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Abstract

A forward model for Motional Stark effect spectra is developed. The forward model includes

beam attenuation and considers the detection of partially polarized light. The forward model is

applied to simulate spectra for Wendelstein 7-X. A fit version is used to analyze data from exper-

imental spectra from ASDEX Upgrade. The fit validates the model and enhances the confidence

in the simulation. The structure and the content of the model is described to allow modular

implementations to guide physics-based diagnostic designs.
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I. INTRODUCTION

Quantitative simulations of experimental data expected for future fusion devices require

synthetic diagnostics. The resulting virtual instruments can be effectively used to guide

the design of diagnostics based on the underlying physics. For existing set-ups, virtual in-

struments can be used for the simulation of measurements and thus measuring capabilities

can be assessed, e.g., by evaluating spurious effects. Moreover, diagnostic upgrades or rou-

tine maintenance of diagnostics can be assessed by performance checks using the virtual

instruments. When using a suite of synthetic diagnostics for the same physical quantity, the

approach may also contribute to data validation by providing the possibility of cross-checks.

Probabilistic models of measurements naturally lead to synthetic diagnostics [1]. A math-

ematical model to describe the error statistics of a measurement is the likelihood of the data.

The likelihood function of the data is one key ingredient for Bayesian data analysis [2, 3].

A central element of the likelihood is the forward model which maps deterministically all

quantities and measurement parameters on the data. This is what synthetic diagnostics are

supposed to do.

The specific example discussed in this paper is part of a broader approach which in-

vestigates requirements for synthetic diagnostics for next step, steady-state fusion devices

where increasing challenges are posed to diagnostics. Examples of diagnostic applications

are machine protection, plasma control and physics evaluation which rely on diagnostic ca-

pabilities. Such steady-state devices demand much higher reliability and robustness due to

the extended pulse lengths of the devices. In addition, high and sustained neutron fluxes

may lead to new phenomena including radiation induced luminescence or radiation induced

conductivity. Effects on measurement accuracy, resolution and lifetime needs to be assessed

to comply with requirements for quantitative physics evaluation of experiments [4].

As seen by the ITER requirements for data analysis, which envisage an integrated design

for diagnostics [5], simulations are to keep up with highest demands on the confidence in

the diagnostics models. Fusion diagnostics design is assumed to be both as predictive and

as reliable as possible. These kinds of requirements have been addressed in related analyses

done for Wendelstein 7-X [6]. With the accomplishment of an integrated design concept, a

suite of virtual instruments is expected to be viable. This suite can be regarded as a flight-

simulator tool that allows diagnosticians to assess whether diagnostic units comply with the
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required measuring capabilities. Since, in addition, the impact of foreseeable constraints,

possible faults or unwanted effects can be simulated, this approach is preferable to trial-and-

error steps.

This paper discusses the specific implementation of a general forward model for future

spectral Motional Stark effect (MSE) measurements on Wendelstein 7-X. First spectrally

resolved MSE measurements have been reported in [7]. Forward simulations of an active

polarimetry Motional Stark effect diagnostics [8] have been reported by [9]. The simulation of

a spectrally resolved Motional Stark effect diagnostic are specifically treated in [9–16]. MSE

is planned to measure q-profiles to control the current profiles in ITER [4]. Simulations for

ITER Motional Stark effect diagnostics are reported in [17]. Partly overlapping, partly newly

developed, the forward model presented here involves a collisional-radiative beam-plasma

model simulating the beam attenuation. Alignment effects [18, 19] and resulting deviations

in emission line ratios are not considered in the forward model but the model is structured

to include respective model extensions. In a fit version of the code, a parameter involving

corresponding deviations (polarization factor) is included. For the simulations, the effect of

alignment has been assessed by a correction to the simple collisional-radiative beam-plasma

model. A full simulation of polarization properties employing the Müller-matrix formalism

for partially polarized light is implemented. This sub-model can be transferred to other

spectroscopic measurements. The code is structured and set-up to be integrated in Bayesian

analyses. Thereby, device dependent parameters are separated from the model making the

code device independent similar to the codes reported in [10, 11]. Moreover, simplifications

of time-consuming submodules were implemented to allow diagnostic optimization studies

[20] at feasible computational times.

In order to validate the chosen version of the forward model against experimental data,

MSE spectra from ASDEX Upgrade are analyzed using a fit-version of the forward model.

This approach is chosen to enhance the confidence in the forward model while its structural

design tries to emphasize the possibility to transfer individual parts of the model to other

applications.
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II. MSE FORWARD MODEL

The forward function is a deterministic mathematical representation of a measurement

(free from errors). Since the forward function enters the misfit distribution of the data, the

forward function is also a key element for the probabilistic description of measurements.

To simulate data for future devices, predictive simulations are used to simulate the mea-

surements. Equilibrium calculations give the ~B field, plasma profiles are used to determine

the beam excitation. The result of the simulation of the measurement are the data D.

Fig. 1 display a flow chart showing the elements entering the simulation of the spectral MSE

measurements.

The flow chart gives also a rough guideline for the modularization of the forward model.

Each element can be regarded as a sub-part of the model. For the implementations of the

sub-models, the arrows indicate interfaces. The interface define the required content for

the neighboring sub-part. Keeping a more refined sub-model compliant with the interface

definitions allows one to exchange the sub-parts rather than setting up a complete new

forward model. The model can be used for simulation, analysis and diagnostics design and

optimization as discussed above.

A. From physics effects ...

The Motional Stark effect is the Stark splitting in the Lorentz field due to the electric

field ~F in the frame of a fast beam moving in a strong magnetic field. ~F consists of a

Lorentz field, the component of interest in MSE diagnostics, and the radial electric field.

A convenient choice is the spectroscopy of the linear Stark effect on hydrogen isotopes for

fusion diagnostics; the quadratic Stark effect leads to more complicated effects [21]. For

Balmer-α spectroscopy with beam energies of the order of 50 keV/amu and magnetic fields

of 2.5 T, the energy shift ∆En in the Stark multiplet of Hydrogen isotopes can be well

described by the Epstein-Schwarzschild formula [22]:

∆En (eV) = 7.94198× 10−7 × |~F | (Vm−1) n (n1 − n2) (1)

where n is the principal quantum number and n1 and n2 are parabolic quantum numbers.

The influence of ~B in the moving frame has been considered by, e.g., [12, 18, 23]. For this
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study, the combined Stark-Zeeman effect is not considered since it leads to only minor

deviations from the linear Stark effect. The Stark multiplet consists of ∆m = 0 (π) and

∆m = ±1 (σ±) transitions where m are the magnetic projection quantum numbers. The

σ- and π-components are linearly or elliptically polarized depending on the direction of

observation with respect to the electric field vector ~F .

To start with the forward model, the signal level measured D by a pixel of a CCD chip

is given by:

D(pixel) = ς (pixel)×Π×
∫

Ap

∫

Ω

∆L (pixel(λ))

∆pixel
cos ζ dAp dΩ (2)

The dispersion relation of the spectrometer pixel = pixel(λ) is determined by wavelength cal-

ibration measurements. The radiance L is the radiant flux per unit projected area observed

at the boundary of the plasma dAp and solid angle Ω. Later, the radiance is represented by

a Stokes vector ~L is used to represent to treat the polarization states of partially polarized

plasma emission [24]. ∆L refers to the wavelength interval covered by a pixel with width

∆pixel. ζ is the angle enclosed by the line of sight and the normal vector of the surface Ap.

Here the emission will be integrated along a line of sight through an optically thin plasma.

The line integration will enter the radiance (see below) and the observed plasma surface Ap

is given by the entendue T ≈ AsΩm in the direction of the line-of-sight. Therefore, the angle

ζ needs not accounted for (cos ζ = 1). Practically, T is limited by the observation optics [25].

As is the most limiting cross section in the observation optics and Ωm is the corresponding

solid angle. The operator Π accounts for polarization dependent transmission of the obser-

vation optics. The factor ς is the sensitivity which contains the quantum efficiency (photo

electron per photon) and the amplification of the detector (counts per photo electron).

The radiance L represents the radiation quasi from an emitting surface. L is related

to the line integral of the local emission coefficient ε along the line of sight L; writing the

emission coefficient as a Stokes vector accounts for the polarization of the light:

L =

∫

L

ε(s) ds (3)

s is a coordinate along the line-of-sight. Radiation transport is neglected since the plasma

is optically thin at wavelengths of the MSE spectra. Provided the variations of the observed

cross sections Ap are small and the emission coefficient ε across the line of sight are small,
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Eq.2 becomes:

D(pixel)∆pixel = ς (pixel)× T ×Π×
∫

L

∆ε (s, pixel(λ)) ds (4)

So far, the forward model contains only algebraic operations representing a model for the

detection of partially polarized light. To link the signal with the beam excitation process,

physical models for the emission coefficient being represented as a Stokes vector ~ε need to

be provided. A first, simplified model consists of the MSE spectrum, the charge exchange

emission from the beam. This simple model disregards beam particle diffusion (beam halo)

or effects resulting from fast ions. The motivation of this simplification results from the

data analysis described later: it gives a reasonable description of the data and it avoids,

e.g., modeling of fast ion charge exchange processes requiring large computational effort.

The simple MSE model reads:

~ε(s, λ) = ~εMSE(s, λ) + ~εCX(s, λ) + const (5)

where a constant background due to Bremsstrahlung is accounted for.

The simple forward model for the emission coefficient ∆ε (s, pixel) can be readily ex-

tended to include further effects:

~ε(s, λ) = ~εMSE(s, λ) + ~εhalo(s, λ) + ~εFIDA(s, λ) + . . . (6)

~εedge(s, λ) + ~εImp(s, λ) + ~εBS(s, λ)

In this more complete model, the emission coefficient is assumed to consist of contribu-

tions from the Motional Stark effect (MSE), charge exchange of the plasma with the beam

also covering fast ions (FIDA) (this contribution includes εCX), light from the beam halo

(halo), emission from the cold plasma edge (edge), impurity lines (Imp) and Bremsstrahlung

background (BS). All components contribute to different polarization states p.

The comparison of Eq. 5 with Eq. 6 reflects how the concept of modular subparts can

be assigned to physical submodels. In the case considered here, submodels can be either

exchanged (εCX by εFIDA) or included.

On the way to a specific implementation, we write down explicit dependencies of the

individual components:
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~εMSE(s, λ) =
∑

α

(
hc

4πλ
~Sπ

∑
π

n
(n=3,π)
beam, α (s) Aπ Pb(s, λ, λπ,α) . . .

+
hc

4πλ
~Sσ±

∑

σ±
n

(n=3,σ±)
beam, α (s)Aσ Pb(s, λ, λσ±, α)

)
(7)

~εCX(s, λ) = n
(n=3)
plasma(s)

hc

4πλ
~SCX An=3Pp(λ) (8)

~εnhalo(s, λ) = n
(n=3)
halo (s)

hc

4πλ
~Shalo An=3Ph(λ) (9)

~εnedge(s, λ) = n
(n=3)
edge (s)

hc

4πλ
~Sedge An=3Pe(λ) (10)

~εFIDA(s, λ) = n
(n=3)
FIDA(s)

hc

4πλ
~SFIDA An=3PFIDA(λ) (11)

~εnImp(s, λ) =
∑
Imp

nImp(s)
hc

4πλ
~SImp AimpPi(λ, λImp) (12)

~εBS(s, λ) = 4.51× 10−39 Z2

(
kBTe

ERyd

)1/2

nZne
~SBS (13)

α indicates the beam energy components. ~S are the Stokes vectors for the different light

emission processes. Except for MSE, the light is assumed to be unpolarized. The P are

normalized profile functions reflecting the shapes of spectral lines as observable from the

plasma. P is a function of the coordinate s along the line of sight, λ and - in case of discrete

lines - of the line centers. Z is the effective charge of the plasma, ERyd is the Rydberg energy

of hydrogen. The Einstein coefficients A refer to upper levels as indicated.

At this point, a discussion of the components of the emission coefficients is helpful. The

MSE component is the most prominent part of a performance study. The charge exchange

(CX or FIDA) neutrals result in broad line contributions potentially overlapping with the

MSE multiplet. Therefore, its is crucial to consider the CX part of the spectrum. Neutral

particles moving into the observation volume forming a beam halo certainly affect the spec-

trum but are considered to be in the order of magnitude of charge exchange contributions or

even less. The detailed description of the halo contribution is subject to later model exten-

sions. Here, it will be modeled by an additional broad CX component. The emission of cold

edge neutrals is large, but can be suppressed in the spectrometer [26]. To predict diagnostic

performance, complicated mechanisms like the fast-ion Dα emission require comparable high

modeling effort but are known from experiments to result in a small contribution. There-

fore they will be left out in this study. Impurity lines are assumed to be separated and do

7



not affect the spectrum in the MSE region. The Bremsstrahlung background (εBS)is small

in amplitude, but the small broadband contribution summing up over the entire spectrum

affects the global uncertainty of the forward model considerably.

Now, the remaining part for the simulation of MSE spectra in future devices is the signal

amplitude. According to Eqs. 7 - 11, the signal amplitude requires the calculation of

the densities of light emitting particles. This can be done by a collisional-radiative beam

plasma model (CRM) as depicted in Fig. 2 showing the levels and their respective population

and depopulation paths. Main excitation processes are heavy particle collisions along with

electron collisions. Moreover, the proton collisions also lead to the population of neutrals by

charge exchange and excitation transfer. Beam attenuation is due to beam ionization and,

again, charge exchange. Radiative processes lead to the decay of excited particles and are

used to quantify the spectroscopic signal. The resulting CRM contains all densities (~n) of

considered states both in the beam and the plasma:

d

dx
~n =

1

vB

A~n (14)

where vB is the beam velocity and A contains the rate coefficients for the collisional and

radiative processes as indicated in Fig. 2 to be solved for the beam components α at full,

half and third energy. The transition rates depend on the plasma parameters.

Solving the CRM is necessary to predict signal heights and their dynamics along the

beam. For this simulation, the stationary solution (∂/∂t = 0) of Eq.14 is employed. For

data analysis, it is feasible to describe the signal amplitude by a fit-parameter. Once ad-

ditional data on densities and temperatures and information on the plasma equilibrium

became available a more comprehensive fit became possible as demonstrated in the concept

of Integrated Data Analysis [6].

B. ... to forward calculation

Now a signal can be calculated from equilibrium information ~B(~x) and profiles of ne(r),

ni(r), Te(r), Ti(r), Z(r) and Er(r) = 〈∇rφ(r)〉. The equilibrium yields the mapping from

flux surfaces to real space coordinates ~x = ~x(r) and metric coefficients |g| to calculate real

space radial electric fields ~Er(~x) = 〈∂/∂rφ(r)〉~er.

To determine beam related effects, the beam velocity ~vb, its divergence angle γb and the
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density composition in full beam energy E, half E/2 and third E/3 energy is taken as an

experimental parameter as well as the port-through power Pb.

The collisional radiative model (CRM, Eq. 14) is solved as an initial value problem with

all beam particles being in the ground state before the beam enters the plasma. The rate

coefficients as functions of densities and temperatures were taken from fit expressions [27].

The solution gives the densities n
(n=3,π)
beam (s), n

(n=3,σ±)
beam (s) for Eq. 7 and n

(n=3)
plasma(s) for Eq. 8

assuming a statistical multiplet distribution. More sophisticated collisional radiative models,

e.g. to account for alignment effects [18, 19], could be used instead.

To complete the necessary information for Eq. 7, the Einstein coefficients for the sublevels

Aπ and Aσ± are taken from solutions of the Schrödinger equation [28]. The profile Pb is the

Doppler width of the multiplet lines resulting from the beam divergence from a Gaussian

intensity profile of the injected beam. This broadening has been found in experiments to be

the leading broadening effect, but more detailed assumptions can be added straight-forward.

The line shifts of the multiplet components λπ and λσ± result from the line splitting due to

the electric field

~F (s(~x)) = ~vb × ~B(~x) + ~Er(~x) (15)

and a Doppler shift due to the beam motion. The line splitting is calculated from the

Schwarzschild-Epstein formula. The Doppler shift is determined from the line-of-sight and

the beam geometries.

For the charge exchange component, the line emission profile Pp is determined from the

ion temperature; Doppler shift due to rotation are not taken into account for Wendelstein

7-X simulations, but are allowed to occur for the tokamak data. The Einstein-coefficient

An=3 is summed from the multiplet resolved Einstein coefficients.

The polarization state is determined from the sums in Eq. 7, i.e. the π components are

linearly polarized with respect to the quantization axis given by ~F . Accordingly, the σ±

components are circularly polarized in the direction of ~F . The charge exchange emission

and the Bremsstrahlung is assumed to be unpolarized.

At this point, the polarization-state resolved and wavelength dependent local emission

coefficient ~ε(s, λ) can be determined. The line-of-sight integration
∫

L
∆~ε (s, pixel(λ)) ds is

considered by the length of the optical path transversing the beam. With given etendue T
and pixel sensitivity ς, the polarization dependent transmission Π are left to determine the
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data D in Eq. 4.

Since the forward model will result in partially polarized light, Π is formulated as a chain

of Müller matrices applied to the Stokes vector ~S. The definition follows Ref. [24]:

~S =




I

Q

U

V




=




〈E‖E∗
‖ + E⊥E∗

⊥〉
〈E‖E∗

‖ − E⊥E∗
⊥〉

〈E‖E∗
⊥ + E⊥E∗

‖〉
i〈E‖E∗

⊥ − E⊥E∗
‖〉




. (16)

where I represents the total radiance. Q, U and V are quantities describing the linearly and

circularly polarized contributions of the total radiance. The electric field ~E of the observed

light is given by:

~E = ~E0 exp (i(kz − ωt)) (17)

~E0 = E‖~e‖ + E⊥~e⊥ (18)

where ‖ and ⊥ are orthogonal axes, both of which have components perpendicular to the

light propagation.

In a frame given by a quantization axis (~ez) parallel to the electric field ~F , the electric

field of light from ∆m = 0 (π-) and ∆m = ±1 (σ-) lines are:

~Eπ = Ez~ez = 2−1/2 E0 exp (−iωt)~ez (19)

~Eσ = Ex~ex + Ey~ey = 1/2 E0 (exp (−iωt)~ex ∓ i exp (−iωt)~ey)

The resulting Stokes vectors are:

~Sπ =
1

2
I0




cos2 θ

cos2 θ

0

0




(20)

θ is the angle between the line of sight and ~F . ~Sπ reflects the emission anisotropy of the

emission from a Hertzian dipole. For the σ±-components one arrives at:
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~Sσ± =
1

4
I0




1 + sin2 θ

−1 + sin2 θ

0

±2 sin θ




(21)

It is interesting to note that the Stokes vector ~SΣ given by

~SΣ = ~Sπ + ~Sσ+ + ~Sσ− =
1

2
I0




1 + sin2 θ + cos2 θ

−1 + sin2 θ + cos2 θ

0

sin θ − sin θ




= I0




1

0

0

0




(22)

reflects Heisenberg’s principle of optical stability: if the radiance of degenerate π− and σ−
lines are emitted such that

∑
π

nπ Aπ =
∑

σ+

nσ+ Aσ+ =
∑

σ+

nσ− Aσ− (23)

then the emission is isotropic, i.e. ~SΣ is independent from the observation direction expressed

by θ. Although all elementary emission processes result in polarized light, the total emission

is unpolarized for Q, U, V = 0 in Eq. 22. Wavelength separation due to external fields, how-

ever, changes the situation fundamentally. It is also interesting to note that the formulation

of the Stokes vector contains any effect of emission anisotropy, which is sometimes also re-

flected by the sub-level resolved Einstein coefficients in text books [29]. However, deviations

from statistical distributions are observed the larger the more the density decreases from

about n < 1020m−3 (e.g. [10, 19, 30]). In other words, even the wavelength integrated MSE

emission is polarized.

In order to cover all observation geometries possible, the vibration ellipse is allowed to

rotate with the line-of-sight as rotation axis (with angle φ). According to [24], the rotation

can be expressed by a Müller matrix:

Mφ =




1 0 0 0

0 cos 2φ sin 2φ 0

0 − sin 2φ cos 2φ 0

0 0 0 1




(24)
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Any additional optical element in the observation optics can be expressed by a Müller

matrix and wavelength dependent transmission functions τ(λ). Müller matrices for ideal

polarizers and retarders, respectively, can be found in [31]. Photo-elastic modulators, as a

combination of rotating retarders and polarizers, can be expressed by the respective combina-

tion of time dependent Müller matrices. Optical fibers can be regarded as ideal depolarizers:

Mfiber =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




(25)

The operator representing the observation can be expressed as:

Π = τ(λ)× ΠiMi (26)

At this point, all model parameters have been specified and can be regarded to result

either from physics modeling (predictive transport model, equilibrium), atomic data bases

or atomic physics calculations or experimental settings. A summary of all parameters and

quantities entering the forward model are given in Tabs. I and II.

III. FORWARD SIMULATION OF MSE SPECTRA FOR WENDELSTEIN 7-X

Now the forward model will be applied to cases for Wendelstein 7-X. First the density

of light emitting particles is calculated. The required input quantities (cf. Tab. II) are

taken from predictive transport simulations [32] and settings. Geometrical data were taken

from CAD data. A CAD view of a possible MSE arrangement is shown in Fig. 3. Tab. I

summarizes derived quantities in the model and the measurand, Tab. II contains the input

parameters of the model.

With this input, the simplified collisional radiative beam-plasma model has been solved.

The CRM used here was truncated to n = 3 to estimate the population densities in the light

emitting states (MSE) and to simulate the beam attenuation (CX). For analyses, this model

underestimates the n = 3 population and cannot resolve non-statistical distributions in sub-

levels. More detailed CRMs for beam particle populations are reported, e.g., in [19, 33].

For design purposes, however, the model yields reasonable rates of light emission and the
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required dynamic detector resolution if the attenuated beam is observed along the beam-

line. A beam-stopping model for deuterium beams has been reported in [34]. The simple

model used here, however, is computationally fast allowing one to apply feasible optimization

algorithms. Some results for the state resolved CRM (ten plasma and beam states in total)

are shown in Fig. 4. For the simulation of a 60 keV hydrogen beam, more than 90% of

the beam is deposited in the plasma. The main attenuation process are charge-exchange

collisions and ionizing collisions with heavy particles. Yielding the measurand, the n = 3

densities are shown indicating a sharp rise in the emission intensity when the beam enters

the plasma, decreasing to about one order of magnitude in the course of the beam. The

more spurious light emission from n = 3 plasma atoms (due to charge exchange processes=

increases slightly retarded but the total number of emission processes remain larger than

the beam emission along most of the beam line.

For a cross check of the figures shown in Fig. 4, the maximum fraction of n = 3 beam

particles (at T = 2.8 keV and n ≈ 8×1019 m−3) was found to be n3/n1 = 0.29%. Comparable

calculations for stationary situations [35] give fractions of n3/n1 ≈ 0.28% for T = 2.8 keV

and n ≈ 10 × 1019 m−3. In the plasma region, the simple model gives about 15% larger

values than Ref. [35] indicating the error due to neglecting levels n > 3. For the design of

diagnostics, the results indicate quantitatively the required dynamic range for light detection.

Motional Stark effect spectra for the geometry of the diagnostic beam planned for W7-X

are shown in Figs. 5 and 6. The plots contain spectra for 16 spatial channels corresponding

to the beam penetrating from lower beam coordinates; the beam emission of the outermost

two channels is not excited due to vanishing plasma densities for the respective positions.

For a representative discussion, we consider a channel corresponding to the gradient region

of the plasma (bold red line in Figs. 5 and 6). Finite beam effects enter the simulations

through the beam-divergence only. Further refinement of the simulation with regard to finite

beam and finite observation cones are expected to broaden the multiplet emission further.A

more detailed neutral beam model is required, e.g., for ITER, where the resulting emission

profile of the individual multiplet components should even be expected to get structured

rather than being a single-mode (Gaussian) profile [36].

The first left and center plot of Fig. 5 show the effect of the emission anisotropy and

the observation geometry. The spectra consist of dominant peaks (for the discussed channel

on the blue side) and a broad CX contribution. The dominant peaks correspond to the
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central σ lines of the full, half and third energy component of the beam. Being broadened

due to the beam divergence, the σ- and π-components cannot be resolved as separated

lines. While the total number of emission processes is shown in the left plot, the MSE lines

significantly decrease in the center plot reflecting the different emission characteristics of the

differently polarized components. The unpolarized CX contribution, however, is unaffected

(except for the etendue). The apparent ratio of dominant peaks, moreover, is changing.

This indicates the contribution of π-lines from the full energy to overlap with the σ-lines of

the half-energy spectrum. Thus, the overlapping components of different polarization from

different beam energies may lead to misinterpretation if the radiance at the maximum of

the lines is considered only.

The center and right plot of Fig. 5 show the effect of a reduced (half) beam divergence.

Now, the π-components become visible, but again the apparent relative ratios of the dom-

inant peaks change indicating again the necessity to account for all multiplet components

properly.

To study the effect of polarizing elements, Fig. 6 shows the spectra after transversing

different polarizers. Similar to the previously discussed cases, the effect of polarizing ele-

ments affects the line ratios. It is concluded from these results that MSE diagnostics require

a quantitative consideration of both the polarization of emission as well as the polarizing

properties of the observation optics.

Finally, Fig. 7 is to discuss and to estimate the effect of non-statistical distributions.

Density dependent corrections for the upper state distributions have been taken from results

of an elaborate CRM [19] (at T = 3 keV, E = 50 keV, ~F ⊥ vbeam). The parameters aside

the density differ somewhat from the parameters ion our simulations (Ti ≈ 4 keV, E = 60

keV)), but the difference in the line ratios is considered to be representative. It can be

seen, that the radiance maximum of the central σ-component is about 10% smaller while

the π-components become up to 15 % larger due to non-statistical multiplets. The effect

must be expected to increase if the densities become smaller than here (n < 8× 1019 m−3).

As a conclusion, the effect of non-statistical distributions is a correction in the order of 10%

for the simulation of signals. For analyses, as shown in the next section, the ratio of π and

σ components is a sensitive fit parameter. Consequently, a correct interpretation of this fit

parameter needs to consider non-statistical distributions properly.
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IV. VALIDATION OF THE FORWARD MODEL ON ASDEX-UPGRADE

To check the validity of the forward model, Eq. 5 has been fitted to experimental spectra.

The set-up of the measurement is described in [26]. Purpose of the fit is to reproduce the

shape of the spectra and to determine the value of the electric (Lorentz) field. Therefore

and since an absolute calibration of the observation is underway, the CRM has not been

solved for the fit but the beam intensity is taken into account by a fit factor.

Fig. 8 shows results for MSE spectra from ASDEX Upgrade. Gross features of a typical

MSE spectrum can be clearly identified. The apparent difference to the number of peaks

compared to the W7-X simulation (cf. e.g. Fig. 6) is due to different viewing geometries

and beam energies making some π-components to appear as additional distinct lines. The

MSE lines lie in the spectral region of about 653nm . . . 655.5 nm. To suppress the high

radiance Dα radiation from the plasma edge, a wire has been placed in the focal plane of

the spectrometer as indicated by the shaded areas in Fig. 8. Nevertheless, charge exchange

processes contribute to the spectrum with a broad emission reflecting the ion temperature.

The fit gives central ion temperature of about 1.2 keV for the observation channels in the

plasma center. To attain a good fit to the data, a second contribution at lower temperature

needs to be included. Both contributions are allowed to be Doppler shifted reflecting plasma

rotation. A more detailed assessment of the broad background lines is beyond the scope of

this paper. As a third part of the spectrum, background Bremsstrahlung is subtracted as a

constant off-set. Carbon impurity lines have been fitted; these lines seem to indicate plasma

rotation as well.

Summarizing, the fit consists of three main parameters: the electric field, a polarization

factor and the beam composition. The polarization factor is sought to reflect the direction

of the electric field. It has been introduced to vary the relative intensities of π- and σ-

components entirely for each polarization state. This single factor was found to be sufficient

for the fit. The value of the resulting factor, however, cannot be explained by emission

anisotropy only. Deviations might have their origin in atomic physics effects and/or the

effect of polarizers in the observation optics (polarization dependent transmission). In order

to disentangle the different effects, calibration measurements are underway.

The resulting electric field from the spectra can be compared to the Lorentz field from

equilibrium calculations (CLISTE [37]). The MSE electric field is about 10% systematically
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larger than the results from unconstrained equilibrium calculations. Such discrepancy has

been reported in [38] and is presently under assessment. As the residuum (Fig. 8, lower

panel) indicates, the present forward model shows systematic deviations in the blue side

wing of the MSE component. This may indicate the influence of fast ion Dα emission

[39]. Furthermore, the residuum shows oscillatory deviations in the region of the Stark

multiplet. This is sought to result from non-Gaussian beam profiles of the neutral beam.

From fits, a mean total effective divergence of 1.57◦±0.12◦ (1/e) has been derived. From the

specified minimum divergence of the ASDEX Upgrade NBI (1.05◦) [40], the beam focusing

geometry (0.40◦ ± 0.06◦) and a rough estimate of the acceptance angle of the observation

optics observed (0.70◦±0.26◦) one arrives at an harmonic sum of 1.34◦±0.16◦ with an error

also considering the apparatus width of the detection system. The values agree within a 1-σ

error estimate. A more detailed neutral beam modeling with regard to the profile shape is

under investigation. A NeI line at about 650.5 nm from wavelength calibration can be found

in all spectra (not fitted).

Concluding, the fit of the forward model gave very reasonable agreement with the data

(normalized χ2/N ≈ 10; the error of the data has been determined by calibration measure-

ments at varying radiance) indicating the leading order effects to be compliant with the

choice of contributions in the Wendelstein 7-X forward model. Deviations have been figured

out and are addressed for diagnostic improvements.

V. SUMMARY

A forward model for MSE spectra has been implemented. Simulations for spectra for

Wendelstein 7-X have been performed. The required dynamic range of a detector can be

derived from results of the collisional radiative beam-plasma model. The influence of obser-

vation geometry and polarizing effects in the detection optics shows the necessity to include

the polarization properties both of emission and detection for Wendelstein 7-X example. Di-

agnostic amendments, e.g. improvements of beam divergence exemplify possible studies for

diagnostic designs. Meeting with the requirement to enhance the confidence in the design,

the validity of the model has been assessed by fitting the forward model to experimental

data from ASDEX Upgrade. The model resulted in reasonable fits; this confirms the choice

of leading order effects in the simulation.
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The physics structure of the forward model implies a modular structure of the synthetic

diagnostic software. Main parts of model modules are the beam-plasma interaction, physics

of local light emission and spectroscopic detection. The model structure defines interface

requirements for the sub-parts of the model. The implementation of the MSE forward model

as a prototype of validated synthetic diagnostics employing unified software interfaces and

re-usable software modules is underway.
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D data

pixel argument of data

λ wavelength from calibration

~F electric field measurand

θ angle of ~F with line of sight derived quantity

~n CRM state vector derived quantity

nstate
source population density of state by emission source derived quantity

~S Stokes vector derived quantity

I, Q, U, V Stokes vector components

L radiance derived quantity

ε emission coefficient derived quantity

TABLE I: Data, measurands and derived quantities in the MSE forward model.
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ne, i(r) electron/ion density transport model

Te, i(r) electron/ion temperature transport model

Z(r) effective ion charge transport model

nZ impurity density transport model

Φ electrostatic potential transport model

Er radial electric field transport model

~B magnetic field vector equilibrium

|g| metric coefficient equilibrium

~er flux surface normal vector equilibrium

r = r(~x) mapping equilibrium

n, n1, n2 quantum numbers multiplet

Aij rate coefficients for CRM atomic data, transport model

A CRM transition matrix atomic data, transport model

Aπ, Aσ± Einstein coefficients atomic data

~x real space coordinate for observation volume setting (beam line, line of sight)

s beam coordinate, line-of-sight coordinate setting (beam line, line of sight)

Pb beam power setting (NBI)

E beam energy setting (NBI)

~vb, vb beam velocity (E) setting (NBI)

αE,E/2,E/3 beam composition setting (NBI)

γb beam divergence setting (NBI)

M Müller matrix setting (observation)

Π chain of Müller matrices setting (observation)

ς CCD sensitivity setting (observation)

As spectrometer entrance area setting (observation)

Ωm minimum solid angle of detector setting (observation)

T etendue setting (observation)

ζ observation angle setting (observation)

P line profile setting, plasma

τ transmission setting (observation)

TABLE II: Summary of input model parameters (settings) for the MSE forward model.
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plasma profiles

↙ ↘
vbeam ↓ CRM optics

↓ ↓ ↓ ↓
~B −→ ~EL −→ ~F −→ ε(~x) −→ L −→ D

↑ ↑ ↑
equilibrium geometry observation

FIG. 1: Schematic flow-chart representing the forward model of spectral MSE measurements.

CRM: collisional-radiative model, ~B: magnetic field, vbeam: beam velocity, ~EL: Lorentz field, ~F :

total electric field in the moving frame, ε(~x): local emission coefficient, L: radiance, D: data
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FIG. 2: Simplified Grotian diagram representing the collisional radiative model for the simulation

of MSE spectra.
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FIG. 3: 3D-CAD view on the diagnostic beam-line and possible observation geometry of a spectral

MSE measurement on W7-X (as used for the simulations).
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X diagnostic beam (60 kV H-beam) from predictive transport simulations. The lower plot shows

CRM results from fractions for light emitting (n = 3) particles from beam (full energy) and plasma

and the profile of ionized beam particles and the beam particles. Zero of the beam-line coordinate

s is at the position of the ion-source. The vertical lines indicate the position of channels discussed

below.
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FIG. 5: Simulation of MSE spectra for Wendelstein 7-X (60 keV H0 diagnostics beam, beam
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different observation channels; the total shift corresponds to the beam coordinate reflecting the

Doppler shift of the spectrum. The left panel shows the total emission from the plasma, the center

panel encounters for emission anisotropy and rotation. The right panel corresponds to the central
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peaks mainly from σ-lines of full, half and third energy beam emission. The unpolarized charge

exchange component is indicated by CX. The peak positions apply for this figure and Fig. 6.
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