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Abstract

Numerical results for the three mono-energetic transposfficients required for a
complete neoclassical description of stellarator plagnaae been benchmarked within an
international collaboration. These transport coeffideme flux-surface-averaged moments
of solutions to the linearised drift kinetic equation whibave been determined using
field-line-integration techniques, Monte Carlo simulatpa variational method employing
Fourier-Legendre test functions and a finite differenceestdr The benchmarking has
been successfully carried out for past, present and fuwriees which represent different
optimisation strategies within the extensive configuratspace available to stellarators.
A qualitative comparison of the results with theoreticapestations for simple model
fields is provided. The behaviour of the results for the menergetic radial and parallel
transport coefficients can be largely understood from duebrttical considerations but the

mono-energetic bootstrap current coefficient exhibitgattaristics which have not been

predicted.



1 Introduction

This special topics paper describes work carried out witheélEA Implementing Agreement
for Cooperation in Development of the Stellarator Concepth the ultimate goal of providing

a comprehensive description of neoclassical transportegsses in stellarator experiments.
As in the case of axisymmetric tokamaks such a descripti@ssential for calculating the
expected flows within a flux surface (e.g. determining thet&toap current and the parallel
electric conductivity) but, additionally, the neoclasgittansport across flux surfaces represents
a considerable limitation on plasma confinement in stelf@sadue to its strong temperature
dependence (for example, in the most unfavourable casedia energy flux scales &%/2 in
stellarators in contrast with the far more benigi? scaling which holds in the tokamak banana
regime or th&™>/? dependence expected from gyro-Bohm turbulent transpints has obvious
implications for stellarator reactor prospects but cao &g of relevance for experiments of
moderate size as demonstrated by various high-perforndiackarges in the W7-AS device
which conformed with neoclassical expectations for bottigla and energy confinement [1-3].
An additional prediction of stellarator neoclassical ttyeconcerning radial transport — the
possibility of multiple solutions for the value of radialeetric field required to satisfy the
ambipolarity constraint on electron and ion particle fluxeshas also been confirmed by
experimental observations on the LHD, CHS, TJ-ll and W7-&8icks in general accordance
with theoretical expectations [4, 5].

Neoclassical theory for toroidal devices is commonly cdesed to be a mature field of
research given the extensive body of scientific literatwa&lidg with the topic; for stellarators
the two most comprehensive treatments of the subject mattepresented in review articles
[6,7]. Practical use of such theoretical results is circenibgd, however, due to the rather simple
magnetic fields which are assumed for analytic calculatafribe geometrical factors relevant
to neoclassical transport. Unfortunately, these geon®tfactors are often quite sensitive to
details of the magnetic field structure, especially in theeaaf strong three-dimensional (3-D)
shaping of the stellarator's magnetic flux surfaces regasdbf whether such shaping is intrinsic
to the magnetic configuration or attributable to a finitesgtege equilibrium (or a combination
of the two). An additional practical drawback of the analygsults is the asymptotic nature of
their validity, being appropriate for a particular set oflering assumptions which may be only
approximately fulfilled under realistic experimental carmhs.

Computational methods for determining neoclassical parisin stellarators have been
developed to avoid (or at least ameliorate) such shortcgsnoh the analytic theory and their
number has become appreciable over the past years. Hadlgribe results obtained with such
numerical tools have been presented in a variety of waysndkpg on the desired application,
although for determining neoclassical contributions ®ttlansport of plasma observables such
as density, temperature and current it is most convenieatploy the three so-calledono-
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energetic transport coefficientsThese flux-surface-averaged moments of the solution to the
linearised drift kinetic equation are particularly attrae as they contain sufficient information
to calculate all neoclassical fluxes/flows for (nearly) ey plasma parameters in a given
magnetic field configuration. At the initiation of the Intational Collaboration on Neoclassical
Transport in Stellarators (ICNTS), it was therefore a raltfirst order of business to carry
out and document a thorough benchmarking of various nualemethods used within the
stellarator community to calculate the mono-energetiogpart coefficients for realistic 3-D
magnetic-field configurations. In this manner each compurtat tool has been exposed to far
more comprehensive investigations than in previous comsgas of code results which have
typically involved the application of two numerical appcbas to a single device. The results
of this benchmarking activity, described in the followirgere obtained using the field-line-
integration techniques of the NEO family of codes [8, 9], Mo€arlo simulations employing
either full- f [10-12] or §f schemes [13-15], the variational approach of the Drift Kmne
Equation Solver, DKES [16, 17] and (where appropriate) a ernigal solution of the ripple-
averaged kinetic equation, GSRAKE [18]. The devices foraktihe benchmarking has been
performed are representative of the extensive configuraiiace available to stellarators: the
Compact Helical System (CHS) and Large Helical Device (LHi@)iotrons, both located at
Toki, Japan; the Helically-Symmetric Experiment (HSX) operation at Madison, WI, USA;
the quasi-axisymmetric National Compact Stellarator Expent (NCSX), under construction
until recently at Princeton, NJ, USA; the Quasi-Poloidal@tator (QPS), a design study
initiated by Oak Ridge National Laboratory, USA; the helig&Il, in operation at Madrid,
Spain; an example of a Quasi-lsodynamic stellarator witloiBally Closed contours of the
magnetic field strength (QIPC), taken from the literatured &wo advanced stellarators of the
Wendelstein line, W7-AS which ended operation in 2002 ac@iag, Germany, and the helias
W7-X which is under construction at Greifswald, Germany.

The fundamentals of neoclassical transport theory inastalbrs are outlined in Section 2
of this paper, beginning with the linearised drift kinetguation used to describe the plasma
at the microscopic level and culminating in the definitiontb& mono-energetic transport
coefficients which enable efficient use of the kinetic equesi solution in the macroscopic
transport equations. Section 3 provides a brief overviethef methods used to solve this
kinetic equation including consideration of each methstfengths and weaknesses. Section 4
presents the magnetic configurations for which transp@ffictents have been determined and
a discussion of the neoclassical optimisation strategychvieiach device follows. A sample
of benchmarking results is then given in Section 5 and thepapncludes with a number of
observations and remarks.



2 Basics

Neoclassical theory describes transport processes whicassumed to beadially local and
described by the linearised drift kinetic equation [16]

¢(E - B)
T(B2)
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wheref; is the (small) deviation of the distribution function fromawellian and
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op
is the Vlasov operator, witlB the magnetic-field vector3 its magnitude is the particle
speed,p = v)/v the pitch-angle variablel, = E,Vr is theradial electric field, is the
flux-surface label, angle brackets denote the flux-surfaeeage and L is the Lorentz pitch-
angle-scattering collision operator with

c=12 (0-m2).

The radial drift velocity is given by

dr  mo? (14 p?)

where m is the particle mass angl its charge,n and T" are the density and temperature,
respectively, of the local Maxwelliafiy,, = n(m/27T)*? exp(—K), K = mv?/2T is the
normalised kinetic energy and the term containjlly B) describes the effects of the parallel
electric field which appears in response to an externallyiegppoop voltage. An explicit
particle-species index has not been attached to any of thetitjges appearing in eq. (1), it
being understood that all such quantities are those of theispof interest (otherwise assigned
the indexa). Only in a single case is it necessary to abandon this caioreas the collision

frequency for particle species
v=v*= Z v/B
8

is given by the sum of “discrete” collision frequencies wéhach of the background plasma
species (including like-particle collisions)

po/B — 1/3‘//3 {erf(\/Ka/5> <1 — 721(10‘/5) + (TrKO‘/ﬂ)_l/2 exp (—Ka/ﬁ)} ,

in which the reference collision frequency is
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K8 = (mP/m*)(T*/TP)K, In A is the Coulomb logarithmg, is the permittivity of free
space, and the error function is defined in the usual manner

erly) = = [ dg exp(=¢7).

In the literaturey is commonly referred to as the deflection collision frequesnad the notation
vy is used (orv, /2) to distinguish it from frequencies which characteriseeothollisional
processes. In the current paper, it is the only collisiogdency of relevance and the subscript
has therefore been dropped.

It will be noted that derivatives of; with respect ta- andv are lacking in eq. (1) making
it possible to treat these two variables as mere paramefEnss represents a considerable
simplification of the general drift kinetic equation fromdiphase-space variables to a more
manageable three. It also allows one to streamline theianthy expressing the first-order
distribution function

n dr T

RyBy(E-B ~ vaRy [ 1dn E, 3\ 1dT ~
i = - BB - B) d°( : (K ) )mﬁ

Ty, Mt = Tar

where R, and By, are reference values of the torus major radius and magnelic dirength,
respectively, and, = mv?/(2qRyBy) is characteristic of the radial drift velocity. Written in
dimensionless form, the resulting differential equatifmsﬁ and fg (which are themselves
dimensionless) are expressed

R ~ R ~ B
By - Bl a(fy = -0 @
Ro -~ R()V -~ 1 dr

In the literature, these two equations are often said to mgotkee transport in the parallel and
radial directions, respectively. On examination, one kjyiconcludes that their solutions
can depend only on the normalis&y x B drift velocity, v3, = E,/(vB,), the normalised
“mean-free-path” \* = v/(Ryv), and the structure of the confining magnetic field (but not its
magnitude). Perhaps surprisingly, the solutions are tbhusdlly independent of the particle
species, although relevant valuesugffor electrons will typically be much smaller than those
appropriate for ions.

Within this neoclassical formalism, the relationshipswesn the flux-surface-averaged
flows, I;, and the thermodynamic forces which drive thety, may then be expressed

3
7j=1
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Conforming to the standard conventidnjs related to the radial component of the particle flux

density,I’, through
dr
I, =('-Vr)= </d3v Ef1> )

1, to the radial component of the energy flux densdy,

12=<%-VT>:</d3vK%f1>

and/; to the parallel component of the current denslty,

_<J'B>_< 3 £>
I3 = Be /dvpoOf1 .

By choosing to combine the thermodynamic forces in the ¥alhg manner

ldn ¢E, 31dT 1dT ¢By(E - B)
. A, Ay = 1202
T(B2)

T ndr T 2Tadr “Tar

themono-energetisolutions of the kinetic equations (2) and (3) may be usectterchine the
transport coefficients by energy convolution with the |ddalxwellian

2 [oe]
Li:—/ dK VK e X D;:(K) h;h;

whereh, = hy = 1, hy, = K and theD;; aremono-energetic transport coefficientsfined by

V2R ! 1 dr -~
D11:D12:D21:D22:—dzvo</ dpv—gfﬂ>
-1 d

Of these mono-energetic coefficients,; is said to describe the radial transpdpt; the parallel
transport,D;3 is characteristic of the Ware pinch ait}; of the bootstrap current. Only three
of these coefficients are independent, howeve)gas= — D3; due to Onsager symmetry.
Having knowledge of the radial profiles of these mono-enegmefficients for relevant
values of v}, and \* allows rapid determination of the neoclassical contrimsi to the
macroscopic fluxes/flows which appear in the 1-D transpasaggns for plasma observables
such as density, temperature and current. It is especiaiyhwioting in this context, that the
neoclassical fluxes/flows obtained by a straightforwardiegipon of eq. (4) may be corrected
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S0 as to restore the conservation of parallel momentum {whiciolated by use of the Lorentz
collision operator) either by solving a system of linear @&tuns in which the coefficients are
differently weighted energy moments of the mono-energeditsport coefficients [19-21] or by
solving a generalised Spitzer problem accounting for afetéif/e” fraction of trapped particles
derived from the mono-energetic quantidy; [21]. Thus, these coefficients represent a compact
repository of pertinent information required for neocleabktransport calculations and provide
a natural point of comparison for the various techniques tsgolve the linearised drift kinetic
equation.

Before proceeding further, it is appropriate to point otLesptions of the theory used here
which are in some sense “stellarator-specific”, in that ghlege restrictions on the theory’s use
for general toroidal devices (particularly axisymmetokamaks). Foremost is the assumption
made in the derivation of eq. (1) that the lowest-order dhstion function is a Maxwellian
at rest in the laboratory frame, thereby precluding strolagrma rotation. Additionally, the
E, x B drift in the Vlasov operator is taken to be incompressiblé{WB?) appearing in the
denominator instead of the correBt so as to allow eq. (1) to remain conservative despite
its reduced number of variables). Both of these assumptiomsvarranted in stellarators due
to the unavoidable parallel viscosity caused by trappetigies and by the tendency for these
devices to have large aspect ratios. For axisymmetric takanthese assumptions are often
justified as well, and in such cases the mono-energeticgaahsoefficients employed here can
be used to recover well-known results from tokamak neoidalstheory, including the intrinsic
ambipolarity of the radial particle fluxes [19-21]. In them@nt work, however, tokamak results
will appear only for reference purposes and, in particiafurnish the analytic expressions
used to normalise the mono-energetic coefficients.

To conclude this section, a short summary of the theoreggglectations concerning
the mono-energetic transport coefficients will be presintéo this purpose, one begins by
considering the simple model magnetic field

B/By=1—¢cost — e, cos(MO — No) , (5)

wheref) and¢ are the poloidal-angle and toroidal-angle coordinatespeetively, the term with
magnituder; = r/R, is a consequence of the toroidal curvature and the term waitpnitude

en, = e,(r) describes a helical magnetic field with multipolarity and field period number
N. In spite of its simplicity, this model field contains all tivgredients necessary to define a
number of terms and concepts used throughout the remairidbrsgpaper. Of elementary
importance is the fact that any variation 6f along field lines leads to reflection/trapping
of particles with small parallel velocities. In axisymmettokamaks (e.g. the model field
with ¢, = 0), the vertical drift of these trapped particles results barfana” orbits with
widths a significant fraction of the poloidal gyroradius ldtich, in the absence of collisions,
experience no net radial displacement on average over theseof their periodic bounce
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motion as bananas spend equal amounts of time above and thel@eloidal midplane. In the
long-mean-free-pathrafp) “banana-regime”, the portion (ﬁﬂ responsible for radial transport
(symmetric in the pitch-angle variabjg is thus inversely proportional ta* [22] and hence
Dy, x v (vdRo/v)Q. Approximating the velocity dependence of the collisioeguency by
v o< v3, one obtaingd;; « v~! and thermal transport coefficients; o« T-'/2fori,j = 1, 2.

Banana orbits also exist in stellarators, but of far moreceam are the orbits of particles
trapped in the helical variation @@ which remain highly localised in poloidal angle over the
course of a bounce so that the radial component of theircatirift is non-zero on average.
Given such orbits, the assumption of radially local tramspemains warranted only if the
poloidalE, x B precession frequency of particles trapped in helical app$ large compared
with v,/r or if pitch-angle scattering is frequent enough to limit tirae particles remain
localised by collisionally removing them from the ripple.the latter case (typical for electrons
in high-temperature stellarator plasmas), the symmeutitqn of fg dependsdinearly on the
normalised mean-free-path [6, 7] which leadsg, o« v,?/v « v" and L;;  T7/? for
i,j = 1,2. Where this result holds, particles are said to be in the ‘regime”, an obvious
reference to the scaling dp;; with collision frequency. The very unfavourable temperatu
dependence of the radial transport coefficients in thismegnas prompted numerous efforts
to optimise the magnetic fields of stellarators so as to redlne geometrical factor associated
with 1/v losses; various strategies for doing so are discussed tio8ecof this paper.

When the electric field is responsible for limiting the rddiacursion of localised particles,
theoretical solutions of eq. (3) have been derived assuthatgrapping/detrapping of localised
particles takes place either due to collisions or driftsthi@ case of collisions, the symmetric
portion of f; scales agvy)~3/2(\*)~"/2 which yieldsDy; o v,2(RyBy/E,)*/2v"/? and L;; o«
T5/*E,3/2 for i,j = 1,2 [6]; this is commonly referred to as the/I regime”. When drifts
are invoked the scaling of the distribution function becsrg;)(\*) ! resulting inD;;
(viRoBo/E,)*v and L;; o< T'/2E2 for 4,5 = 1,2 [23]; this is the so-called regime”.
The dependence of these transport coefficients on the ralgietric field combined with the
ambipolarity condition on the radial particle flux@s,, ¢*I{* = 0, leads to a non-linear equation
which can have multiple solutions fdf, [24]. This is a feature ofmfp neoclassical transport
theory in stellarators which has no counterpart for axisytrio tokamaks.

With regard to the parallel transport the differences betwstellarators and tokamaks are
much less dramatic. Regardless of the magnetic configatahe antisymmetric portion of;
is linearly proportional to the normalised mean-free-gitl independent of the radial electric
field for all collision frequencies [25], yieldings; o v?/v and Ls3 o< T°/2. Also regardless
of the configurationDs3 is reduced when reflected particles exist but in this resgtetairators
are affected at somewhat larger values afue to the higher bounce frequencies of localised
particles compared with tokamak bananas. Further, asgust@llarator and tokamak have
identical values ot it is evident from eq. (5) that the stellarator will have eyl fraction of
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trapped particles and thus smaller value$gf in the collisionless limit.

To obtain the last of the three mono-energetic transpofficants, needed to determine the
bootstrap current (or the Ware pinch), one must either sedv€2) for the symmetric portion
of ff or eq. (3) for the antisymmetric portion g?f;. Only the trivial solution exists in the limit
of small\* as the inhomogeneous term of each differential equatiotheagpposite symmetry
of the portion of the distribution function being sought @mhceDs;; = 0. In the opposite
limit (\* — o0) the relevant portion of the distribution function beconregependent of the
normalised mean-free-path [26] so th@§; o« vsR, and Ls; o T (for j = 1,2) for both
stellarators and tokamaks. The geometrical factors, oottier hand, can be quite different as
the bootstrap current coefficient is of opposite sign in tkisyanmetric ¢, = 0) and helically
symmetric ¢, = 0) limits of eq. (5) for conventional helical windings withi+ /N < 1, where
+ is the rotational transform value of the flux surface undesaderation. It is thus conceivable
in a stellarator to makés; vanish by an appropriate combination of toroidal curvaime
helical variation ofB. Finally, in the stellaratoimfp regime the predominant portion @‘z is
symmetric inp and strongly dependent on the radial electric field (in asitto axisymmetric
tokamaks for whichfn is predominantly antisymmetric and independengtif which makes
it plausible that the antisymmetric portion 6t will also depend or¥, due to the coupling
of symmetric and antisymmetric terms in the kinetic equatloough the Vlasov and Lorentz
operators. This would argue for a dependenc®gfon the value oby, in the stellaratofmfp
regime which is lacking for tokamaks although analytic jpcedns concerning this dependence
have yet to be formulated.

3 Numerical Methods Used to Determine Mono-Energetic
Transport Coefficients

Although analytic solutions of the kinetic equation pravidseful physical insight into the
neoclassical transport processes in stellarators, tleeysarally incapable of providing accurate
values for relevant geometrical factors and are therefdrénated help when it comes
to practical tasks such as comparing experimental resutts meoclassical expectations or
performing predictive simulations of high-temperatumlatator plasmas. For these purposes,
mono-energetic transport coefficients calculated usingerical methods are preferable since
they can be determined in all parameter ranges of intenegtr{at only for a particular ordering
of frequencies appearing in the kinetic equation) and foiti@rily complex magnetic field
structure. The latter point is of particular relevance towde configurations considered here
which are characterised by strong 3-D plasma shaping asthigwough the use of modular
coils.

The earliest numerical tools for investigating neoclaadi@ansport in stellarators evolved
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from codes written to follow particle orbits in magnetic aelectric fields [27, 28]. Mathe-
matically, such orbits represent solutions of the Vlasowatign obtained by the method of
characteristics; an extension of this approach to treatliiiekinetic equation is thus largely
a matter of developing numerical algorithms to simulatedfiects of the collision operator.
When the algorithm makes use of random numbers it is commaféyred to as a “Monte
Carlo method” to indicate the element of chance involved.

By considering an ensemble of mono-energetic test pastida orbit-following Monte
Carlo code can be used to obtain a numerical estimate,pfif the simulation parameters
are chosen to insure that particles deviate little fromrteiginal flux surface,,. This is
best achieved by considering particles with extremely bmabradii and afterwards scaling
the results to arbitrary values of gyroradius. Mathem@yi¢his may be viewed as a numerical
solution of the continuity equation describing the radiébgion of a particle “density” initially
characterised by a delta function located-at r,. Assuming sufficient radial localisation
the solution of the continuity equation is known to be Gaarssind a numerical estimate of
the diffusion coefficient can be obtained from the simulaparticles’ dispersion [28,29] once
they have been followed for a time sufficient to eliminate afigcts which the particles’ “initial
values” might have on the results (a minimum of one colligiore is mandatory).

The results from three Monte Carlo codes [10-12] which perfsimulations of this type
are included in the ICNTS benchmarking presented in Se&ioill three employ Boozer
flux coordinates [30] which greatly simplifies the descoptiof particle trajectories for given
magnetic and electric fields. The codes are similar in otegpects as well, differing mainly
in numerical details affecting how the integration of padiorbits is carried out. Given these
similarities, it was not considered necessary to apply ef¢he codes to every configuration
examined here; once the three had been successfully beraunar a handful of cases it
was deemed sufficient to treat the remaining configuratiatts avsingle code, or with two at
most. This decision was taken to conserve computationaliress as the cost of Monte Carlo
calculations increases linearly with the collision timeaking each step further into thenfp
regime increasingly expensive. This demand on compuiati@sources may be considered
a general disadvantage of orbit-following Monte Carlo 8eat for the simulations carried
out here it was also observed that the radial distributiopaticles becomes non-Gaussian
above some critical value of normalised mean-free-patth large radial displacements more
common than would be expected. This indicates that non-lmaasport is present in the
simulations [31, 32] and that the numerical scheme is nodomagpropriate for determining
D;; when)\* exceeds this critical value.

Although an orbit-following Monte Carlo code has also besediin the past to estimate
the bootstrap current in stellarators [33], this method haks been applied in the ICNTS
benchmarking to determine eithér;; or Ds3. This is simply due to a lack of numerical
candidates for such calculations as recent developmei®nfe Carlo methods to determine
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these two mono-energetic transport coefficients havedralimost exclusively on the so-called
0 f approach described in the following.

Another numerical means of determining the mono-energegitsport coefficients is the
direct time integration of eqgs. (2) and (3) for an ensemblenaino-energetic simulation
particles (more commonly referred to in the literature asrkers”) with the effects of the
Lorentz collision operator again described using Montddarethods. This yields numerical
representations for the solutions

o Y| sx-x)
[ i wir ;

wherei is the particle indexX represents the three phase-space variables and the “@leight

v B v 1dr
wl:_ﬁo diﬁpg0 wﬂ:—ﬁo tv_dE
will be recognised as the time integrals of the inhomogesdetms appearing in the dimen-
sionless drift kinetic equations. Numerical schemes f tijpe are referred to ag’ Monte
Carlo methods [13-15] to indicate that (non-Maxwellianjtpded portions of the distribution
function are being solved for, from which numerical estiesabf the mono-energetic transport
coefficients are obtained in a straightforward manner. Naat contributions to the transport
cannot arise using this approach as all simulation pastiake strictly confined to the flux
surface of interest withlr/d¢ only affecting their weightsuv;. The convergence properties
of § f Monte Carlo estimates fabs;; and D, are satisfactory due to the optimal weightings of
wr andwy; for describing the parallel and radial transport, respebtj and required simulation
times for a given statistical accuracy are directly proipol to\* as is the case for calculations
of Dy; with orbit-following Monte Carlo codes. These weightinge aon-optimal, however,
when it comes to determining the bootstrap current coeffidie stellarators (or its Onsager
conjugate, the Ware pinch coefficient) as the variance tisital estimates foD3; increases
as the square of the mean free path [15], an effect which israamty counteracted by increasing
the number of simulation particles [34] (the standard ersmmains unchanged if the ratio
of variance to number of simulation particles is held comgtathe required simulation time
for a given statistical accuracy is thus a cubic functiom\ofwhen the conventional marker
weightings are employed [15]. The Monte Carlo results preskhere for the bootstrap current
coefficient counteract this statistical degradation eithea “filtering” of weights as is done
in the VENUSt+§ f code [14] or by employing an “advanced-weighting” techmidu5]. In
the latter case it has been demonstrated that the simulatienscaling improves to\*)3/2
which nevertheless indicates that computational cosi3;pfusings f Monte Carlo codes will
exceed those ab;, with the difference widening as the collision frequencytad simulations
Is reduced.
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The Drift Kinetic Equation Solver (DKES) [16, 17] uses a ‘aional approach to solve
egs. (2) and (3), in which the distribution function is exgmed as a truncated Fourier-
Legendre series (Fourier harmonics for the poloidal-aagk toroidal-angle dependence and
Legendre polynomials to describe the pitch-angle depesgjemd the resulting system of linear
equations is solved using standard library routines. Whih magnetic field also specified
in terms of a Fourier series, the orthogonality propertieBaurier harmonics and Legendre
polynomials make it a simple task to determine DKES resuitstlie three mono-energetic
transport coefficients. For the calculations presentee,hitie minimising and maximising
variational principles have been invoked to obtain uppet mver bounds on the transport
coefficients [17]. The convergence of these bounds is masigly dependent on the value of
(worsening as the normalised mean-free-path increasé®y also affected by the complexity
of B and the value ofy;,, Computational time for DKES increases nearly cubicallyhwi
the number of Fourier modes used to describe the distribdtioction and linearly with the
number of Legendre polynomials but convergence of the beusa@ very weak function of
these two numbers in thefpregime. This is due to the increasing localisation of theéysbed
distribution function at the phase-space boundary sepgrétapped and untrapped particles,
which is poorly resolved using Fourier-Legendre test fioms. Computational resources have
limited the DKES calculations presented here to less th@0 Fourier modes and 300 Legendre
polynomials, which does not allow satisfactory convergefac some of the most collisionless
cases investigated.

To reduce the cost in computational resources, efficienhaoakst for solving “simplified”
kinetic equations have also been developed and two sucloagpes are included here in
the benchmarking. In the first approach, egs. (2) and (3) @reed ignoring theE, x B
drift in the Vlasov operator, making it possible to deterenithe mono-energetic transport
coefficients by performing properly weighted integralsrgia field line of “infinite” length
(i.e. sufficiently long to cover the magnetic flux surface)némerical implementation of this
field-line-integration technique is at the heart of all vens of the NEO code, which differ
principally in their treatment of collisions. (These verss of NEO are not to be confused with
another code of the same name recently developed for camgaof neoclassical transport in
axisymmetric tokamaks [35].) In NEO-2 [9], for example, ataptive third-order conservative
finite-difference scheme is employed to properly resoleedfiects of pitch-angle scattering
within each of the boundary layers which form when a local maxn of B is encountered
along the field line. Alternately, extremely efficient cdtions are possible in the collisionless
limit making use of the asymptotic behaviour of the solutasrwas done in the original NEO [8]
which is commonly used in stellarator optimisation paclkatge determine the level of /v
transport for a given magnetic field [36]. Both versions of DIEan deal with arbitrarily
complex B and convergence problems do not arise so that the codes’liomtgtion, the
inability to describe the influence df, on the transport, is due to the initial simplification
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of the Vlasov operator. The second approach, a numericatigolof theripple-averaged
kinetic equation, GSRAKE [18], does not suffer this shomaay. The ripple average is
a generalisation of the common bounce average (time averagethe periodic motion of
reflected particles) so as to encompass all of phase spatedimg passing particles) and is
performed as a separation of time scales to eliminate thénaslly varying spatial coordinate
in the kinetic equation. This separation can only be caroetefficiently if the structure of
B is described accurately within the so-calledltiple-helicitymodel [37] which GSRAKE
employs in the construction of its coordinate system [38)r the configurations considered
within the ICNTS such a model field is often inadequate andtdithe use of GSRAKE in
the benchmarking to a handful of cases. When applicableebhenythe method used to solve
the kinetic equation — combining a Fourier expansion in #@aining angular coordinate
and finite differencing in the pitch-angle variable — possssboth computational speed and
excellent convergence even for extreme values of nornthiisEan-free-path.

4 Configurations

Although the stellarator is the oldest concept for magnetisfinement of a fusion plasma
[39, 40], it has spent the great majority of its existencehi@ shadow of its toroidal cousin,
the tokamak. This is in spite of the fact that confinement @llatators has typically been
at least as good as that observed in tokamaks of comparaeld2}i The principal reason
for this neglect is certainly historical but stellarators also perceived as having disagreeably
complex coil systems and if the magnetic fields they prodise suffer from significant /v
transport and poor confinement of energetic particles iffisdlt to imagine such a device as an
economically attractive reactor. In defence of stellaratnl systems it must be said that their
“complexity” is accompanied by undeniable advantagegrfarst of which include the intrinsic
capability of steady-state, disruption-free operationithvthis in mind, considerable effort
has been devoted during recent years to improving the bquii, stability and confinement
properties of stellarator magnetic fields employing str8Ag shaping of the plasma column
made possible by non-planar modular coils [41]. These &ffoave resulted in a number of
optimisation strategies which share the common attribéitengploying magnetic fields with
a high degree of omnigeneity, meaning that they possessawum@aged drift surfaces — i.e.
contours of constanf, where.7 is the second (or longitudinal) adiabatic invariant of jzdet
motion — which (nearly) coincide with their magnetic flux fages [42,43]. Such efforts are
exemplified here by five configurations, among which are onecdelready in operation and
a second currently under construction. The other four @svaonsidered within the ICNTS
fall into the categories of “classical” or “partially optised” stellarators and are either active
experiments or have been recently decommissioned.
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Beginning with this latter group, the Compact Helical Sys{€HS) [44], a low-aspect-ratio
heliotron withM = 2 and N = 8, was in operation at the National Institute for Fusion Scéen
(NIFS) in Nagoya and Toki, Japan, from 1988 until 2006. Cardoof constant magnetic
field strength for the standard vacuum configuration of te\aak are plotted in Figure 1. For
CHS and all the subsequent configurations depicted in tbitose B has been calculated with
the VMEC equilibrium code [45] and then decomposed in Boaragnetic flux coordinates
according to

B(r,¢,0)/Bo(r —1+Zb0n cos(nN o) +Z Z b (1) cos(mb — nN¢)
m=1n=—o00

wherer remains the flux-surface label biutandf are now generalised angular coordinates
commonly referred to as the Boozer toroidal and poloidales)gespectively [28]. The flux
surface ap = /s = r/a = 0.5 is shown, where is the normalised toroidal flux and= «a
defines the last closed flux surface of the equilibrium. In Byaoordinates, field lines obey
df#/d¢ = +(r) and are thus “straight” with a slope given by the rotationahsform of the flux
surface. For the convention used here, the helical path @l lfhe rotates in a left-handed
sense for positive values of the rotational transform whght-handed rotation is indicated by
+ < 0. In the bottom portion of Figure 1, the value Bf B, along the field line passing through
¢ = 0 andf = 0 is plotted along a length corresponding to two poloidalwiof the device;
the rapid helical modulation and the slower toroidal vaoiabf B are easily identified.

A very similar magnetic field topology is exhibited in Figu?a by the standard config-
uration of the Large Helical Device (LHD) [46], which is alsoheliotron but with\M = 2,
N = 10 and helical windings which rotate in a left-handed senséhag éncircle the torus
instead of the right-handed rotation used for CHS. Sincéninétg operation at NIFS in 1998,
LHD has been the world’s largest stellarator, the vacuunfigoration considered here having
a major radius of?, = 3.75 m and a minor radius af = 0.56 m. For both CHS and LHD,
the Boozer representations 6f contain only a small number of harmonics with significant
magnitudes. Indeed, the standard configurations of theseléwices are approximated well
by the simple model magnetic field of eq. (5). As heliotrorss tmagnetic field structure
can be altered to a certain degree by using the vertical fild of each device to shift the
plasma column in the radial direction. An example for LHD igem in Figure 2b in which
the magnetic axis has been shifted inwardgtto= 3.6 m. This results in a magnetic field
topology in which deeply trapped particles encounter alpeamstant value ofB over the
course of their bounce motion and thus experience rathel sadal V B drift; this represents
the simplest type of “drift optimisation” in stellaratord?] and is expected to significantly
reducel/v losses since the deeply trapped particles typically doutiei disproportionately
in this regime [37]. Improving the neoclassical confinemaleliotrons in this manner has
been traditionally frowned upon, however, as an inwardt sffithe plasma column leads to a
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Figure 1. Contours of constant magnetic field strength fa fo@ld period of CHS (withV = 8) are
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shown for thep = 0.5 flux surface of the standard vacuum configuration whichas —0.4067. The
thick (black) contour denoteB/B, = 1, in the shaded region the (red) contours are at lower values,
in the unshaded region the (blue) contours are at higheesallihe contours are spaced at intervals of
0.01. The locations of the absolute maximum and minimumesabf B on the surface are indicated by
x. In the lower frame, the magnitude 8f/ B, along the field line passing through= 0 andf = 0 is

plotted over two poloidal circuits of the torus.
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Figure 2a. Contours of constant magnetic field strength rierfeeld period of LHD (withV = 10) are

shown for thep = 0.5 flux surface of the standard vacuum configuratidly & 3.7481 m) which has
+ = 0.4542. Contours have been plotted following the same scheme gegpio Figure 1. In the lower
frame, the magnitude dB /B, along the field line passing through= 0 and® = 0 is plotted over two

poloidal circuits of the torus.
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Figure 2b. Contours of constant magnetic field strength far field period of LHD are shown for
the p = 0.5 flux surface of the inward-shifted vacuum configuratid®y (= 3.6024 m) which has
+ = 0.4692. Contours have been plotted following the same scheme geglm Figure 1. In the
lower frame, the magnitude d8 /B, along the field line passing through= 0 andf = 0 is plotted

over two poloidal circuits of the torus.
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configuration with a vacuum magnetic hill which is predictecbe Mercier unstable for even
weak pressure gradients. Experimentally, increased MHDigchas been observed in LHD
for inward-shifted configurations but confinement is ndveldss superior to that observed in
the standard or in outward-shifted configurations [48, &milar results have been reported
for CHS [50], leading to the conclusion that the Mercier 8igbcriterion may be violated
in heliotrons without serious consequences and thus makifigoptimisation of this type a
viable strategy for improving the neoclassical confinemémthis context, however, it should
be noted that the Shafranov shift serves to displace the etiagaxis outwards so that the'v
transport of such an optimised vacuum configuration willsglesbe degraded when the finjte-
equilibrium is considered [51].

A different type of optimisation was undertaken in the depehent of the “advanced
stellarator” concept, which had Wendelstein 7-AS (W7-AS)ta prototype [52]. This device
had a major radius d®, = 2 m, aminor radius od < 0.2 m and was in operation at the Institute
for Plasma Physics (IPP) in Garching, Germany, from 1988 2002. W7-AS was designed
to improve on the MHD equilibrium and stability limits of dsical low-shear stellarators (such
as its predecessor Wendelstein 7-A), using non-planar taodoils to achieve an average
“elongation” of its flux surfaces = (¢,/b;4)? ~ 2. Such a reduction in the average toroidal
curvature ofB is simultaneously of benefit with regard to neoclassicaidpart as it serves to
decrease particles’ radial drift velocity. Drift optimigan of deeply trapped particle orbits was
not a goal of the W7-AS design, however, which is evident ftbecontour plot ofB shown
in Figure 3 for the: > 1/3 vacuum configuration of this device. Indeed, quite the @gir
deeply trapped particles find themselves localised in regwhereB varies considerably and
this shortcoming is further exacerbated by the appearaineecondary minima of appreciable
depth. As a consequence, thé transport of W7-AS was actually somewhat worse than that
of the classical stellarator Wendelstein 7-A [3] (whichoal®d Ry = 2 m butx =~ 1).

MHD considerations also played a dominant role in the desfghe heliac TJ-1l [53], in
operation at the CIEMAT laboratory in Madrid, Spain, sin@971. The coil system of TJ-II
was chosen to allow considerable variation of the rotatibmasform and magnetic well depth
to investigate their influence on the equilibrium and stgbproperties of the device but little
attention was paid to the magnetic field topology other tbartange the coils so as to minimise
the variation ofB on the magnetic axis [54]. Contours of constant magnetid sength for the
standard vacuum configuration of TJ-1l are plotted in Figuasd exhibit the most complicated
structure of B considered within the ICNTS. The deep, highly localisegleg of this field
are particularly detrimental with respect to neoclassiisport; as will be seen in the next
section, TJ-1l has the largestr transport among the stellarators considered here.

As mentioned at the beginning of this section, the remaisiefiarators investigated here
were designed to achieve a high degree of omnigeneity andotfiggurations which resulted
appear in the scientific literature accompanied by charget@ns such asgjuasi-helically
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Figure 3. Contours of constant magnetic field strength ferfagld period of W7-AS (withV = 5) are
shown for thep = 0.5 flux surface of a vacuum configuration which has= 0.3525. Contours have
been plotted following the same scheme employed in Figurm the lower frame, the magnitude of
B/ B, along the field line passing through= 0 and® = 0 is plotted over two poloidal circuits of the

torus.
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Figure 4. Contours of constant magnetic field strength fa foeld period of TJ-Il (withN = 4) are
shown for thep = 0.5 flux surface of the standard vacuum configuration which has —1.4759.
Contours have been plotted following the same scheme emglimyFigure 1. In the lower frame, the
magnitude ofB /B, along the field line passing through= 0 andd = 0 is plotted over two poloidal

circuits of the torus.
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symmetri¢ quasi-axisymmetricguasi-poloidally symmetriand quasi-isodynamic It will be
noted thatquasiis common to all of these designations but this adverb has bkresen by
different authors to mean different things so that a brigresion will be helpful at this
point to clarify the terminology. As originally defined, tloencept ofquasi-symmetrynade
use of the intuitively attractive observation that the stnwe of B in magnetic coordinates is
the quantity of relevance for determining particle trapeiets and if this structure possesses a
particular symmetry then its neoclassical transport piig=ewill be identical with those of
a device which has the same symmetry in real-space cooegindtus, an equilibrium with
B = B(r,0 — N¢) is quasi-helically symmetric [55] with neoclassical trpog as in a straight
helix (ignoring end losses), whil® = B(r,#) is said to be quasi-axisymmetric [56] with
neoclassical transport as in the equivalent tokamak. Tind tdonceivable quasi-symmetry,
quasi-poloidal withB = B(r, ¢), does not exist in a strict sense as its real-space equiyalen
a simple (straight) mirror, has guiding centre drift trageees which never leave their flux
surfaces so that neoclassical radial transport and baptstirrent both vanish. At finite aspect
ratio, toroidal equilibria which have zero neoclassicahport cannot exist [57] so that quasi-
poloidal symmetry [36] can hold only in the ‘weak’ sense ofck#bing equilibria for which
bo,» harmonics are dominant in the Boozer representatids. d¥lore precise is the designation
quasi-isodynamic which is used to denote omnigenous égailivith a large fraction of trapped
particles for all flux surfaces (including the magnetic qrich experience only slow poloidal
drift, on average, during the course of their bounce mot®8).[ Here, quasiis used to
signify a relaxation of the strict demands on truly isodymaequilibria [59] in which even
the instantaneous particle drift off a field line is directedy poloidally.

Although exact quasi-symmetry is not possible [60], apprations thereof are attainable
to a degree comparable with what is achieved in tokamaks whemipple due to the finite
extent of the toroidal field coils is accounted for. An exaenpf such a device is the (quasi-)
Helically Symmetric Experiment (HSX) [61] depicted in Frgwb, which has been in operation
at the University of Wisconsin—Madison, U.S.A., since 1988hough the surface shown has
an inverse aspect ratio ef = 0.0483, its toroidal curvature in Boozer coordinates is more
than two orders of magnitude smaller and is thus indiscernilith the naked eye. The visible
departure from quasi-helical symmetry is instead largely t the coil ripple produced by the
twelve modular coils in each field period. In experimentg ittmprovement in confinement
for thermal and fast particles predicted for quasi-helsgahmetry has been demonstrated in
HSX by also considering discharges in which the magnetidigoration has been altered to
purposely spoil the quasi-symmetry [62, 63].

An example of quasi-axisymmetry is provided by the magnéetd of the National
Compact Stellarator Experiment (NCSX) [64], shown in Fegérfor a standard equilibrium
with a plasma current of, = 174 kA and a volume-averagedl of 4.1% [65]. The value of
I,, assumed for this equilibrium is on the order of the expectutdirap current and serves to
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Figure 5. Contours of constant magnetic field strength far field period of HSX (withN = 4)
are shown for the = 0.5 flux surface of the standard vacuum configuration which-has 1.0537.
Contours have been plotted following the same scheme emglimyFigure 1. In the lower frame, the
magnitude ofB /B, along the field line passing through= 0 andd = 0 is plotted over two poloidal

circuits of the torus.
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Figure 6. Contours of constant magnetic field strength far fogld period of NCSX (withV = 3) are
shown for thep = 0.5 flux surface of the reference S3 plasma configuration Wjth= 174 kA and

< B >= 4.1% [65] which hast = 0.4942. Contours have been plotted following the same scheme
employed in Figure 1. In the lower frame, the magnitude3gi3, along the field line passing through

¢ = 0 andf = 0 is plotted over two poloidal circuits of the torus.
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supply roughly 30% of the rotational transform. Such anease in+ due to the tokamak-
like nature of the bootstrap current in a quasi-axisymroetevice is perhaps to be preferred
over the reduction which helical or quasi-helical symmeé&gds to but neither case offers
a straightforward solution to the problems of particle amérgy exhaust in reactor-grade
plasmas. Divertor research is still in its infancy in stedtars and experimental results exist
only for the “island” divertor concept of W7-AS and the “hedi” divertor of LHD [66]. The
first of these makes use of a naturally occurring island chétim+ = N/M, (whereM, is an
appropriate integer specific to the configuration) situatgtie edge of the confinement volume
to channel outward-flowing plasma into specially prepare@rtbr regions where recycling
and exhaust are to take place. To perform this function phppthe position and size of
the islands must conform closely with the design values ehder the divertor. This was
relatively straightforward in W7-AS, using an ohmic tramsher to compensate modest levels
of bootstrap current, thus maintaining the vacuum islantsire by means of net-current-free
operation. An island divertor accounting for large plasmaent is also conceivable but would
require a considerably more sophisticated procedure theibden experimentally demonstrated
to date. In this respect, the helical divertor inherent te kiigh-shear scrape-off layer of
heliotrons has an advantage as its physical basis, thegsstonhastization of the layer due to
multiple overlapping island chains, is rather insensitovéhe equilibrium established in the core
region. Unfortunately, construction of NCSX at the PrimcePlasma Physics Laboratory in the
U.S.A. was essentially terminated in 2008 (although sorsientg of the coils was undertaken)
and it is currently uncertain whether this device will evegim plasma operation and have the
opportunity to develop a viable divertor concept for loweah quasi-symmetric devices with
large bootstrap current.

Quasi-isodynamicity is a concept more amenable to use ofsthad divertor as it is
consistent with a suppression of the bootstrap currentengithultaneously reducing radial
transport to an acceptably low level [67]. The magnetidf&iength contours of two such
equilibria are given here — the standard vacuum configuratidhe Quasi-Poloidal Stellarator
(QPS) [68], proposed by Oak Ridge National Laboratory, Al.Sas a concept-exploration
experiment is shown in Figure 7 and a Quasi-Isodynamic gquiim with Poloidally Closed
contours of the magnetic field strength (QIPC) [69] is degmicin Figure 8. The stronger
variation of B with poloidal angle in the case of QPS is largely due to itslsaspect ratio
Ry/a = 2.65 in comparison withR,/a = 11.5 for QIPC. Both configurations have a fraction-
of-trapped-particles well in excess of 50% but nevertteedelil the requirement of small radial
transport coefficients in thenfp regime as will be seen in the next section.

The final configuration investigated within the ICNTS is theMlelstein 7-X (W7-X)
device [70, 71], which is currently under construction aP lid Greifswald, Germany. This
helias (helical-axis advanced stellarator) [72] emergenhfan integrated design process which
had the goal of finding magnetic fields which simultaneouslfilfa number of optimisation
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Figure 7. Contours of constant magnetic field strength far field period of QPS (withV = 2)
are shown for the = 0.5 flux surface of the standard vacuum configuration which-has 0.1985.
Contours have been plotted following the same scheme eglimyFigure 1. In the lower frame, the
magnitude ofB /B, along the field line passing through= 0 andd = 0 is plotted over two poloidal

circuits of the torus.
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Figure 8. Contours of constant magnetic field strength fer figld period of a QIPC equilibrium (with
N = 6) are shown for thep = 0.5 flux surface of a vacuum configuration which has= 0.9137.
Contours have been plotted following the same scheme emglimyFigure 1. In the lower frame, the
magnitude ofB /B, along the field line passing through= 0 andd = 0 is plotted over two poloidal

circuits of the torus.
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Figure 9a. Contours of constant magnetic field strength far field period of W7-X (withN = 5)
are shown for thep = 0.5 flux surface of the low-mirror vacuum configuration which has- 0.8623.
Contours have been plotted following the same scheme eglimyFigure 1. In the lower frame, the
magnitude ofB /B, along the field line passing through= 0 andd = 0 is plotted over two poloidal

circuits of the torus.
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Figure 9b. Contours of constant magnetic field strength far field period of W7-X (withN = 5)
are shown for the = 0.5 flux surface of the standard vacuum configuration which-has 0.8700.
Contours have been plotted following the same scheme emglimyFigure 1. In the lower frame, the
magnitude ofB /B, along the field line passing through= 0 andd = 0 is plotted over two poloidal

circuits of the torus.
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Figure 9c. Contours of constant magnetic field strength fer field period of W7-X (withV = 5) are
shown for thep = 0.5 flux surface of the high-mirror vacuum configuration whicls ha= 0.8823.
Contours have been plotted following the same scheme eglimyFigure 1. In the lower frame, the
magnitude ofB /B, along the field line passing through= 0 andd = 0 is plotted over two poloidal

circuits of the torus.
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CHS LHD Standard | LHD Inward-Shifted
N 8 10 10
Ry (M) 0.9210 3.7481 3.6024
a (M) 0.1905 0.5585 0.5400
r (m) 0.0953 0.2793 0.2700
t —0.4067 0.4542 0.4692
|b| > 0.01 bro = —0.09447 | by = —0.07053 | by = —0.05927
by—1 = 0.06058 | by = 0.05067 by1 = 0.05267
boy = —0.01156 | by = —0.01476 | by = —0.04956
bo.1 = 0.01045
No. of by, | > 1072 13 5 9
No. of by, | > 107* 32 18 14
W7-AS TJ-1l HSX
N 5 4 4
Ry (m) 2.0183 1.5106 1.2375
a (M) 0.1776 0.1776 0.1195
r (m) 0.0888 0.0888 0.0598
+ 0.3525 —1.4759 1.0537
D] > 0.01 bio = —0.03074 | by _y = —0.06269 | by = —0.07039
b1 = 0.02050 | by = —0.05893
by = —0.01462 | by, = 0.04030
bos = —0.01375
by, = 0.01159
NoO. of |by, | > 1073 15 36 10
No. of by, | > 107* 48 88 61

Table I. Magnetic field data obtained from VMEC equilibria tbe twelve configurations used in the
ICNTS benchmarking. In the upper portion of each column appthe name of the configuration and its
field period numberV, along with the major radiusiy, and radius of the last closed flux surfaaefor
the equilibrium considered. Data for the magnetic flux ssefaare given in the lower portion of each
column including the value of rotational transform,all Boozer harmonics oB /B, with magnitudes
exceeding one percent on this flux surface as well as the nuofilb@rmonics for whichb,, ,,| exceeds
the threshold40—3 and10~*.
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NCSX QPS QIPC
N 3 2 6
Ry (m) 1.4654 0.9173 11.846
a (m) 0.3230 0.3463 1.0270
r (m) 0.1615 0.1732 0.5135
¢ 0.4942 0.1985 0.9137
|byn| > 0.01 bio=—0.06848 | bys=0.16243 | by, = —0.22879
boo = —0.09310 |  byy = 0.05894
bio = —0.05516 | by; = 0.04338
by = —0.04576 | by = —0.02321
bio=0.02929 | bys = —0.02078
bi_1 =0.01643 | by _, =0.01999
boo = —0.01294 | byo = —0.01689
bys = —0.01680
by_s = —0.01397
bo.s = 0.01005
No. Of [byn| > 1073 15 40 27
NO. Of [byn| > 10~ 60 134 83

W7-X Standard

W7-X Low-Mirror

W7-X High-Mirror

N 5 5 5

Ry (M) 5.5267 5.5276 5.5248

a (m) 0.5109 0.5135 0.5122

r (m) 0.2555 0.2568 0.2561

+ 0.8700 0.8623 0.8823

|bim.n| > 0.01 bp1 = 0.04645 by = —0.04335 bo1 = 0.10243
by = —0.04351 | bio=—0.01794 | b, = —0.04384
b1 = —0.01902 b1 = —0.02051

NO. Of [byn| > 1073 14 12 15

No. of |by, | > 107* 50 56 54
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criteria relevant to good plasma performance. Additiondhe dimensions of W7-XK, =

5.5 m, a > 0.5 m) along with its heating and support systems were chosemdble the
high-performance, steady-state discharges necessagséssathe potential of such a device
for attractive reactor operation. For experimental fldkyjothe W7-X coil system is capable
of numerous magnetic configurations, among which are ex@snl the various neoclassical
optimisation strategies discussed here, with the exaepfiquasi-symmetry (as small bootstrap
current was an optimisation criterion for W7-X). At its silagt, this strategy involves nothing
more than the large average elongation of the W7-X flux sagagvhich lies in the range
4.5 < k < 7.0 depending on the configuration. The magnetic field for sucsa s exemplified
by the W7-X low-mirror vacuum configuration plotted in Figu®a, which is obtained by
choosing the coil currents so as to zero the toroidal-miteom (theb,; component ofB

in Boozer coordinates) on the magnetic axis. Unlike W7-A&pdy trapped particles “see”
only a rather small variation @B in this field and thus experience the full benefit of the large
reduction in average toroidal curvature, leading to a $icamt decrease in the neoclassical
radial transport. Further improvements are possible, kew®y introducing a modest toroidal
mirror into B so as to simultaneously profit from large elongation andhsturift optimisation,
as is done for the W7-X standard configuration shown in Fig@lréwhich has equal currents
in all non-planar coils, resulting ity ; = 0.046 on axis). By further increasing the toroidal
mirror, W7-X has access to quasi-isodynamic equilibriachime-averaged values in excess
of 2% for which the diamagnetic effect modifies the radial efegence of the magnetic field
strength so as to produce an average-minimBimenfiguration [73, 74]. An example of this
type is provided by the high-mirror W7-X (with ; = 0.1 on axis), depicted in Figure 9c for the
vacuum case. The mono-energetic bootstrap current ceefficare small for all three W7-X
configurations due to the approximate cancellation of tldévidual contributions attributable
to the dominant toroidal and helical components3of, , andb, ;, respectively). The residual
portion of D3, can be influenced considerably by varying the toroidal micamponent of3,
and reaches its smallest asymptotic value for the highemaase.

Magnetic field data obtained from VMEC equilibria for the twee configurations inves-
tigated within the ICNTS benchmarking are provided in Tabl@he major radius of the
equilibrium and the minor radius of its last closed flux soefdin terms of its flux-surface
label) are given for the configuration in the upper portiorea€h column; the lower portion
contains data specific to the single flux surfaces depictedarcorresponding figures of this
section including the value of rotational transform, théiwdual Boozer harmonics aB/ B
with magnitudes larger than one percent and the number ofdvecs for whichb,, ,| exceeds
the valuesi0=2 and10~*. These two thresholds are of relevance for the numericés tobich
employ a spectral representation of the magnetic field gtheas accurate determination of
the mono-energetic transport coefficients typically reggithat per mill harmonics aB are
accounted for while for some configurations it is even neamys® include allb,, ,| > 10~*.
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5 Benchmarking Results

For later use in calculations of the neoclassical fluxes fgivan magnetic field configuration
of interest, it is convenient to precalculate and then storenalised mono-energetic transport
coefficients as functions of the flux-surface label, (monergetic) collisionality, »* =
Rov/(+v), and normalised, x B drift velocity, v}, = E./(vBy), for which they have been
determined. For the benchmarking results presented isé¢lcison, normalisations to the results
for an axisymmetric tokamak witt3/B, = 1 — ¢, cos@ in the plateau ), bananalf) and
Pfirsch-Schluter®S) regimes have been chosen:

D11 ™ U2R0
DTI - Dp ) D1171 - Z -
D31 b 2 ’UdRo
Dy, = D3, = - 1—1.):
31 D§1 ) 31 te ( f)
Dss ps _ V? (B?)
D3, = pEsS — 2
33 D?I):;’S Y 33 31/ Bg

In these equationd, is the fraction of circulating (non-reflected) particlesigfhfor the large-
aspect-ratio approximation used here is givenfpy= 1 — 1.46,/¢,. For the axisymmetric
tokamak withB - VB = —+¢,(B X VB) - Vr, one can show that a single mono-energetic
transport coefficient is sufficient to describe all neodtzdseffects [19] as the other two may
be determined from

Dy=—"" 20 yp, 42
" e 4By <B2>V 31+3 vt

1 m [v? B?
Dy = — (2 20 yp).
o + € qBo<3 <B2>y 33)

Using these expressions, it is straightforward to deteentive collisional and collisionless

1 m B2 8<vdR0>2
14

asymptotes of the three normalised mono-energetic transpefficients for the large-aspect-
ratio, axisymmetric tokamak

* (% 32 * * (K —~ v
Dy, (v —>oo):3—7ry : Dy, (v _>0)N2'5€?W’
Dy, (v — o0) =0, Dy (v*—0)=1,
Dy, (v — o00) =1, D3, (v = 0) = f..
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Figure 10. Radial profiles of the effective helical ripple fig/v transport are shown for the magnetic
configurations ofi(a) CHS, (b) LHD standard(c) LHD inward-shifted,(d) W7-AS, (e) TJ-II, (f) HSX,
(g) NCSX, (h) QPS,(i) QIPC, (j) W7-X low-mirror, (k) W7-X standard andl) W7-X high-mirror.
Results from NEO for* — 0 are shown by the continuous (black) curves; estimates fristR®are
depicted by the (red) data points with upper and lower bowmdthe results indicated by “error bars”;
where applicable, analytic results obtained assuming déiptathelicity model forB are plotted by the

(black) dotted curve.

Also commonly used as a figure of merit to indicate the levél/eftransport in stellarators
is the so-calleaffective helical ripplee. ;s [75, 76], which is determined from

N 4 2 (266 )3/2
Dt = < ) i

3 v*
for the limiting casev* — 0 and E,. = 0 (a slightly different definition of effective helical
ripple has been used previously to quantify results from N&ut in the current paped, ¢
has always been calculated from the formula given abovethdsame implies, this quantity
is defined such that.;; = ¢, for the characterisation df/v transport in the simple model
field of eq. (5). Improvement of the neoclassical confinenestellarators is achieved most
“economically” by choosing a magnetic field topology withalir.;;, making minimisation
of this quantity one of the most common goals of stellarafainoisation efforts. Field-line
integration assuming* — 0 is the most efficient numerical approach for determining and
full radial profiles thereof, calculated by NEO, are giventhg continuous curves in Figure
10 for each of the twelve configurations considered here.cboparison, DKES estimates of
the effective helical ripple are also plotted for severat Burfaces, taken from calculations at
the smallest values of for which numerical convergence can still be claimed (theE3Kdata
points are the average of the upper and lower variationattd®on the result with these bounds
indicated in the figure by “error bars”). For the magnetiodgalvhich can be approximated to a
reasonable degree of accuracy using the multiple-helnsaglel [37], profiles ot.;; obtained

from analytic theory [38] are also shown by dotted lines.
A truly omnigenous device has, by definition, hov regime and hence.;; = 0. Given

this observation, one may also interpegt; as a means of quantifying the departure from this
ideal, condensing all information regarding the numberfte#raling orbits and their deviations
from the flux surface into a single value. For CHS, the stashdanfiguration of LHD, W7-AS
and NCSX the radial profiles ef s correspond very closely with the average depth of the local
ripples, increasing quadratically to large values at thieotadii of the two heliotrons while
remaining small for the quasi-axisymmetric NCSX as wouldekpected for this “stellarator
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approximation” to a rippled tokamak. The results for the angivshifted LHD illustrate the
benefits of drift optimisation in heliotrons as; is reduced by a factor of five in comparison
with the standard configuration although the number of Ieedl particles in these two cases
is nearly identical. It is also possible to significantly iease the effective helical ripple in
LHD by an outward shift of the plasma column [77] but such aecaas not included in the
ICNTS, leaving only TJ-II to provide an example of such a fdamplified” configuration.
QIPC exhibits the largest disparity betweep, and the average depth of local ripples as the
latter exceeds the former by a factor of fifty for the inner fuxfaces.

With respect to benchmarking, the NEO resultsdgy; fall within the bounds determined
by DKES in the great majority of cases, the maximum discrepé&ading to an uncertainty in
D, of less than 20%. Analytic theory is of comparable accurady @r the three heliotron
configurations; in the remaining cases it underestimates th transport as a high degree of
optimisation can be noticeably diminished by even smalbdepes from the multiple-helicity
model for B used by the theory. The accuracy of the; values determined by the other
numerical methods used in the course of the ICNTS benchnavkill become apparent from
the £, = 0 portion of the results foD?, (v*, v};) presented in the next subsection.

5.1 The Mono-Energetic Radial Transport Coefficient —D7,

In the following, benchmarking results for the normalisedno-energetic radial transport
coefficient,Dy,, will be presented as functions of andv}, for a single flux surface of selected
configurations. One surface is deemed sufficient for theeatirpurposes as the quality of
agreement between different numerical approaches is rsetdéunction of the flux surface
label for which calculations have been performed. (The bmahber of cases where this is not
true will be pointed out where they arise.)

As a first example, results from DKES, NEO-2, GSRAKE and fivenkéoCarlo codes are
compared in Figure 11 for the standard configuration of LHR.d#fferent values ofv}, are
considered and indicated by the colour code given in thedigaption. For reference purposes,
the dotted curve depicts the results for the “equivalentsyammetric tokamak with magnetic
field strengthB/ B, = 1+b,  cos # and values of, R,, +, andb, , identical with those of LHD.
The highest collisionalities plotted here are well into Bfegsch-Schliter regime where pitch-
angle scattering is so frequent that the concept of trappeticjes becomes meaningless and
accurate estimates @fy, for both stellarators and tokamaks need account only fotatwedal
nature of these devices, leading to the analytic result [78]

32 v* vt 2
Dy, =——|1 E
1 37r/<cl+<tet)]

Traditionally, poloidalE, x B precession is ignored when solving the drift kinetic equratn
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Figure 11. Normalised mono-energetic radial transporfficdent as a function of collisionality for

v =E,/(vBy) =3 x 1073, 1x 10 3,3 x 10 4,

configuration ap = 0.5. Numerical results from GSRAKE are depicted as continuowgas, those from
NEO-2 as small filled-in circlese] and from DKES as trianglesY) with upper and lower variational
bounds indicated when these lie outside the symbol. Rebuolts five different Monte Carlo codes
are plotted as circles() [12], squarest) [10], diamonds ¢) [11], stars () [13] and right-pointing

triangles ) [15]. For comparison, results for the equivalent axisyrtiingokamak ¢ = 0.2793 m,

vV

, 3 » 10 andzerofor the LHD standard

Ry =3.7481 m, + = 0.4542, b; o = —0.07053) are shown by the dotted line f@f, = 0.
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the Pfirsch-Schliter regime but, as can be seen, it becatesnt once the product of radial
electric field and collisionality is sufficiently large. Mg to lowerv*, the Pfirsch-Schluter
regime gives way to a clearly recognisable plateau reginte Wi, values somewhat larger
than those of the equivalent axisymmetric tokamak due tcsthall additional contributions
attributable to the helical componentsBf{79]. At yet lower collisionality textbook examples
of stellaratoimfp transport are on display with/v transport evident until it is suppressed by
the poloidalE, x B precession of localised particles oncguvy, falls below a certain threshold.
With regard to the accuracy of the numerical approachesgrugpd lower variational bounds
on the DKES results are plotted only when these extend autsid symbol (triangle) used
to mark their average. For the Monte Carlo results, ensesrdflenore than 1000 simulation
particles were commonly employed for the ICNTS benchmarkithough in some runs at the
lowest values of collisionality this number was reduceddesv as 250. Even in the latter case,
the relative standard error never exceeds 15%, correspgmdughly to the vertical extent of
the symbols used in the figures so that the 95% confidencevahter these results is at most
a factor of two larger (but not shown explicitly to avoid ¢kring the figure). The numerical
convergence for NEO-2 and GSRAKE may be considered exaatlfi@sults shown in this plot;
GSRAKE overestimates the transport at high collisionadibere the ripple average (which is
performed over collisionless particle trajectories) é&nlan improper weighting of the drifts
responsible for transport at these values’of

Benchmarking results for the inward-shifted LHD are présénn Figure 12 to illustrate
the effects which strong drift optimisation has 6¥j, in classical heliotrons. Noteworthy in
this regard is that the benefits of the optimisation are noficed to thelmfp regime (i.e.
collisionalities satisfying* < (4/3m)%(2¢.;)* %k, for which the mono-energeti¢/ v transport
coefficient exceeds the plateau value of the equivalenyaisetric tokamak) but also leads
to modest reductions dbf; at higher collisionality as well, as a comparison with theufes
for the LHD standard configuration will show. Within thefp regime it will be noted that
small non-zero values of the radial electric field (exy.= 3 x 105 and10~*) now produce
a much more gradual “roll-over” of the transport coefficgetitan previously, displaying rather
broad ranges of collisionality over whidhy, is only weakly dependent aw. To understand
this consequence of strong drift optimisation, one musltelsat both collisions and poloidal
precession can set constraints on the radial excursiorecalised particles in the stellarator
Imfp regime, with the relative importance of these constraintsrgby the ratiav./Q2 g, where
v, = v/F? is the collisional detrapping frequency, wiffithe fraction of phase space through
which a particle must be displaced if collisions are to reenib¥rom a local ripple, anf; =
E./(rBy) is theE, x B precession frequency. Particles witfyQ2r > 1 participate inl/v
transport with a characteristic time step proportionaltd, making drift optimisation of deeply
trapped particles highly desirable as they must be scdttbreugh a fraction of phase space
corresponding to the full depth of the local ripple and tfene have the smallest.. At the
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Figure 12. Normalised mono-energetic radial transporfficient as a function of the collisionality for
v =3%x1073,1x1073,3x10 %, , 3> 10" andzerofor the LHD inward-shifted configuration
atp = 0.5. Numerical results from GSRAKE are depicted as continuauges, those from NEO-2 as
small filled-in circles ¢) and from DKES as triangles/Y) with upper and lower variational bounds
indicated when these lie outside the symbol. Monte Carloli®are plotted as circles) [12], squares
(0) [10], diamonds ¢) [11] and right-pointing triangles{) [15]. For comparison, results for the
equivalent axisymmetric tokamak & 0.27 m, Ry = 3.6024 m, ¢+ = 0.4692, b o = —0.0593) are
shown by the dotted line fak, = 0.
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same time, however, as the collisionality decreases deeggped particles become the first
to have their radial displacements limited Ry;, signifying the end of the /v regime even
though collisional removal of shallowly trapped particlesm the local ripples will persist due

to their smaller values af. Thus, for a stellarator magnetic field without drift optgation,

the beneficial effects of thE, x B precession first act on those particles making the largest
contribution to the transport so that only a small additlalezrease in collisionality is necessary
to reach the roll-over point of th®%, results. By design, however, deeply trapped particles
contribute little to the transport in strongly drift-optised stellarators so that/Qr ~ 1 is
required for even shallowly trapped particles before thleawer can occur, pushing this point

to considerably smaller values of [76].

One might also expect the influence of the radial electrid el D7, to be modified by more
complicated magnetic field topologies, especially thosghich deep secondary minima is
are present. This was not observed for either W7-AS or Thelyever, the two most likely
candidates among the ICNTS configurations. Instead, therdigmce of the radial transport
coefficients onF, was found to be (qualitatively) identical to that of a classistellarator as
illustrated by the results for TJ-1l plotted in Figure 13.eTtomparatively poor convergence of
the DKES results for this device at low collisionality is digeits very broad Fourier spectrum
of B in Boozer coordinates; at outer radii this problem is furttveacerbated and convergence
is no longer satisfactory far < 104

Among the configurations optimised for small neoclassmsgés, benchmarking results for
Dy, are presented here for HSX (Figure 14), NCSX (Figure 15),G)(Pigure 16) and the
standard configuration of W7-X (Figures 17 and 18). For campa with the HSX results
the dotted curve depicts the neoclassical transport in gé/alent helically symmetric field
B/By = 1+ by cos(f — N¢), obtained from a simple isomorphic transformation of the
axisymmetric tokamak results [80]. In plotting the resutiswever, the normalisation remains
the same in all figures, e.g. in the plateau regime one expgcts: (b 1/€;)%¢ /|t — N| ~ 0.75
for HSX while for NCSX one ha®j, = 1/k =~ 0.36. The approximation to quasi-helical
symmetry is sufficiently good for HSX that the banana reginhiet® helically symmetric
counterpart may be identified in the range of collisionaditsatisfying3 x 1073 < * <
0.03, although typical stellarator behaviour of tii&, results is evident at lower values of
collisionality even though it is of a magnitude small cormgzhto that of classical stellarators.
The NCSX data exhibits similar properties except that threaba regime appears less distinctly
as this regime first emerges at lower collisionality in thaiealent axisymmetric device.

Stellarators with predominang ,, harmonics in their Boozer-coordinate representations of
B are known to exhibit significantly modified behaviour bf, over the range of collision
frequencies in which the plateau regime would otherwiseXpeeted to appear [81]. QIPC
offers an excellent example of such behaviour as referemdhbet results for the equivalent
axisymmetric tokamak (dotted curve in Figure 16) clearlysirates. For* < 5 x 1073,
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Figure 13. Normalised mono-energetic radial transporfficdent as a function of collisionality for
vy =3x 1073, 1 x 1073, 3 x 107, , 3 x 107" andzerofor TJ-Il atp = 0.46. Numerical
results from NEO-2 are depicted as small filled-in circk€sahd those from DKES as triangle&a ) with
upper and lower variational bounds indicated when theseutside the symbol. Monte Carlo results
are plotted as circles) [12], squares ) [10], stars () [13] and right-pointing triangles) [15].
For comparison, results for the equivalent axisymmetri@imoak ¢ = 0.0815 m, Ry = 1.5106 m,

+ = 1.4753, by o = —0.0533) are shown by the dotted line fa@#, = 0.
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Figure 14. Normalised mono-energetic radial transporffiodent as a function of collisionality for
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results from NEO-2 are depicted as small filled-in circk€sahd those from DKES as trianglea ) with
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are plotted as circles() [12] and right-pointing trianglesiX) [15]. For comparison, results for the
equivalent helical symmetry-(= 0.0598 m, Ry = 1.2375 m, ¢+ = 1.0537, N = 4, b;;; = —0.07039)
are shown by the dotted line fdf, = 0.
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are plotted as circles() [12] and right-pointing trianglesiX) [15]. For comparison, results for the
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shown by the dotted line fak, = 0.
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Figure 17. Normalised mono-energetic radial transporffiodent as a function of collisionality for
v =3x1073,1x10 3,3 x10 4, , 3 x 10 andzerofor the W7-X standard configuration at
p = 0.5. Numerical results from GSRAKE are depicted as continuouges, those from NEO-2 as small
filled-in circles @) and from DKES as trianglegY) with upper and lower variational bounds indicated
when these lie outside the symbol. Results from four diffeMonte Carlo codes are plotted as circles
(O) [12], squarest) [10], stars J) [13] and right-pointing trianglesX) [15]. For comparison, results
for the equivalent axisymmetric tokamak-+€ 0.2555 m, Ry = 5.5267 m, + = 0.870, b; o = —0.01902)
are shown by the dotted line fdf, = 0.
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however, all the typical characteristics loffp radial transport in stellarators appear for this
configuration as well. With regard to the numerical resu@PC is noteworthy as the
convergence of low-collisionality DKES runs shows unubuaktrong dependence on the
magnitude of the radial electric field; for upper and loweriatonal bounds differing by
considerably more than an order of magnitude the DKES 1eaud#t considered unreliable and
do not appear on the plots.

The use of GSRAKE in the ICNTS benchmarking activity has besstricted to the six
configurations with magnetic field strengths which (at Idasthe majority of flux surfaces)
can be accurately approximated using the multiple-hgliobdel [37,38]; these comprise CHS,
the standard and inward-shifted LHD and the three W7-X candiions. For the heliotrons,
GSRAKE results are consistently in good agreement withelodshe other numerical methods
but this is not always the case for W7-X as the example of Eidut demonstrates for the
p = 0.5 flux surface of the standard configuration. One notes pdatiguior these results that
the accuracy of GSRAKE is satisfactory fér. = 0 but then steadily worsens as the value
of the radial electric field is increased. This discrepanicyiishes quite rapidly, however,
as the radius of the flux surface under consideration is dseckand is no longer evident
for the p = 0.25 results plotted in Figure 18. To summarise the full set ofdbemarking
results for W7-X, GSRAKE performs rather poorly for the stard configuration, accurately
determiningD7, (v*, vj;) only for those flux surfaces with < 0.4, while for the low-mirror
and high-mirror configurations this “critical” radius maveloser to the plasma edge and
thus to radii where the fairly poor description 8f provided by the multiple-helicity model
noticeably influences the accuracy of GSRAKE calculatioWghether the model field also
affects the accuracy of results for the standard configumatias investigated by performing
a second set of DKES computations for the= 0.5 flux surface assuming the identicBl
used by GSRAKE. Perceptible reductionsof, for »* < 5v}, were indeed obtained with
the model field but good agreement with GSRAKE results wag exlended to the range of
collisionalitiesv},/2 < v* < 5v}, with clear differences remaining at smaller. This could
indicate that use of the ripple average is not always adbies$or simplifying the full drift
kinetic equation even if the structure Bfis elementary enough to pose no obvious difficulties
but, on the other hand, it may simply point to shortcomingth numerical implementation
of GSRAKE. From the point of view of code benchmarking, hoerewt is sufficient to note
that GSRAKE results must be taken with a grain of salt if coomating data from Monte Carlo
simulations and/or DKES is lacking.

5.2 The Mono-Energetic Parallel Transport Coefficient —D73,

Calculation of the parallel transport coefficient in toridievices is historically associated
with determining a plasma’s electric conductivity. Unlitakamaks, however, ohmic current
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plays at most a secondary role in establishing the poloioladponent of the magnetic field in
stellarators and this is reflected in the early scientiferéiture describing neoclassical transport
in helical devices by a dearth of papers in which solutiorepf(2) are presented. This situation
has changed somewhat in recent years with the developmeatiofis momentum-correction
techniques [19-21] which correct the flux-surface-avedageoclassical flows so as to recover
the conservation of parallel momentum which is violated B¢ of the Lorentz operator to
describe collisions in the drift kinetic equation. Whetkeeking the solution of a linear system
of moment equations or the iterative solution of a genezdlSpitzer problem, all momentum-
correction techniques require knowledgel#f;, and thus a means of solving eq. (2) becomes
mandatory. Nevertheless, the choice of numerical toolddang so remains rather limited; for
the ICNTS benchmarking, results from DKES, NEO-2 ang onte Carlo code are compared
in this subsection.

In Figure 19 the normalised mono-energetic parallel trartspoefficient is plotted as a
function of v* and vy, for the standard configuration of LHD. Data sets for only ¢éhvalues
of F, are considered sufficient here as the symmetry propertiéseo¥lasov operator cause
one to expect that the antisymmetric portionf@f(and henceDs;) will be independent of the
radial electric field as long as;; < +¢;, which is already an ordering assumption required
to express the linearised drift kinetic equation in the menergetic form used here. As can
be seen from the DKES and Monte Carlo results, this expectasi confirmed by these two
numerical solutions of eq. (2); a very weak dependence oDKES results onZ, is observed
for v3 = 1073 (especially for5 x 10~ < v* < 5 x 1072) but these changes b3, are too
small to be verified by Monte Carlo simulations given theist&al uncertainty inherent to this
method of solution. As a consequence, the neglect offthe B drift, which underlies the
field-line-integration technique, represents no drawliackccurate calculations of the mono-
energetic parallel transport coefficient and makes NEOe2nbst efficient numerical tool for
this task.

For comparison,Dj3,(v*) for the equivalent axial and helical symmetries is given in
Figure 19 by the dotted curves. At the highest collisioregithe results for both symmetries
are identical as collisions are too frequent for detailsh&f magnetic field structure to have
any influence. The bounce frequency of localised particlddHD is much higher than that of
banana orbits in the equivalent tokamak, however, so tlatolisionality at which trapped-
particle effects begin to redude?, is correspondingly larger and coincides quite well with the
v* value at which the equivalent helical symmetry is first affelc In the collisionless limit
the value ofDj}, asymptotically approaches the fraction of circulatingtiotes (which never
undergo reflection) which for an arbitrarily complex magnéeld is given by

_§<BQ> 1 \
Jle=1m /o “ <m>
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Figure 19. Normalised mono-energetic parallel transpoefficient as a function of collisionality for
v =1X 1073, andzerofor the LHD standard configuration at= 0.5. Numerical results
from NEO-2 are depicted as small filled-in circleg,(those from DKES as triangleg\) with upper
and lower variational bounds indicated when these lie datshe symbol and results from a Monte
Carlo code [15] are plotted as right-pointing triangles.( For comparison, results for the equivalent
axisymmetric tokamakr(= 0.2793 m, Ry = 3.7481 m, + = 0.4542, b; o = —0.07053) and helical
symmetry (V = 10, by ; = —0.05067) are shown by the dotted lines f@,. = 0. The collisionless
asymptote, the fraction of circulating particles, is irad&d for the LHD standard configuration by the

dot-dash line.
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Figure 20. Normalised mono-energetic parallel transpoefficient as a function of collisionality for
vy =1x1073, andzerofor NCSX atp = 0.5. Numerical results from NEO-2 are depicted
as small filled-in circlesd), those from DKES as triangleg\() with upper and lower variational bounds
indicated when these lie outside the symbol and results &donte Carlo code [15] are plotted as right-
pointing triangles ). For comparison, results for the equivalent axisymmetkamak ¢ = 0.1615 m,
Ry = 1.46564 m, + = 0.4942, by = —0.06848) are shown by the dotted line fdt, = 0. The

collisionless asymptote, the fraction of circulating ets, is indicated for NCSX by the dot-dash line.
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Figure 21. Normalised mono-energetic parallel transpoeffecient as a function of collisionality for
vy =1X 1073, andzerofor the W7-X standard configuration at= 0.5. Numerical results
from NEO-2 are depicted as small filled-in circleg,(those from DKES as triangleg\) with upper
and lower variational bounds indicated when these lie datshe symbol and results from a Monte
Carlo code [15] are plotted as right-pointing triangles.( For comparison, results for the equivalent
axisymmetric tokamakr( = 0.2555 m, Ry = 5.5267 m, + = 0.870, by o = —0.01902) and helical
symmetry (V = 5, by;; = —0.04351) are shown by the dotted lines fd#, = 0. The collisionless
asymptote, the fraction of circulating particles, is iraded for the W7-X standard configuration by the

dot-dash line.
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whereB,,,, IS the maximum value o on the flux surface. This quantity is easily determined
by numerical integration and its value for LHD is indicatedte figure by the dot-dash line,
providing an additional “analytic benchmark” for smatiresults. The three sets of numerical
results recover the expected values/gf, in both the collisional and collisionless limits and
exhibit excellent agreement for all other values of catlmlity as well, marking a successful
benchmarking of the mono-energetic parallel transporffictent for LHD.

The numerical calculations adb;; are in equally good agreement for the other ICNTS
configurations and the qualitative behaviour of the ressitsmiformly in line with expectations
so that it will suffice here to present only two further benelnking examples. These are
given in Figure 20 for NCSX and in Figure 21 for the standardfiguration of W7-X. For
NCSX, D3, (v*) departs only marginally from the curve for the equivalekiatmak in keeping
with its approximation to quasi-symmetry; a similar comhaty of the results for HSX and
the equivalent helically symmetric configuration has alserbobtained. For the remaining
configurations, however, thB}, values bear little resemblance to any set of results oldaine
using a single-harmonic truncation Bf as the curves for W7-X serve to illustrate.

5.3 The Mono-Energetic Bootstrap Current Coefficient —D73,

Benchmarking results are presented in this subsectiorhéolasst of the three mono-energetic
transport coefficients, which may be said to characterideeethe bootstrap current (when
used in eq. (4) to determing) or the Ware pinch (when calculating and 7). Under
common experimental conditions in stellarators the thelynamic force A; is much too
weak to produce an appreciable particle or energy pinch,elew so that the terminology
mono-energetic bootstrap current coefficient is ofteniagphterchangeably to both;, and
—Ds3. This convention is also followed here — all results are esped in terms of the
normalised mono-energetic bootstrap current coefficibft, regardless of whether they have
been obtained from numerical solutions for the symmetrit o offf or for the antisymmetric
portion of fr.

As a first example, benchmarking results as functions’ofand v, are compared in
Figure 22 for the LHD standard configuration. The resultstha equivalent axisymmetric
tokamak are shown by the dotted curve and the predicted deyimpalue of D}, in the
collisionless limit [82,83] has been evaluated numencilt LHD and is given by the dot-dash
line. This asymptotic value is well below one (as would beestpd due to partial cancellation
of the contributions attributable to the toroidal curvatand helical variation oB?) but unlike
the case of a tokamak it does not represent the upper bound;ofor this configuration.
Instead, depending on the magnitudespf the numerical results can attain values more than
a factor of two larger and even exceed the level of the egemiadxisymmetric tokamak in
a handful of cases. This “overshoot” is strongly reducediasncreases and the larger the
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Figure 22. Normalised mono-energetic bootstrap curreaffictent as a function of collisionality for
v =3x1073,1x103,3x 10 %, , 3% 107 andzerofor the LHD standard configuration at
p = 0.5. Numerical results from NEO-2 are depicted as small fillediicles @) and those from DKES
as triangles £\) with upper and lower variational bounds indicated whersé¢hige outside the symbol.
The results from VENUS§ f are plotted as upside-down triangleg)(and those from a second Monte
Carlo code [15] are shown by right-pointing triangles) vith the standard error indicated when this is
larger than the symbol. For comparison, results for thevadgimt axisymmetric tokamak & 0.2793 m,

Ry = 3.7481 m, + = 0.4542, by = —0.07053) are shown by the dotted line fdt, = 0. The
collisionless asymptote [82, 83] for LHD has been evaludigdiumerical integration and is

shown by the dot-dash line.
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normalised radial electric field becomes the more rapidéy fimerical results in thenfp
regime approach the collisionless asymptote.

As regards the actual benchmarking for LHD, the results ftbm different numerical
calculations ofD3, exhibit satisfactory agreement although accuracy doderssmewhat at
the smallest values of collisionality. For DKES, the probles the usual one at low* of poor
convergence of the upper and lower variational bounds orirémesport coefficient (at least
for v = 0). As collisionality is reduced the VENUS) f Monte Carlo code, which employs
filtering to reduce the statistical noise in its calculat@fthe mono-energetic bootstrap current
coefficient, produces results which become increasingbgddent on the choice of filters with
the numerical value foD}, changing by 40% for the most collisionless case as the uppér |
on the perturbed distribution function was varied in thegaf®.01 < §f/fy < 0.05. The
right-pointing triangles indicate the statistical mearregults from the) f Monte Carlo code
which uses advanced weighting techniques [15] with erros baed to depict the standard error
of the mean when this exceeds the size of the symbol.

Several other ICNTS configurations were found to have redolt D3, (v*, v};) which,
at least qualitatively, mirror those of the LHD standard faguration. CHS, the inward-
shifted LHD, W7-AS and TJ-1l all have mono-energetic bo@igtcurrent coefficients which are
reduced in thémfpregime as the magnitude of the radial electric field is ineeelauntil finally
converging to the value of the collisionless asymptote & tonfiguration. Although this
asymptote always satisfiés;;, < 1, the maximum overshoot generally exceeds unity (reaching
as high asDj;, ~ 3 for TJ-ll) and occurs for small values of; at experimentally relevant
collisionalities. This becomes of some practical impocawhen the “ion-root” solution for
E,. emerges from the ambipolarity constraint on the radialigarfluxes [24], the value of
which may be often estimated by solvith’ - Vr) = 0, since for comparable ion and electron
temperatures the radial electron particle flux is smallantits ion counterpart by the square-
root of their mass ratiqym®/m?)'/?, if ambipolarity is ignored. Expressing the thermodynamic
forcesA; and A, explicitly, assumingd; to be negligible and setting = Z’e, whereZ is the
charge state andthe elementary charge, the radial electric field is then daorsatisfy

Z'eE, idni N L, 3 idTi
Ti  nidr Tidr
Substituting this into the expressions for the ion and ebdecparallel current densities yields
(J'-B)
GBO

(Je.B) . [1dn® L¢ 3\ 1dTe 1 T'/1dn L, 3\ 1dT!
=n°L§ { ———+ —— | = + === +|=—-z]= :
eBy ne dr L, 2)Tedr Z'Te\n'dr Ly, 2)7T"dr
With regard toD,; the ions will be found predominantly in thg/v or v regimes, where
Ly, /Ly, — 3/2 varies from 5/4 to 1/2, respectively [84]. The thermal trzor$ coefficients

Ly, L ) 1 7"

= —n'Z'L L — .
e (Lgl Li,) T dr
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obtained by convolutions dD;; may be expected to adhere closely to the relationship valid i
the collisionless limit$, /L$, —3/2 = 1. Thus, the ion-root solution fak, is seen to “transfer”
current from the ion to the electron channel to such an exterttthe bootstrap current in the
stellaratoimfp regime is carried chiefly by electrons for which small valoésy, are relevant
for determining the crucial§, coefficient. More accurate calculations of the ion and ebect
bootstrap current densities — in which the ambipolaritydibon is solved exactly and the
flows are corrected to satisfy parallel momentum consemmat- will deviate to some extent
from these analytic expressions but the electron chann&hires dominant when the ion-root
solution forE, is realised [21, 85].

For magnetic configurations which are approximately qegsmmetric it is perhaps plausi-
ble to expect results fab}, which reflect the corresponding spatial symmetry and héive ¢ir
no dependence on the radial electric field. What actuallyi®is considerably more intriguing,
however, as the benchmarking results for NCSX (Figure 288X (Figure 24) demonstrate.
In the case of NCSX there is indeed relatively little depem#eof the numerical results on
vy, but the calculated values @J;, agree with those of the equivalent axisymmetric tokamak
only whenv* > 5 x 1072 and otherwise lie below this reference curve, the depathaefrom
increasing as the collisionality is reduced. It is also btgahat the numerical results show
no clear tendency to converge to a constant value at the tawesonsidered here, having
already dropped below the predicted collisionless asytaptdhis behaviour is confirmed by
each of the computational methods and may be consideregircerie to the relatively small
numerical/statistical errors of the NCSX calculations.

For HSX, the most dramatic departure of the numerical redtdtn the reference curve for
the equivalent helical symmetry occurs at low collisiotydior v3, = 0 and is verified by Monte
Carlo, NEO-2 and DKES calculations. By performing addistbBKES computations with
greatly simplified magnetic field spectra it was found thatdoehaviour appears when the strict
helical symmetry of a single ; harmonic is perturbed by an additiorg) ; term withm > 1;
in this particular example wheiln ; = —0.07039 is augmented by, ; = —0.00268. Although
the importance of such small magnetic field harmonics taferesults is rapidly suppressed
by introducing modest values af; into the calculation this will often be of little relevance
when determining the electron bootstrap current. Givensibe and plasma parameters of
HSX there is little to fear from larger negative values of bwotstrap current but for a high-
temperature ion-root discharge in a larger version of teidak the resulting reduction of the
rotational transform might be a cause for concern, wamgrfirther investigations in which
VMEC equilibrium calculations account for the bootstrapreat density profiles in a self-
consistent manner.

Strict poloidal symmetry produces zero bootstrap current@though the corresponding
quasi-symmetry cannot exist, it is nonetheless possibla fstellarator which has dominant
bo,» harmonics in its Boozer representation®fto achieve extremely small values bf;, at
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Figure 23. Normalised mono-energetic bootstrap curreefficeent as a function of collisionality for
v =3x1073, 1x1073,3x 107", , 3% 10" andzerofor NCSX atp = 0.5. Numerical results
from NEO-2 are depicted as small filled-in circled &énd those from DKES as trianglesa ] with upper

and lower variational bounds indicated when these lie dattie symbol. The results from VENUYS f

are plotted as upside-down triangleg)(and those from a second Monte Carlo code [15] are shown
by right-pointing trianglest¢) with the standard error indicated when this is larger then symbol.

For comparison, results for the equivalent axisymmetri@imoak ¢ = 0.1615 m, Ry = 1.4654 m,

+ = 0.4942, by o = —0.06848) are shown by the dotted line fdr, = 0. The collisionless asymptote
[82,83] for NCSX has been evaluated by numerical integnadiod is shown by the dot-dash line.
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Figure 24. Normalised mono-energetic bootstrap curreaffictent as a function of collisionality for
v =3 x 1073, 1 x 1073, 3 x 1077, , 3 % 107" andzerofor HSX atp = 0.5. Numerical
results from NEO-2 are depicted as small filled-in circles those from DKES as triangleg\() with
upper and lower variational bounds indicated when thesmiliside the symbol and results from a Monte
Carlo codes [15] are plotted as right-pointing triangle$ ith the standard error indicated when this
is larger than the symbol. For comparison, results for thévatent helical symmetryr(= 0.0598 m,
Ry =1.2375m, + = 1.0537, N = 4, by;; = —0.07039) are shown by the dotted line fd, = 0. The
collisionless asymptote [82, 83] for HSX has been evaludiedumerical integration and is shown by

the dot-dash line.
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Figure 25. Normalised mono-energetic bootstrap curreefficeent as a function of collisionality for
v =3 x 1073, 1 x 1073, 3 x 1077, , 3 % 107" andzerofor QIPC atp = 0.5. Numerical
results from NEO-2 are depicted as small filled-in circles those from DKES as triangleg\() with
upper and lower variational bounds indicated when thesmiliside the symbol and results from a Monte
Carlo codes are plotted as right-pointing triangled [L5]. For comparison, results for the equivalent
axisymmetric tokamakr(= 0.5135 m, Ry = 11.846 m, + = 0.9137, b; o = —0.01689) are shown by
the dotted line for, = 0. The collisionless asymptote [82, 83] for QIPC has been atatliby

numerical integration and is shown by the dot-dash line.
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Figure 26. Normalised mono-energetic bootstrap curreaffictent as a function of collisionality for
v =3x1073,1x10 3,3 x10 4, , 3 x 10 " andzerofor the W7-X standard configuration at
p = 0.5. Numerical results from NEO-2 are depicted as small fillediicles @) and those from DKES
as triangles £\) with upper and lower variational bounds indicated whersé¢hige outside the symbol.
The results from VENUS§ f are plotted as upside-down triangleg)(and those from a second Monte
Carlo code [15] are shown by right-pointing triangles) vith the standard error indicated when this is
larger than the symbol. For comparison, results for thevadgmt axisymmetric tokamak & 0.2555 m,

Ry = 55267 m, + = 0.870, by o = —0.01902) are shown by the dotted line fdf, = 0. The
collisionless asymptote [82, 83] for W7-X has been evaldide numerical integration and is

shown by the dot-dash line.
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experimentally relevant collisionalities. The best ICN&&ample of such a configuration is
QIPC, for which the benchmarking results, depicted in Feg2B, only depart appreciably from
zero forvy, = 0 at the lowest value af* considered here. As in the case of HSX, it is suspected
that theb,, , with poloidal index one larger than that of the dominant neigrfield harmonic
(b1,1 = 0.04338 in addition toby; = —0.22879 in this example) is largely responsible for this
departure but an attempt to verify this numerically has reitbeen undertaken. Considerable
effort was made in the design of QIPC to align not only the lotiaima of B along a field line
but to achieve the same for the maxima as well (see the bottmef of Figure 8). Values of
the normalised mono-energetic bootstrap current coetfi@ee significantly larger for a quasi-
isodynamic device without the latter property; for exam@éS was found to have values of
D3, as large as 0.25 in tHefp regime for the flux surface = 0.5.

An alternative strategy for reduction of the bootstrap entiin stellarators is to more fully
exploit the cancellation of “toroidal” and “helical” combutions to Dj3,, as was done in the
optimisation of W7-X by choosing a magnetic field structurghwappropriate magnitudes
of the two harmonic9,, and b, ; [70]. The benchmarking results for the W7-X standard
configuration, plotted in Figure 26, demonstrate the vigbdf such an optimisation strategy
but also illustrate its limitations; numerical valuesof, never exceed 0.15 but nonetheless
exhibit the same overshoot of the collisionless asymptteiall values ob}, displayed by
the LHD results. For the expected plasma parameters of Whisdwould imply a bootstrap
current large enough to cause experimentally relevantagibes to the magnetic topology of
the island divertor in the standard configuration [86]. $amconclusions may be drawn for
the W7-X low-mirror configuration for which the normalise@®no-energetic bootstrap current
coefficient reaches values as high as 0.3 (for= 0), which is an order of magnitude larger
than the collisionless asymptote. Such overshoot is die@diuced, however, by increasing the
magnitude of the mirror term in thB spectrum of W7-X as the ICNTS benchmarking activity
has been able to confirm for the high-mirror configurationdeked, the generally observed
behaviour of theD}, results withvy, at low collisionality is reversed in this case with the
smallest values (satisfying3;, < 0.01) occurring for zero electric field over the relevant range
of collisionalities. Consequently, the bootstrap curierthe W7-X high-mirror configuration
Is not expected to exceed a negligible level on the order efvakiA even when accounting for
the small reduction i, ; which occurs for finite3 equilibria.

Data points of two calculations for W7-X performed with thENUS+6 f Monte Carlo
code do not appear in Figure 26. These were carried ouf fer 0 with the result;, = 0.047
atv* = 1.9 x 10°% and D5, = 0.040 at v* = 6.4 x 10°". These values are consistent
with a gradual convergence to the predicted collisionlesgsmgtote but also demonstrate
how extreme the collisionality must become in certain cdmedere this asymptote is of any
practical relevance. As a consequence, determining thee D}, for a configuration in the
collisionless limit — which would otherwise be attractive afigure of merit since it depends
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only on the structure oB — will often provide a rather poor measure for the magnituiihe
bootstrap current to be expected under realistic expetaheanditions.

6 Comments and Conclusions

The principal task of the ICNTS benchmarking activity wasctampare the accuracy and
applicability of various numerical tools used within thelkirator community for determining

mono-energetic transport coefficients in realistic maigniglds; the successful completion
of this task is demonstrated by the representative samplesaoits presented in the previous
section of this paper. Beyond this formal benchmarking, @y, the calculations also provide
a wealth of additional information concerning neocladsi@nsport in stellarators and a few
observations are sufficiently noteworthy to be includedmfollowing summary of results.

e Of the numerical tools used in the ICNTS benchmarking, &fieMonte Carlo codes have
the widest range of applicability as they are able to deteenthe mono-energetic transport
coefficients in arbitrarily complex magnetic fields for givealues of the normalisel, x B
drift velocity, (v;;, = E,./(vBy)) at values of the mono-energetic collisionality & Ryv/(+v))
which are limited only by the available computational reses; as an extreme example, the
calculation of the mono-energetic bootstrap current cuefit (D5;) for the W7-X standard
configuration atv* = 6.4 x 107 by VENUS+§f consumed the equivalent of 155 days
of process time on 2.66 GHz processors (more typical is th@alls of process time on
3.06 GHz processors required for LHD @t = 7.0 x 10~° by the §f approach employing
advanced weighting techniques). Similar claims can be niadthe orbit-following Monte
Carlo codes with two notable caveats: determination of tle@arenergetic radial transport
coefficient (D;;) becomes impossible with this approach férvalues below the threshold at
which non-local transport appears in the simulations atcltions of D3; using such codes
were not undertaken here. In the former case it is possibleetw this failure in a positive
light as it is a clear indication that the local ansatz unded neoclassical theory becomes
unrealistic for particles with such small valuesof in the latter case the lack of results makes
any verdict impossible. Use of the Drift Kinetic Equationhgw (DKES) is also attractive
as it allows simultaneous determination of the three mamergetic transport coefficients for
specified values of* and v}, in magnetic fields of arbitrary complexity. Convergence of
the upper and lower variational bounds on the DKES resultssevis as the collisionality
decreases, however, becoming unacceptably poor for (Jath®all values ofv*; DKES test
functions have been circumscribed here so as to require st 3dchours of process time for
a single calculation performed with 2.60 GHz processorhiasonvergence of the bounds is
not improved significantly even by a ten-fold expenditurea@putational resources. Solution
of the kinetic equation using the field-line following appoh of the NEO codes is far more
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efficient numerically regardless of the complexity®f requiring at most five hours of process
time on 2.60 GHz processors to determine the three mon@etietransport coefficients at
the smallest values of* considered and determining the effective helical ripples( which
characterised);; in the 1/v regime) in a fraction of a second. Field-line following asss
v}, = 0, however, and although this is of no consequence in dete@rgiralues of the parallel
transport coefficientl;; being independent df,), practical use of the results fér,; and D,

is thus confined to electrons. Use of the General SolutiorhefRipple-Averaged Kinetic
Equation (GSRAKE) was limited in the ICNTS benchmarking tBlS; LHD and W7-X,
l.e. to those magnetic configurations with field structurespte enough to allow accurate
performance of the averaging. When appropriate, howevBRAKE offers the advantage
of very rapid calculation oD;; in the presence of a radial electric field, consuming onlya fe
seconds of process time even for extremely small valueslii$icoality.

¢ Neoclassical fluxes/flows for a stellarator plasma may berdened very efficiently assuming
that a precalculated database of the three mono-energgtgport coefficients already exists
for the magnetic configuration of interest at experimeptadlevant values of* andv},. The
creation of such a database consumes considerable compataésources, however, and it is
therefore desirable to keep the number of expensive cadilcotato a minimum. Thus, at low
collisionality, having results from more than one Monte IGarode or from both DKES and
Monte Carlo computations will be the exception rather thertile. The ICNTS benchmarking
results allow one to view this situation with equanimity be tsolated disparities observed in
the numerical computations of the;; (in the worst case, differences as large as a factor of
two for individual calculations ofD,;) have at most a modest effect on the weighted energy
convolutions with the local Maxwellian which must be perfed to determine thé;; (the
elements of the thermal transport matrix).

e The “density” of entries in the database should be at leastpger decade throughout the
relevant ranges of* and v}, values (this number was commonly used during the ICNTS
benchmarking) for at least seven flux surfaces which adefyusgpresent the variation of the
results in the radial direction. This implies performing animum of around 500 separate
computations for a single magnetic configuration althougdnumber increases rapidly when
greater radial resolution is required. Interpolation witthe dataset is done using standard
algorithms or with the aid of a neural network [12], which &pecially attractive when the
dataset is extended by an additional dimension to also ithesttre 5 dependence of the results
[87] arising due to the influence of the plasma pressure osttieture ofB.

e Extrapolation outside the dataset is a different mattethénanalysis of current experimental
data this is required most often for high-temperature, temsity discharges for which a non-
negligible portion of the local Maxwellian finds itself atlisionalities less than the smallest
value ofv* in the dataset. There is no entirely satisfactory solutmthis problem but the
benchmarking results offer ways to proceed in some spea§iesx For example, in stellarators
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at these collisionalities momentum conservation yieldstally negligible correction to the
neoclassical radial particle and energy fluxes [21] so thattedge ofD7, alone is sufficient
for their determination. Consequently, tle, database of Monte Carlo results used to
analyse LHD discharges has been extended to lower coléibims by performing additional
calculations with GSRAKE [88]. The results of magnetic cguafations for which GSRAKE

is not applicable can also be “extended” using the obsemvatiat the scaling of,; with
collision frequency and radial electric field behaves cstesitly with the analytic results derived
for classical stellarators [6]. Extendidgf, results is also straightforward, either with additional
NEO-2 calculations or using an asymptotic extrapolatioth&fraction of circulating particles.
The greatest difficulties arise for the mono-energetic &toap current coefficient which exhibits
a dependence on the radial electric field which is not theaigt understood and for which
the low-collisionality results do not always conform wittet asymptotic predictions. Thus,
extension of théj, results under physics considerations is not possible astdad one resorts
to ad hoc models such as setting, (v*, vy;) = D}, (v%,,, vy) forvr < wvr . wherev? . isthe
smallest value of collisionality for which numerical retsUdre available [89]. In this regard, the
benchmarking results document the shortcomings of theiegitheoretical descriptions of the
bootstrap current in stellarators and indicate topicstture investigation.

e The energy confinement time of existing stellarator expenits increases roughly with the
square root of the line-averaged density [49, 90] and ojweras possible well above the
equivalent Greenwald density limit observed in tokamalg.[n stellarator reactor studies it
is thus common to consider high-density (0) betweer2 and4 x 10*° m~3), low-temperature
(T(0) betweenli2 and18 keV) operation as particularly attractive [92, 93]. Préiditransport
simulations for such plasma parameters are straightfonaarfar as neoclassical theory is
concerned as the resultant range of collisionalities nemeompasses values @f which are
inaccessible to any of the computational tools. From thevpa@nt of confinement, operation
at higher collisionality is favourable as it leads to a redrc of electronl/v losses and a
corresponding drop in ion transport is brought about by thbipolar radial electric field. For
stellarators with sufficiently small effective helical pie, e.;¢, the neoclassical confinement
is then sufficiently good to allow ignition in a device of réacdimensions as has been
shown for a scaled-up version of W7-X withy = 22 m,a = 1.8 mandB, = 5 T for
n®(0) = 3.9x 10** m—3 andT'(0) ~ 13 keV [92]. Evaluating the reactor prospects of all ICNTS
configurations with regards to neoclassical confinemergysid the scope of the current paper
(a superficial comparison with the W7-X reactor is possilylebting that the electron energy
diffusivity scales ag® o ei’ﬁ(Te)W/(neRng) in the1/v regime) although the benchmarking
results for a given configuration can be scaled to arbitratyes of B, and R, (at fixed aspect
ratio) making it possible to carry out such an evaluatioruiinife work.

With benchmarking having reached its conclusion, the emsigltd the ICNTS has shifted to
development and testing of the theoretical and numericéd tequired for practical application
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of the results. This includes benchmarking of the variousn@mum-correction techniques
[19-21] used to restore conservation of parallel momentuting calculation of the neoclassical
fluxes/flows and a comparison of the “neoclassical packagesd by different 1-D transport
codes. Reports on these activities will be provided in fifaublications.
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