. Surface of non-recrystallized tungsten sample after implantation (a) and
after TDS (b). T-shaped markers were applied to the sample surface by FIB.
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