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Abstract

Particle-in-cell methods combined with a δf approach constitute an established
and powerful method for simulating collisionless kinetic equations in e.g. plasma
physics. Including collisions in such simulations requires a modified approach
leading to a two-weight scheme, which has the drawback of giving a statistical
error that increases with time. As in the collisionless case, this scheme can be
interpreted as an application of an ordinary control variate. Using an enhanced
control variate approach, an improved scheme is constructed. This approach has
been applied to a model problem with the result of a much better behaviour of
the error, which, instead of growing indefinitely, becomes bounded by the error
of a full-f scheme. In addition, the application of the enhanced control variate is
illustrated for a collisionless simulation of ITG turbulence. Here it can be used
both as a diagnostic tool and as a means to eliminate the spurious violation of
particle number conservation inherent to δf simulations due to statistical noise.
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1. Introduction

Particle-in-cell (PIC) methods [1, 2] are well established for solving kinetic
equations in complicated geometries. The gyrokinetic equation [3] is a first-
principles equation encompassing much of the physics which is necessary to
describe the confinement of hot magnetised plasmas in the core region of fu-
sion devices where, in a first approximation, the plasma can be regarded as
collisionless. When modelling such a plasma, it is highly important to simulate
ion-temperature-gradient driven modes since they can evolve into saturated tur-
bulence leading to anomalous transport. Numerically, two methods are used for
such simulations: The continuum approach, where the gyrokinetic equation is
solved as a partial differential equation, and the particle-in-cell approach. Due to
their flexibility and because they are relatively easy to parallelise, PIC methods
have developed into a powerful means of simulating fusion plasmas. Neverthe-
less, their inherent drawback is the noise due to the particle discretisation which
decreases with particle number N only as O(1/

√
N).

In fusion plasmas, the equilibrium state is usually assumed to be a Maxwellian
velocity distribution with fluctuations driven by the presence of gradients in
density and temperature. For a broad range of problems, the relative size of
such perturbations can be about O(10−2) (or less). So, the time evolution of the
system usually leads to new states that are relatively nearby to the initial state.
Consequently, a very high number of markers would be necessary in order to
make the particle noise smaller than the magnitude of the perturbation which
needs to be resolved. Especially the linear phase of an instability, where the
relative perturbation is even smaller by many orders of magnitude, would be
practically inaccessible. Therefore, using a direct (full-f) approach would result
in wasting most of the marker resolution to represent the Maxwellian and the
perturbation would be endangered of being drowned by the noise. Having low
noise becomes even more necessary since normally some moments of the distri-
bution function have a back reaction on the evolution of the system.
These problems lead to the introduction of the so-called δf approach [4] where
the markers are used to simulate only the deviation from the initial state. This
method has, since its conception, become the main method for gyrokinetic PIC
simulations. Originally, it was introduced as a splitting of the distribution func-
tion into the sum of a time-independent part (assumed to be Maxwellian) and
a time-dependent part being simulated. As a consequence, the markers have
to carry a weight evolving in time according to a differential equation. Later,
Aydemir [5] pointed out that in a Monte Carlo framework the δf scheme is
equivalent to a control variate scheme (solving the differential equation for the
weight then becomes superfluous [6]). Using a control variate not only made the
method more transparent, but also showed how it can be extended. This lead to
the development of an adjustable control variate for electromagnetic simulations
[7].
Even in the core region of a plasma, collisions can have an influence, e.g. neoclas-
sical transport is purely collisional and trapped electron modes can be stabilised
by collisions. Thus, it is necessary to extend the δf method to include collisional
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effects. While for a full-f approach it is relatively easy to find a simulation
scheme, it is more difficult to find and justify a scheme in the δf framework. A
formal way of deriving such a scheme by working in an extended phase space was
introduced in [8]. Unfortunately, this scheme was unpractical, and only after it
had been extended to a two-weight scheme in [9, 10] a more practicable scheme
resulted. Nevertheless, a major drawback of the latter scheme is that the statis-
tical error increases with time (so-called weight-spreading) and computational
expensive procedures are necessary to avoid this phenomenon [9].

Our paper is organised as follows: First, we state the problem and the
relevant equations in a general way and give a transparent derivation of the
usual two-weight scheme. Using a simple but useful example, the numerical
behaviour of the scheme is demonstrated. We then show that, in an important
special case, the scheme can be regarded as an ordinary control variate scheme.
We then introduce an enhanced control variate and use it to construct a modified
collisional scheme which shows a much better behaviour of the statistical error.
The enhanced control variate approach is further illustrated by applying it to a
collisionless simulation of turbulence in order to avoid the violation of particle
number conservation.

2. Equations

In the following, we endeavour to use a particle-in-cell method to solve a
kinetic equation of the type

df

dt
=

∂f

∂t
+ żi · ∂f

∂zi
= C(f, f) + S, (1)

where the total time derivative is denoted by a dot, f(z) is a distribution function
in a six-dimensional phase space, C(f, f) a collision operator and S a source
term. For simplicity, the vector z = (R,v) has been introduced which contains
the position R and velocity v coordinates. The equations of motion are given
by

Ṙ = v0 + v1, v̇ = a0 + a1 (2)

where v0, a0 are the unperturbed quantities which only depend on the time-
independent background and v1, a1 are the perturbed quantities which depend
on, e.g. the electrostatic potential Φ. It is further assumed that the flow given
by Eq. (2) is incompressible: 1

J
∂

∂zi

(
żiJ

)
= 0 with J being the Jacobian. The

electrostatic potential is obtained from a field equation of the type LΦ = n
where L is an elliptic operator with appropriate boundary conditions and the
density at position x is given as a moment of the distribution function

n(x, t) =

∫
f(z, t)K(x, z) dz (3)

with a given kernel K. For example, the gyrokinetic equation [3] belongs to
this type of equations and the kernel represents a gyro-averaging operation. For
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this case, the equations of motion follow from a Hamiltonian principle and thus
inherently lead to an incompressible flow.

Using the incompressibility of the flow one arrives at the conservative form
of Eq. (1)

∂f

∂t
+

1

J
∂

∂zi
(
żiJ f

)
= C(f, f) + S . (4)

The collision operator is assumed to be given by the familiar expression (see
e.g. [11])

C(f1, f2) =
1

J
∂

∂vi

(
−Si(v, f2)J f1(v) +

∂

∂vj
[
Dij(v, f2)J f1(v)

])
, (5)

where the drag vector S and the diffusion tensor D for the case of Coulomb
collisions involve the Rosenbluth potentials [12]. The dependence of S and
D on the distribution function makes the collision operator nonlinear, but for
simplicity it is usually linearised.
As a remark, we note that in the gyrokinetic equation, due to the averaging
over the fast gyration of the particle, the collision operator contains, in principle,
diffusion both in velocity and position space [13] but is often simplified to Eq. (5)
by keeping only the velocity part.

3. Collisionless δf method

One method to solve Eqs. (1-3) for the collisionless case, C = 0, is to use a
δf PIC approach [4]. For this approach, one introduces N marker particles, dis-
tributed according to a marker distribution function g(z, t) which move along
trajectories given by Eq. (2). A central point in PIC simulations is the cal-
culation of moments of the distribution function (e.g. in order to calculate the
density [Eq. (3)]), which are formulated as expectation values. Using the marker
particles, a Monte Carlo estimator then approximates the expectation values:

∫
A(z)f(z)dz ≈ 1

N

N∑

p=1

wpA(zp), (6)

where the weight wp = f(zp)/g(zp) has been introduced, zp denotes the position
of each marker p in phase space and A is an arbitrary function. The error of
this estimate is O( 1√

N
) and should be as low as possible.

The distribution function is now written as f(z, t) = f0(z) + δf(z, t) with f0
being a time-independent function and δf a time-dependent perturbation. Sub-
stituting this into Eq. (1) (with C = 0, S = 0) one obtains an evolution equation
for δf

dδf

dt
= żi · ∂f0

∂zi
. (7)
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Using the theorem of characteristics and the fact that dg
dt = 0 this gives an

evolution equation for the weight of each marker [14]:

dwp

dt
=

1

gp
żip ·

∂f0
∂zip

. (8)

The density perturbation follows from Eq. (3) as:

δn = n−
∫

f0Kdz =

∫
δfKdz . (9)

Here, the integral over f0 is known analytically while the integral over δf is
evaluated using the Monte Carlo estimator given by Eq. (6).

As Aydemir [5] showed, this procedure can be interpreted in the framework
of a Monte Carlo approach by noting that it is equivalent to the introduction
of f0 as a control variate (CV) in Eq. (3)

n =

∫
(f − f0)Kdz+

∫
f0Kdz . (10)

In the collisionless case (and with S = 0) f and g are conserved along the
trajectories (df

dt = 0, dg
dt = 0) and thus, the weight can directly be obtained as

wp = cp(t0)−
f0(zp(t))

g(zp(t0))
, cp(t0) =

f(zp(t0))

g(zp(t0))
(11)

(where cp(t0) is a constant determined by the initial conditions at t0) without
the need of integrating Eq. (8) [6].

So, in a δf simulation, each marker carries a weight wp, which is a measure of
its contribution to the distribution function f , while the markers are distributed
according to a marker distribution function g (that can be chosen independently
from f [15]). It is only necessary to resolve the deviation of f from f0 by marker
particles. This decreases the noise by several orders of magnitude, if δf ≪ f0
(as it is usually the case for microinstabilities in plasmas).

If collisions are included, f and g are no longer constants of the motion
and the above procedure cannot be used. Thus, one needs a modified method
that still separates the large time-independent part f0 from f . Such a method
was first introduced in [8] and later extended by introducing a second weight
[9, 10]. Using these ideas, we derive the collisional two-weight scheme in a
general setting.

4. Derivation of the collisional scheme

As the basis of the derivation, we use the following theorem (see e.g. [16,
17]): The solution of the n-dimensional Kolmogorov forward (or Fokker-Planck)
equation

∂

∂t
f(x1 . . . xn, t) = − 1

J
∂

∂xi

[
µi J f

]
+

1

2J
∂2

∂xi∂xj

[
Di

kD
j
l δ

kl J f
]

(12)
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is equivalent to the probability distribution function for the solutions of the
(Itoh) stochastic differential equations

dxi = µidt+Di
jdW

j . (13)

Here, µi, D
i
j ,W

j are the drift coefficients, the diffusion matrix and an n-dimensional
Wiener process, respectively.

Writing, as before, f in Eq. (1) as f = f0 + δf and linearising the collision
operator by neglecting C(δf, δf), one obtains

Pδf = C(f0, f0) + C(f0, δf) + S − S1 , (14)

where Pδf
def

= ∂
∂tδf + 1

J
∂

∂zi

(
żiJ δf

)
− C(δf, f0) and S1 = żi ∂f0∂zi have been in-

troduced. This is to be solved by using a Monte Carlo approach. Note that
the operator C(f0, δf) is a very complicated one, since the unknown δf appears
in the Rosenbluth potentials leading to an integro-differential equation. This
operator ensures momentum and energy conservation and can be important in
some applications, but it is then usually replaced by a simplified model [13, 18].
Using Eq. (5), the left-hand side of Eq. (14) can be seen to have the form of
Eq. (12). Nevertheless, the basic theorem [Eqs. (12,13)] cannot be used because
the right-hand side is not zero. To circumvent this problem one introduces an
extended phase space (R,v, w1, w2) where w1, w2 are two additional dimensions
(here we follow Ref. [9]) being interpreted as weights. In this extended phase
space, the following evolution equation for an (extended) distribution function
F (R,v, w1, w2) is postulated

P̂F +
1

Ĵ
∂

∂w1

(
A1ĴF

)
+

1

Ĵ
∂

∂w2

(
A2ĴF

)
= 0 . (15)

Ĵ denotes the Jacobian in the extended phase space, P̂ is the same as P but
with J replaced by Ĵ and A1, A2 are free quantities which are specified later.
Identifying x1 . . . x8 with R,v, w1, w2 and, following from this, making obvious
choices for µi and Di

j , Eq. (15) can be written in the form of Eq. (12) and thus
allows an application of the basic theorem. The set of stochastic differential
equations for each marker p is then

Ṙp = v0 + v1 (16a)

v̇p = a0 + a1 + S(v) +D(v) · dW
dt

(16b)

ẇ1,p = A1 , ẇ2,p = A2 . (16c)

Furthermore, the following moments of F are defined:

g(R,v)
def

=
1

J

∫
F Ĵ dw1dw2 (17a)

u(R,v)
def

=
1

J

∫
w1F Ĵ dw1dw2 (17b)

h(R,v)
def

=
1

J

∫
w2F Ĵ dw1dw2 . (17c)
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Taking moments from Eq. (15) (and assuming boundary terms to vanish) the
following equations for their evolution can be derived:

Pg = 0 (18a)

Pu− 1

J

∫
A1F Ĵ dw1dw2 = 0 (18b)

Ph− 1

J

∫
A2F Ĵ dw1dw2 = 0 . (18c)

In order to identify u with δf it is necessary to choose A1 in such a way that
Eq. (18b) can be identified with Eq. (14). This gives the condition

1

J

∫
A1F Ĵ dw1dw2 = C(f0, f0) + C(f0, δf) + S − S1 . (19)

4.1. One-weight scheme

Consistent with the condition given by Eq. (19) we can choose

A1 =
1

g
[C(f0, f0) + C(f0, δf) + S − S1] (20)

leading to the weight evolution equation

ẇ1,p =
1

g
[C(f0, f0) + C(f0, δf) + S − S1] . (21)

This is the one-weight scheme proposed in Ref. [8] which suffers from the fact
that the marker distribution function g in general is neither known (except for
some special cases) nor can be calculated with sufficient accuracy.

4.2. Two-weight scheme

Choosing

A1 =
w2

h
[C(f0, f0) + C(f0, δf) + S − S1] (22)

gives the weight evolution equation

ẇ1,p =
w2,p

h
[C(f0, f0) + C(f0, δf) + S − S1] (23)

with the unknown quantity h. One can now use the freedom given by A2 to
choose

A2 = −w2

h
[C(h, f0)− S1] (24)

leading to the following equation for h:

Ph = S1 − C(h, f0) (25)

which is solved by h = f0.
It is important to note that, by construction [see Eq. (17c)], the expectation
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value (h) of the second weight always has to give f0.
So, the two-weight scheme (it is identical to the one used in [9, 10]) follows as

ẇ1,p =
w2,p

f0
[C(f0, f0) + C(f0, δf) + S − S1] (26a)

ẇ2,p = −w2,p

f0
[C(f0, f0)− S1] (26b)

together with Eqs. (16a, 16b) for the trajectories of the markers. This scheme
is valid for the full nonlinear equation (14) where żi contains the unperturbed
part (żi0) as well as the perturbed part (żi1) of the trajectories [see Eq. (2)].
One often uses linearised equations where on the left-hand side of Eq. (14), and
consequently also in Eqs. (16a, 16b), only the unperturbed part (v0, a0) is kept,
while the right-hand side contains both parts. For this case, S1 in Eq. (26b) has
to be replaced by its unperturbed part, i.e. żi0

∂f0
∂zi .

The distribution of markers in the extended phase space can be written as a
Klimontovich density

F (z, w1, w2, t) =
∑

p

δ(z− zp)δ(w1 − w1,p)δ(w2 − w2,p)Ĵ −1(z) . (27)

Using Eq. (17) the following representations follow:

g =
∑

p

δ(z− zp)J −1(z) (28a)

δf =
∑

p

w1,pδ(z − zp)J −1(z) (28b)

f0 =
∑

p

w2,pδ(z − zp)J −1(z) . (28c)

Integrating these expressions over a small volume in phase space and eliminating
it by using g one finds

w1,p =
δf(zp)

g(zp)
, w2,p =

f0(zp)

g(zp)
. (29)

These expressions can be used to define the initial conditions for Eqs. (26) at
t0. In addition, the expression to the right gives the opportunity to trace the
evolution of the marker distribution g(zp(t)) in time.

We shortly want to discuss the collisionless case, i.e. C = 0, where it is
possible to integrate Eq. (26b) yielding

w2,p

f0(zp)
=

w2,p(t0)

f0(zp(t0))
= const . (30)

Substituting this into Eq. (26a) and using Eq. (29), one arrives at the following
one-weight scheme:

ẇ1,p =
1

g(t0)

[
S − (żi0 + żi1)

∂f0
∂zi

]
. (31)
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For S = 0 this is the standard scheme used in many applications. When the
system is initially in an equilibrium state żi0

∂f0
∂zi vanishes naturally. If this is not

the case this term is, nevertheless, often neglected (see e.g. [19]), what can now
be seen to be equivalent to introducing an artificial source given by S = żi0

∂f0
∂zi

in Eq. (1).

5. Properties of the two-weight scheme

To understand the properties of the two-weight scheme we use a one-dimensional
test problem: Ornstein-Uhlenbeck diffusion [20]

∂f

∂t
= µ

∂

∂v
(vf) +

1

2
D2 ∂2

∂v2
f . (32)

Although this process is relatively simple, it shares important features with more
complicated physical applications. For the initial condition f(v, t = 0) = G(a)

with G(a) = a√
π
e−a2v2

it has the solution

fOU(v) = G

(
1

h

)
, h2(t) =

D2

µ

[
1− e−2µt

(
1− µ

a2D2

)]
(33)

which for large times approaches the stationary solution fS
def

= G(
√
µ/D). For

µ = 0 the system has no drift and only diffuses, so the stationary state is
fOU = 0. For µ = 4, the other limiting case, the system does not evolve at
all since the stationary state coincides with the initial condition. So, increasing
µ∈ [0, 4] leads to less evolution away from the initial conditions.
The function f0 in the δf ansatz and the initial marker distribution function
are chosen as f0 = G(b0) and g = G(bg) with free constants b0, bg. The scheme
follows from Eqs. (26) and Eq. (16b) with C(f0, δf) = 0, S = 0, S1 = 0 and
S = −µv, D = D. The integration of the stochastic differential equation for the
trajectories is done using an Euler-Maruyama scheme [21]. The basic parame-
ters for the simulations are N = 4 ·104, D = 1, a = b0 = bg = 2 and a time-step
of ∆t = 5 ·10−3 (the value of µ will be given later). For comparison, we also per-
form full-f simulations for the problem by the standard procedure, i.e. applying
the basic theorem directly to Eq. (32). Then, f is directly represented by the
distribution function of the markers (importance sampling) that are advanced
using Eq. (16b) (note, that for a full-f scheme the weights are constant in time).
The initial conditions are directly represented by the distribution of the markers
at t = 0 which must be equal to f(v, 0).

In the simulations, the numerical distribution function f̂i is obtained by binning
the markers into Nb bins of width ∆v centered at vi. For doing this, it is conve-
nient to define a binning function Λi(v) =

1
∆v

[
H(v − vi +

∆v
2
)−H(v − vi − ∆v

2
)
]
.

While for full-f simulations only the markers have to be binned, the weights w1

have to be taken into account in the δf simulations giving δ̂f i =
∫
Λiδfdv =

E
(
Λi

δf
g

)
≈ 1

N

∑N
p=1 w1,p Λi(vp) and finally f̂i = f0(vi)+ δ̂f i. The error ǫ of the
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result is then defined by

ǫ2 =
1

Nb

Nb∑

i=1

[
fOU(vi)− f̂i

]2
. (34)

The error as a function of time for the full-f and δf scheme is shown in Figure 1
where we have chosen µ = 0 and µ = 3, respectively. As a time reference, we
give the value t1/2, i.e. the time at which the solution at v = 0 has decayed
to half-way between the initial and the final state. One sees that, as expected,
the δf scheme starts with a vanishing error at t = 0 but the error grows with
time and eventually exceeds the time-independent error of the full-f scheme.
In the case µ = 0, f evolves constantly away from f0 and one may argue that
this could be the reason for the error to increase with time. However, this is
not the reason, as it can be seen for the case µ = 3. Here, the final state is
essentially reached at t ≈ 0.5, i.e. the difference f − f0 stays nearly constant
for later times. Nevertheless, the error is still increasing, but at a slower rate
than for µ = 0. This is a consequence of the fact that the δf scheme should
become better if the difference between f0 and the final state becomes smaller
(since then δf ≪ f0 is better fulfilled). Choosing µ = 4 gives no evolution of the
system at all, since the initial state is equal to the final state (the error of the
δf scheme then is exactly zero in contrast to the full-f scheme, which still has a
finite error). Consequently for µ ≈ 4 the growth of the error is very small and
the δf scheme is better than the full-f scheme for a reasonably long time (e.g.
for µ = 3.9 the errors of both schemes become similar at t ≈ 20).
In order to get more insight into the reason for this behaviour (also called weight
spreading [9]) it is sufficient to use Eqs. (16b, 26b) which, for the present model
problem, can be written as

ẇ2,p = G(vp)w2,p, v̇p = −µvp +D
dW

dt
(35)

with G(v) = (µ− b20D
2)(2b20v

2− 1). The solution for v can be expressed by Itoh
integrals and the expectation value of G can then be calculated, giving E(G) =
− 1

µ (µ− b20D
2)2 for large times. Since E(G) < 0, it follows that all the w2,p will

eventually evolve towards zero, the fixed point of the first equation in Eqs. (35).
Even if f does no longer change because it has reached a stationary state, the
weights w2,p are still evolving, but with growing time more and more of them
will no longer contribute since their value is approaching zero. Nevertheless, the
expectation value of w2 in a velocity bin always has to give f0, which is only
possible if the values of the remaining w2,p grow with time. So less and less w2,p

with constantly increasing value are available and, consequently, the noise in
the expectation value gets larger. This process for the second weight w2 is then
transferred by Eq. (26a) to the first weight w1 and to δf . This behaviour of the
w2 is illustrated in Figure 2 where the probability distribution function for the
w2 is shown at different times (µ = 3 has been used). Since g = f0 has been
chosen at t = 0, all the weights initially have the same value. The distribution
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then rapidly spreads with time and develops a pronounced maximum near the
fixed point w2 = 0.

6. Improving the two-weight scheme

An error increasing with time is undesirable for a numerical scheme. Instead
one would prefer a scheme which behaves as a δf scheme for early times and for
later times has an error bounded by that of the full-f scheme.

We now define the following quantity cp(t) = w1,p(t) + w2,p(t). The first
weight can then be expressed as

w1,p(t) = cp(t)− w2,p(t), (36)

having the form of a control variate formulation but now for the collisional case.
If C(f0, δf) is neglected and S is assumed to be zero, then Eqs. (26) can be
added to give a constant of motion: cp(t) = cp(t0). As a consequence, Eq. (36)
has the same form as Eq. (11). It follows, that the equation for w2,p(t) just
describes one of the possible stochastic processes with an expectation value f0
which is then used as a CV. (One may speculate that an improved scheme could
be constructed by using a better suited stochastic process as a CV. This process
also has to give f0 but should not have a fixed point at w2 = 0.). This kind
of CV, as it follows from the δf formulation, we call ‘ordinary control variate’,
since it does not make use of the full possibilities provided by the control variate
method.
We recall the general definition of a control variate (see e.g. [22, 23]): Assume
that the expectation value E(X) of a stochastic process X is sought after, where
the variance V(X) is a measure of its error. Introduce a second process Y ,
called control variate, with known expectation value E(Y ) = y and define a new
process by

X̃ = X − α(Y − y), (37)

with α a parameter yet to be determined. Evidently, for this process E(X̃) =
E(X). Its variance V(X̃) as a function of α is minimised by choosing

α =
Cov(X,Y )

V(Y )
(38)

(with Cov(X,Y ) the covariance between X and Y ). Therefore, by using a CV,
one can construct a new process with smaller variance, where α can be calculated
by the usual estimators for the covariance and variance.
This scheme includes the ordinary CV as a special case. To see this, one has
to use the fact that the δf approach only improves the statistics under the
assumption that δf ≪ f0. In the above formulation, this means that X ≈ Y
corresponding to α ≈ 1. This shows that the δf approach viewed as a CV is not
optimal.
We now use the idea of the general CV to construct an improved scheme for
the simulation of collisions. The quantity of interest is the binned distribution

11



function f̂i = E
(
Λi

f
g

)
obtained from the processX = Λi

f
g . In order to improve

the estimator we construct the following process (setting Y = Λi
f0
g ):

X̃ = Λi
f

g
− αi

(
Λi

f0
g

− F0,i

)
, (39)

with F0,i =
∫
Λif0 dv ≈ f0(vi) the known expectation value. Using cp and w2,p

it follows that

f̂i = E
(
X̃
)
≈ 1

N

N∑

p=1

Λi (cp − αiw2,p) + αiF0,i . (40)

This motivates the introduction of a new weight w̃1,p [compare with Eq. (36)]
defined by

w̃1,p(t) = cp(t)− αiw2,p(t) . (41)

Here αi in each bin is given by

αi =
Cov(c, w2)

V(w2)
, (42)

where the usual estimators are used for the covariance and the variance.
For the example used here, cp is a constant of motion and thus the introduction
of αi can be interpreted as a way to smoothly interpolate between the two
limiting cases αi = 0 and αi = 1, corresponding to the full-f and the δf scheme,
respectively. Also αi is a measure for the quality of the CV: If αi ≈ 1 the
solution is very well approximated by the CV but if αi ≈ 0 a CV does not lead
to any improvement.
If there are not sufficient markers in a bin it is difficult to estimate the covariance
or the variance accurately. This leads to unreasonable values for αi. We have
found that in these cases, it is necessary to introduce a cutoff function for αi,
which guarantees αi ∈ [0, 1]: For example, if there are no markers in a bin, δ̂f i

cannot be estimated. Then, the best one can do is to use f0 for approximating
f̂i and consequently αi = 1 is chosen. Also, if αi > 1, what may happen if e.g.
the variance is very small, it suffices to artificially set it to one.
Figure 3 shows two runs for the same parameters used for Fig. 1 but now
employing the new scheme. It can be seen that the error of the new scheme
initially behaves as for the δf scheme, i.e. the error increases with time, but
after some time it stops growing and eventually follows the level set by the full-
f scheme. Therefore, the error of the new scheme is always lower than the error
of the δf and the full-f scheme, respectively. Note that in this test problem,
the underlying dynamics of the system is not affected. The CV only serves to
improve the estimation of the expectation values calculated to approximate the
solution. Nevertheless, in a more realistic application (e.g. in plasma physics),
the solution couples back to the system through the field equations and so the
accuracy of the moments is essential.
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7. Application to nonlinear collisionless simulations

In this section we illustrate the application of an enhanced CV for a more
elaborate problem: The simulation of collisionless turbulence driven by the ion-
temperature-gradient instability (ITG) using the TORB code. This code solves
the nonlinear electrostatic collisionless gyrokinetic equation for ions (assuming
adiabatic electrons) globally in a cylindrical configuration. The classical PIC
approach (one-weight scheme) is combined with a B-spline discretisation of the
field equation. A detailed description of the code and the equations solved can be
found in [15]. The numerical parameters from this reference (with the exception
of κTi

= 3.5) are also used in the following simulation which in addition includes
the correct treatment of the zonal flow (see e.g. [24]).

Starting from Eq. (39), where now Λi denotes a B-spline function, and using
Eqs. (37, 38) one arrives at

αi =
Cov(Λi

f
g ,Λi

f0
g )

V(Λi
f0
g )

. (43)

The implementation into the TORB code is straightforward and can be done
with little overhead in computational time since the calculation of the necessary
estimators can be combined with the calculation of the density in the general
charge assignment procedure. In a subsequent step the density is corrected cor-
respondingly by using αi before the field equation is solved.
In such a case, αi is a function of the three space coordinates. Its maximum
and minimum values as a function of time are shown in Figure 4. In the linear
phase (t < 0.1 ms) its value is, as expected, very close to one since the classical
CV is expected to work very well. Only in the nonlinear phase, a significant
deviation from one is to be expected. This is indeed the case but the variation in
αi is still relatively small (a few percent). This means that also in the nonlinear
phase the classical CV is still a very good choice and consequently the inclusion
of the αi-feedback does not lead to a significant improvement of the simulation
results. Nevertheless, αi is still a useful diagnostic quantity allowing to quantify
how good the CV of the classical δf method actually is (the small deviation of
αi from one seems to be specific for this example and can be probably quite
different in other cases).
A second example for the application of an enhanced CV is the implementation
of particle number conservation in a δf scheme. The total (physical) particle
number Nph =

∫
fdz in the volume should be conserved what is equivalent

to δNph =
∫
δfdz = 0 for all times. Using the usual estimator, this can be

written as δNph = E(w) = 1
N

∑N
p=1 wp (where again a weight w = δf

g has

been introduced). It is a general problem for classical δf simulations that δNph

starts deviating from zero with time (although this deviation gets smaller with
increasing particle number it is an undesirable behaviour which can cause prob-
lems) and consequently the system gains or looses charge. Figure 5 (upper
part, dashed curve), where the time development of δNph is depicted, shows
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that when the system enters the nonlinear phase the total particle number de-
creases. Parallel to this the field energy shows a growth after t ≈ 0.25 ms seen
in Figure 5 (lower part, dashed curve). Since this growth is not compensated
by a decrease in kinetic energy it leads to a violation of the total energy of the
system.
We now construct an enhanced CV which ensures a constant particle number:
The fact that δNph = E(w) must be zero can now be used to construct a CV,
i.e. one gets a new process by setting X = Λiw, Y = w, y = 0 in Eq. (37).
Using Eq. (38) the result is

X̃ = Λiw − E(Λiw
2)− E(Λiw)E(w)

E(w2)− E(w)2
w, (44)

giving

E(X̃) = E

(
Λiw

[
1− w − E(w)

E(w2)− E(w)2
E(w)

])
. (45)

This motivates the definition of an effective weight, which can be implemented
very efficiently,

w̃ = w
E(w2)− wE(w)

E(w2)− E(w)2
(46)

used for calculating the expectation values. By construction δNph = E(w̃) = 0
is now guaranteed. A significant improvement is seen in the electrostatic field
energy (Figure 5, lower part, solid curve): Its rapid growth for later times has
disappeared and it now stays nearly constant leading to a much better energy
conservation.

8. Conclusions

The δf approach helps to decrease the statistical noise by several orders
of magnitude in PIC simulations of collisionless plasmas. Including collisional
effects into this approach is possible by working in an extended phase space
and then deriving equations for the time evolution of the moments. While the
two-weight scheme initially shows the expected behaviour, i.e. having a much
smaller error than a full-f scheme, it has the drawback that the statistical error
increases indefinitely with time. The behaviour of the numerical scheme can
be investigated for a simple model that is not obfuscated by too many physical
details. For this reason, we have chosen the Ornstein-Uhlenbeck diffusion as
a basic model problem. It is simpler than more realistic problems but, still,
shares the property of relaxing towards a stationary state. For this model, the
behaviour of the usual two-weight scheme could be demonstrated and clarified.
We have shown that under some assumptions the scheme can be regarded as an
‘ordinary control variate’ scheme, which is also the basis of the collisionless δf
approach. It is thus possible to improve the scheme by using a more general con-
trol variate, where a free parameter is used to automatically control how much
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of the control variate is used in the calculation. This approach makes it possible
to construct an improved scheme that smoothly switches from a δf to a full-f
type behaviour, with the consequence that the advantages of both approaches
with respect to the statistical error could be combined: Initially, the error is
small since the solution is well approximated by the control variate while, for
later times, a full-f approach gives a comparatively smaller error than the δf
scheme. The presented scheme can be applied to more realistic situations where
the term C(f0, δf) is retained. This issue and applications to more complicated
cases is currently under study.
Using a general control variate is also useful for collisionless simulations either as
a diagnostic tool to trace the quality of the initially chosen CV over the lifetime
of the simulation or to be used in a feedback procedure to automatically adapt
the control variate to the evolving solution. Therefore, the presented scheme is
a step towards an adaptive control variate scheme. Also other known (global)
constraints on the system, as e.g. the particle number conservation, can be used
as a CV thus forcing the simulation to adhere to it. In case of the implementa-
tion of the particle number conservation the n = 0,m = 0 mode and thus the
zonal flow of the nonlinear system acts much more realistic which leads to a
much better quality of the field energy and consequently to much better energy
conservation. In addition, it may be possible to further adapt the CV to also
include energy conservation.
Since an enhanced CV can be implemented with a small overhead in compu-
tational time it becomes a valuable technique in the toolbox of Monte Carlo
methods and can be useful for a variety of problems.
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Appendix A. Global variance minimization with multiple control vari-

ates

Following Lavenberg and Welch [22] one can introduce Nb control variates.
Thus one starts from a generalisation of Equation (40):

E

(
Λi

f

g

)
= E

(
Λi

f

g

)
−α

[
E

(
Λ
f0
g

)
− F

]
= E

(
Λi

f

g

)
−αE(K) . (A.1)

The vector components are the individual binning functions Λi and F0,i (also
the vector K = E(Λf0/g) − F has been introduced). The vector α can be
obtained by minimisation of the variance of Λi

f
g . The solution is

α = [E(KKT)− E(K)E(KT)]−1

[
E

(
Λi

f

g
K

)
− E(Λic)E(K)

]
(A.2)

where the first quantity in square brackets, the covariance matrix, will be de-
noted by Mc. Note, that the minimisation of the variance has been performed
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over all the bins, not as before only separately for each bin. This formula hides
considerable complexity as it connects each bin with all others. The matrix
elements of Mc are subject to noise because they will be computed from a
stochastic process. By error propagation, noise from some ‘contaminated’ bins
may invalidate the calculation. Thus the calculation of M−1

c is the most critical
point of the method.
In the following, we show that M−1

c can be written in a way that avoids a
numerically expensive matrix inversion. After some algebra (and replacing the
expectation value by the usual estimator) one finds

(Mc)ij ≈
1

N

N∑

p=1

Λiδijw
2
2,p − F0,iF0,j (A.3)

what can be written as Mc = D− FFT with Dij = diδij (di > 0). The inverse
can be obtained from the Sherman-Morrison formula

Mc = D+
D−1FFTD−1

1− FTD−1F
(A.4)

leading to

(M−1
c )ij = d−1

i δij +
d−1
i FiFjd

−1
j

1−
∑Nb

k=1 Fkd
−1
k Fk

. (A.5)

Obviously, this formula only holds if 1−
∑

k Fkd
−1
k Fk 6= 0. Therefore, the con-

trol variates have to be carefully chosen so that the latter condition is fulfilled.
Actually, the matrix Mc, being a covariance matrix, is positive semidefinite.
However, as the variance is calculated using an estimator for a particular re-
alization of a stochastic process, the definiteness of the matrix is not longer
guaranteed. Therefore, it is a difficult task to perform a global optimisation.
The control variates have to be properly chosen and the quality of the variance
calculation has to be controlled during the simulation. In the local case, this
fact reflects itself in the cut-off procedure for the αi. Further research is needed
to determine how a global variance minimisation algorithm can be effectively
implemented.
Note, that for the case considered here, it is straightforward to show that if
di ≫ F 2

i holds for all i, global and local results agree.
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Captions
Figure 1: Time development of the error for µ = 0 (upper) and µ = 3 (lower)

for the full-f scheme (dotted) and the two-weight scheme (solid). The reference
times are t1/2 = 0.375 and t1/2 = 0.1, respectively.

Figure 2: Distribution function of the weight w2 for different times (µ = 3).

Figure 3: Solid: Time development of the error for µ = 0 (upper) and µ = 3
(lower) for the improved scheme. For reference the same data as in Figure 1 are
also shown (dashed, dotted).

Figure 4: Spatial maximum (solid) and minimum (dashed) value of α over
time.

Figure 5: Particle number variation over time (upper) and electrostatic field
energy (lower) for a run without (dashed) and with correction (solid).

19



0 0.5 1 1.5 2
t

0

0.005

0.01

0.015

0.02

ε 

0 1 2 3 4
t

0

0.01

0.02

ε

Figure 1

20



0 0.5 1 1.5 2 2.5 3
w2

0

1

2

3

4

5

pd
f

t=0
t=0.5
t=1
t=2
t=4

Figure 2

21



0 0.5 1 1.5 2
t

0

0.005

0.01

0.015

0.02

ε

0 1 2 3 4
t

0

0.01

0.02

ε

Figure 3

22



0 0.1 0.2 0.3 0.4
t [ms]

0.95

1

1.05

1.1

α m
in

,m
ax

Figure 4

23



0 0.1 0.2 0.3 0.4
t [ms]

-2

-1.5

-1

-0.5

0

0.5

δN
ph

 [1
0-4

]

0 0.1 0.2 0.3 0.4
t [ms]

0

0.5

1

1.5

E
fie

ld
 [1

0-4
]

Figure 5

24


