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Abstract

Global linear gyrokinetic particle-in-cell (PIC) simulations of electromagnetic modes in realistic

tokamak geometry are reported. The effect of plasma pressure on Alfvénic modes is studied. It

is shown that the fast-particle pressure can considerably affect the shear Alfvén wave continuum

structure and hence the toroidicity-induced gap in the continuum. It is also found that the energetic

ions can substantially reduce the growth rate of the ballooning modes (and perhaps completely

stabilize them in a certain parameter range). Ballooning modes are found to be the dominant

instabilities if the bulk plasma pressure gradient is large enough.

∗ alexey.mishchenko@ipp.mpg.de
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I. INTRODUCTION

Fast particles can destabilize various shear Alfvén waves (SAW) [1] (normally through

the gradient of the fast-particle density). The associated transport of the fast particles

[2] can result in reduced heating efficiency thus impacting the device performance. Another

consequence is an increased heat load on the plasma wall (hot spots) and even damage of the

wall [3]. One of the most important SAW modes in tokamak plasmas is the Toroidal Alfvén

Eigenmode (TAE) [4–6]. Destabilization of the TAE modes occurs if the mode drive resulting

from interaction of a shear Alfvén wave with fast particles exceeds the mode damping. In

Refs. [7, 8], it has been demonstrated that fast-particle Finite Larmor Radius (FLR) and

Finite Orbit Width (FOW) effects can play a strongly stabilizing role. Landau damping on

thermal ions [9] is another possible mechanism. Continuum damping [10–12] and radiative

damping [13–15] are both associated with the interaction of TAE modes with the SAW

continuum (caused by the bulk-plasma FLR effects). The structure of the SAW continuum

is determined by the bulk plasma density and safety factor profiles (Alfvén velocity) but also

by the coupling between the SAW and acoustic branches [16]. This coupling is proportional

to the plasma pressure and thus depends both on the bulk plasma temperature and density

profiles (in the following, we will see that the fast-particle pressure must be taken into

account as well). The damping due to collisions between trapped and passing electrons

[9, 17] depends on the electron density and temperature profiles, too.

One can see that most of the damping mechanisms are associated with the properties of

the background plasma. On the other hand, the free energy stored in the thermal ions can

destabilze certain modes, especially in the low-frequency range of the SAW spectrum [18].

In order to quantitatively assess all these effects, a kinetic description is desirable.

The first-principle gyrokinetic approach has been employed in Refs. [19, 20] (global eigen-

value code LIGKA) to study the continuum and radiative damping mechanisms. The

electron-fluid ion-kinetic hybrid gyrokinetic model has been benchmarked vs. the theoret-

ical predictions for the TAE mode in Refs. [21, 22] (global particle-in-cell code GTC) and

Ref. [23] (global particle-in-cell code GEM). Local flux-tube gyrokinetic simulations have

also been performed with the Eulerian gyrokinetic code GYRO.

In Refs. [8, 24], the global first-principle gyrokinetic particle-in-cell (PIC) code GYGLES

was used to study TAE modes and their destabilization by fast particles. A stabilizing role
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of fast-particle FLR and FOW effects was demonstrated. Also, an energetic particle mode

was found in the case where the fast-particle drive exceeded some threshold value. In the

gyrokinetic PIC approach, all the effects associated with the global non-perturbative non-

ideal character of the Alfvénic instabilities in fusion plasmas are automatically included.

Also, the effects associated with the finite extent of the particle orbits are treated naturally.

The cancellation problem [25, 26] associated with the canonical-momentum formulation of

Ampere’s law is solved employing the control-variate method described in Ref. [27].

In the present paper, we use the global gyrokinetic PIC code GYGLES to address the

effect of the bulk plasma temperature profile on Alfvénic stability. We find that the effect

is not large at low bulk plasma beta. In this case, the coupling between the SAW and

acoustic branches (with the consequent change in the SAW continuum structure and hence

in the TAE frequency) is largely determined by the pressure of the fast particles. At larger

bulk-plasma beta, the change in the bulk-plasma temperature profile can have considerable

effect: the ballooning instability becomes the dominant one instead of the TAE mode. We

have found, however, that the ballooning mode growth rate can be substantially reduced

by the fast particles if their temperature is sufficiently high. We attribute this stabilizing

influence to the fast-particle FLR and FOW effect [28, 29]. If the bulk-plasma temperature

profile is flat, the dominant mode is the TAE instability. The main effect of the bulk-plasma

temperature in this case is through the radiative and ion Landau damping mechanisms: the

mode is seen to be stabilized at larger bulk-ion temperatures.

The structure of the paper is as follows. In Sec. II, the basic equations and their dis-

cretization in the code are presented. In Sec. III, the simulation results are described. The

conclusions are made in Sec. IV.

II. BASIC EQUATIONS AND NUMERICAL APPROACH

The code solves the gyrokinetic Vlasov-Maxwell system of equations [30, 31]. The dis-

tribution function is split into a background part and a perturbation fs = F0s + δfs (the

index s = i, e, f is used for the particle species: ions, electrons and fast particles). The back-

ground distribution function is usually taken to be a Maxwellian. The perturbed distribution
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function δfs is found from the linearized gyrokinetic Vlasov equation:

∂δfs
∂t

+ Ṙ(0) · ∂δfs
∂R

+ v̇
(0)
‖

∂δfs
∂v‖

= − Ṙ(1) · ∂F0s

∂R
− v̇

(1)
‖

∂F0s

∂v‖
. (1)

Here, [Ṙ(0), v̇
(0)
‖ ] correspond to the unperturbed gyrocenter position and parallel velocity.

[Ṙ(1), v̇
(1)
‖ ] are the perturbation of the particle trajectories proportional to the electromag-

netic field fluctuations. The equations of motion are:

Ṙ =
(

v‖ −
q

m
〈A‖〉

)

b∗ +
1

qB∗
‖

b×
[

µ∇B + q
(

∇〈φ〉 − v‖∇〈A‖〉
)]

(2)

v̇‖ = − 1

m

[

µ∇B + q
(

∇〈φ〉 − v‖∇〈A‖〉
)]

· b∗ (3)

with φ and A‖ being the perturbed electrostatic and magnetic potentials, µ the magnetic

moment, m the mass of the particle, B∗
‖ = b·∇×A∗, b∗ = ∇×A∗/B∗

‖ , A
∗ = A0+(mv‖/q)b

the so-called modified vector potential, A0 the magnetic potential corresponding to the

equilibrium magnetic field B = ∇×A0 and b = B/B the unit vector in the direction of the

equilibrium magnetic field. The gyro-averaged potentials are defined as usual:

〈φ〉 =
∮

dθ

2π
φ(R+ ρ) , 〈A‖〉 =

∮

dθ

2π
A‖(R+ ρ) , (4)

where ρ is the gyroradius of the particle and θ is the gyro-phase. The perturbed electro-

static and magnetic potentials are found self-consistently from the gyrokinetic quasineutral-

ity equation and parallel Ampére’s law:

−∇ ·








∑

s=i,f

q2sns

Ts
ρ2s



∇⊥φ



 =
∑

s=i,e,f

qsδns ,





∑

s=i,e,f

β̂s
ρ2s

−∇2
⊥



A‖ = µ0

∑

s=i,e,f

δj‖s , (5)

where δns =
∫

d6Z δfs δ(R + ρ − x) is the perturbed gyrocenter density, δj‖s =

qs
∫

d6Z δfs v‖ δ(R+ ρ− x) is the perturbed gyrocenter current, qs is the charge of the par-

ticle, d6Z = B∗
‖ dR dv‖ dµ dθ is the phase-space volume, ρs =

√
msTs/(eB) is the thermal

gyroradius and β̂s = µ0nsTs/B
2
0 is the “partial” plasma beta corresponding to a particular

species. The polarization density is treated in the long-wavelength approximation (except

in Sec. IIID where the generalized solver [32] is used). Finite Larmor radius (FLR) effects

are neglected for electrons. The zeroth-order densities satisfy the quasineutrality equation
∑

s qsns = 0 with s = i, e, f .

The perturbed part of the distribution function is discretized with markers:

δfs(R, v‖, µ, t) =
Np
∑

ν=1

wsν(t)δ(R−Rν)δ(v‖ − vν‖)δ(µ− µν) , (6)
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where Np is the number of markers, (Rν , vν‖, µν) are the marker phase space coordinates

and wsν is the weight of a marker. The electrostatic and magnetic potentials are discretized

with the finite-element method (Ritz-Galerkin scheme):

φ(x) =
Ns
∑

l=1

φlΛl(x) , A‖(x) =
Ns
∑

l=1

alΛl(x) , (7)

where Λl(x) are the finite elements (tensor product of B splines [33, 34]), Ns is the total

number of the finite elements, φl and al are the spline coefficients. A detailed description

of the discretization procedure can be found in Refs. [26, 27, 32, 35, 36]. We apply the

so-called phase factor transform [35] to all perturbed quantities in the code. The integrals

over the gyro-angle Eq. (4) are approximated with an N-point discrete sum [32, 37, 38]. The

cancellation problem [25, 26] is solved using the iterative scheme No. 2 described in Ref. [27].

III. SIMULATIONS

A. Simulation parameters

We consider a plasma with circular cross-section, but realistic magnetic field, aspect ratio

and size similar to JET (Joint European Torus, see Ref. [39]): B0 = 3.45 T, R0 = 3.0 m,

ǫ = ra/R0 = 0.333. The magnetic equilibrium is produced solving the Grad-Shafranov

equation with the CHEASE code [40] assuming the zero-pressure limit. The resulting safety

factor is plotted in Fig. 1. The background magnetic field is B = ∇ψ×∇ϕ+ I(ψ)∇ϕ with

the toroidal angle ϕ, the poloidal flux ψ and the poloidal current I(ψ). The plasma consists

of Hydrogen bulk ions, electrons and Deuterium fast particles. The unperturbed distribution

functions of all particle species are Maxwellian. The bulk plasma density profile is flat. The

bulk ion and electron temperature profiles are either flat or given by the expression:

Ti(s) = Te(s) = T0 exp
[

− ∆T

LT
tanh

(

s− sT
∆T

)]

, (8)

where s =
√

ψ/ψa, ψ is the poloidal flux and ψa is the poloidal flux on the plasma edge.

Other parameters are sT = 0.5 the position of the maximal κT = |∇Ti|/Ti, T0 the bulk

plasma temperature at s = sT, ∆T = 0.2 the “width” of the bulk plasma temperature

profile, and LT = 0.3 the “length” of the bulk plasma temperature profile (this parameter

determines how large the temperature gradient is). The fast particle temperature Tf is flat
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and the fast particle density is given by the expression:

nf(s) = n0f exp

[

− ∆nf

Lnf
tanh

(

s− snf
∆nf

)]

(9)

with n0f = 2× 1018 m−3, snf = 0.5, ∆nf = 0.2 and Lnf = 0.3.

We fix the toroidal mode number n = −6. For this n and the safety factor profile given, a

toroidicity-induced gap appears at the position of the maximal fast-particle density gradient

s = 0.5. As usual in PIC simulations, we will observe the mode which is the most unstable

one for the parameters given (i.e. for the fixed toroidal mode number).

The typical numerical parameters used in the simulations are as follows: the number of

ion markers Ni = 107, the number of electron markers Ne = 4 × 107, the number of fast

particles Nf = 2 × 107, the number of radial grid points nr = 128, the number of poloidal

grid points nθ = 32, the time step ∆t = 2×10−9 s, the number of iterations in order to solve

the cancellation problem Niter = 4. Convergence studies have shown that these parameters

correspond to well converged simulations.

B. Low-beta bulk plasma

First, we consider the bulk plasma with a flat density n0 = 2×1019 m−3 and a temperature

which is either flat or given by Eq. (8) with T0 = 1 keV. These parameters correspond to

βbulk = 2µ0n0(Ti + Te)/B
2 = 0.00142. The motivation to consider that small bulk plasma

beta is to minimize the effect of the coupling [16] between the shear Alfvén wave (SAW)

and the acoustic branch caused by the bulk plasma pressure. However, we will see in

the following that it is the fast particle pressure which determines this coupling for the

parameters considered. To achieve such a low βbulk, one has to take fairly small bulk plasma

density (see above) so that the ratio nf(s)/n0 ∼ 0.1 is not very small. As a consequence, the

fast-particle contribution to the plasma inertia (and hence to the Alfvén velocity) becomes

non-negligible (although still minor). We have seen that both the effect of the fast particle

pressure and the effect of the fast particle inertia (less important) must be included in the

calculation of the ideal MHD continuum in order to understand the PIC simulation results.

We perform the PIC simulations for the parameters chosen increasing the fast particle

temperature. The resulting frequency and the growth rate are shown as a function of the fast-

particle temperature in Fig. 2. The case with the flat bulk plasma temperature is compared
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with the case where the bulk plasma temperature is given by Eq. (8). One can see that the

effect of the bulk plasma profile is small (although there is some marginal destabilization

caused by the bulk plasma temperature gradient). In Fig. 3, the time evolution is shown for

Tf = 0.3 MeV for both the flat and non-flat bulk plasma temperatures. Correspondingly,

in Fig. 4 the eigenmode structures are presented. One sees that the resulting dependencies

are very similar in both cases. This can be explained by the small value of the bulk plasma

beta so that the energy content in the bulk plasma is not sufficient to change considerably

the SAW spectrum. On the other hand, there is a substantial scale separation between the

Alfvén frequency and the diamagnetic frequency so that the diamagnetic effect associated

with the bulk plasma profile is unimportant, too. In contrast, the fast particle pressure

(ranging from βfast = 0.0135 for Tf = 0.2 MeV to βfast = 0.0474 for Tf = 0.7 MeV) has a

strong influence on the simulation results. This can be seen from the frequency dependence

on the fast particle temperature (Fig. 2). Here, the TAE gap in the MHD Alfvénic continuum

is shown as it appears if only the SAW part is considered (i.e. neglecting the coupling of

the SAW to the acoustic branch). One can see that the PIC frequency is within the gap for

smaller Tf indicating that the mode observed in the simulations is indeed the TAE mode.

At larger fast particle temperatures, the mode frequency leaves the gap so that one can be

tempted to argue that the TAE mode is modified into an Energetic Particle Mode (EPM).

This, however, appears to be wrong by closer examination (although some non-perturbative

effect must be present in all cases considered here). In Figs. 5 and 6, the ideal MHD

continuum is shown for the cases Tf = 0.2 MeV and Tf = 0.7 MeV respectively (flat bulk

plasma temperature). These continua are computed numerically with the eigenvalue code

CONTI [41] including the coupling between the SAW and the sound mode. Both the bulk

plasma and the fast particle pressures are included in the calculation (taking into account the

fast particle density profile). The additional inertia resulting from the fast particle species

is included, too, which has a small but non-negligible effect on the Alfvén velocity. The

frequencies resulting from the PIC simulations are plotted on the continua. One sees that

they still agree well with the location of the TAE gap so that the mode from the simulation

is the TAE mode both for the small and the large fast particles temperatures (although, as

mentioned above, this mode is perhaps modified by the fast ions; in addition, the frequency

of the mode can be affected by non-ideal effects). Note that the bulk plasma properties are

exactly the same both in Fig. 5 and 6. The only difference is the fast particle temperature.
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Thus, the considerable change on the continuum structure (reshaping, frequency upshift)

is caused solely by the increased fast particle pressure which determines the coupling to

the acoustic branch for the parameters chosen. The fast particles affect the Alfvénic modes

not only through the resonant wave-particle interaction but also by changing the MHD

properties of the system (coupling to the acoustic branch) with a resulting MHD upshift in

the frequency which, consequently, may affect the wave-particle resonances.

The growth rate dependence on the fast particle temperature can be explained by the

combined action of the resonant fast particle destabilization (the classical vthf = vA/3 reso-

nance [6] is pointed in Fig. 2) and the stabilizing influence of the fast particle Finite Orbit

Width (FOW) effects [7] (see also Ref. [8] for a related discussion).

C. High-beta bulk plasma

We consider Alfvénic modes in the same magnetic configuration as in the previous Section

but at high bulk-plasma beta. These modes are destabilized by the energetic particles with

the same parameters as described above. The bulk plasma temperature is either flat or

given by Eq. (8) with T0 = 3 keV. This larger (comparing with Sec. III B) bulk plasma

temperature leads to increased radiative damping (see the discussion in the next section).

The bulk plasma density n0 = 2×1020 m−3 corresponds to considerably larger βbulk = 0.041.

Clearly, for this bulk plasma beta, the energetic particle inertia is negligible compared with

that of the bulk ions. The energetic particle pressure is comparable to the bulk plasma

pressure. This will have consequences for the MHD continuum: changing the parameters

of the energetic particles one changes also the structure of the continuum if the energetic

particle pressure is large enough (in a way similar to the previous section). In contrast

with the previous section (low βbulk), one can expect a substantial effect of the bulk-plasma

temperature profiles on the Alfvénic modes. In what follows we will see that it is indeed the

case.

We start with a simulation using the fast particle temperature Tf = 0.3 MeV. The re-

sulting time signals are shown in Fig. 7 for the case with the flat bulk-plasma temperature

(on the left) and the temperature profile given by Eq. (8). One can see that the frequency

is much smaller and the mode drive is much larger in the case where Eq. (8) is used. The

eigenmode structure is shown in Fig. 8. One can see that the mode on the left (correspond-
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ing to the flat bulk plasma temperature) has characteristic fine scale structures around its

maximum indicating an increased role of non-ideal effects (qualitatively similar structures

have been previously observed with other gyrokinetic codes, e.g. LIGKA [19] and, recently,

with GEM [42]). Interestingly, the size of these structures (few centimetres) is compara-

ble to the fast-particle gyroradius. The mode on the right has a frequency in the acoustic

range and is strongly driven. In what follows we will see that this mode is predominantly

driven by the bulk plasma pressure gradient. The effect of the fast particles can be both

destabilizing and even stabilizing depending on the parameters (fast-particle temperature)

chosen. The dependence of the mode frequency and the growth rate is shown in Fig. 9 for

the case with the flat bulk plasma temperature profile. The most unstable mode in this

case is the TAE mode. Similarly to the case with low βbulk, the frequency increases with

the fast-particle temperature (pressure). This is caused by the MHD continuum upshift

and reshaping with increasing fast-particle pressure. The changes in the MHD continuum

occur due to the coupling between the acoustic and SAW modes [16]. This coupling can

be influenced considerably by the fast-particle population provided the fast-particle beta is

large enough (i.e. comparable to βbulk). In Fig. 10, the MHD continuum corresponding to

the case with Tf = 0.7 MeV and flat bulk plasma temperature profile is shown. One sees

that the frequency resulting from the PIC simulations is in a quite reasonable agreement

with the location of the TAE gap although the gap structure and the entire continuum

have been strongly reshaped and shifted by the combined effect of the bulk-plasma and the

fast-particle pressure (both act on equal footing and determine the coupling to the acoustic

branch).

The growth rate dependence on Tf is determined, as usual, by the combined effect of the

resonant interaction of the fast particles with the wave and the stabilizing influence of the

fast-particle finite orbit width [7] (becoming more important at larger Tf ). It is interesting

that in contrast to the low beta case (i.e. large Alfvén velocity), the resonance vthf = vA

[6] appears to be more important at the large βbulk because this resonance corresponds to

practically relevant fast-particle temperatures whereas the resonance vthf = vA/3 (most

important at low βbulk) takes place at much smaller Tf (the mode is stable at such small Tf

because the fast particle drive is proportional to k⊥ρf with ρf the fast-particle gyroradius).

Interestingly, the growth rate peaks at vthf somewhat less than vA (but much larger than

vA/3) indicating perhaps the optimal relation between the resonant drive and the fast-ion
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FOW stabilization.

Finally, consider Fig. 11. Here, the dependence of the mode growth rate on the fast

particle temperature is presented for the case with the bulk plasma profile given by Eq. (8).

In this case, one sees that the mode is already unstable in the absence of the fast particles

(see the dashed straight line). Applying the local ideal ballooning mode stability criterion

for large-aspect-ratio circular cross section plasma − rβ ′ < (2/3ŝ) r/(Rq2) [43], we find that

the parameters chosen are in the unstable domain (here, ŝ is the magnetic shear, β is the

bulk-plasma beta, r is the small radius, R is the large radius and q is the safety factor).

We conclude that the mode observed in our simulations should be a ballooning instability

destabilized by the bulk plasma pressure gradient. As expected, the frequency of this mode

is very small (although finite). The role of the fast particles in the mode stability depends,

as one can see, on a particular choice of the fast particle temperature. At lower Tf a further

resonant destabilization of the already unstable ballooning mode is possible. At larger Tf ,

the mode is stabilized by the fast particles. The stabilization becomes even larger if the fast

particle density is increased (see the line with circles which corresponds to the fast particle

density n0f = 4×1018 m−3). This stabilization can probably be associated with the fast-ion

finite orbit width effect [28, 29] which is more pronounced at larger temperatures. Another

possible explanation is large magnetic drift velocity of the fast particles which decouples the

hot species from ballooning modes [29, 44].

The simulations presented in Fig. 11 have two drawbacks. First, the vacuum equilibrium

magnetic field has been used. Clearly, the equilibrium corrections associated with the finite

pressure are important for the ballooning mode physics. Second, the fast-particle beta is

unrealistic (too large) at the large fast-particle temperatures (Tf ≥ 1.5 MeV). Hence, we

consider the result presented in Fig. 11 as a preliminary one which nevertheless indicates

an important physics which clearly deserves a further study. The stabilizing influence of the

fast particles on MHD modes is in particular interesting (in terms of practical relevance).

As a possible application, one has imagined heating of some groups of ions in certain MHD

unstable regions of the plasma with the consequent energetic-particle stabilization of these

MHD modes (see Ref. [44]). Further study of the kinetic effects on the MHD ballooning

modes is needed to access various important effects such as the FLR and FOW effects

associated with both the fast-particle species and the bulk plasma. We plan to perform such

a study in a systematic way using the gyrokinetic PIC simulations in the near future.
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D. Radiative damping

Above, we have considered the role of the bulk plasma temperature profile comparing the

flat temperature with the profile given by Eq. (8). In what follows, we keep the bulk plasma

profiles flat while changing the value of the temperature (ion and electron temperatures are

always equal to each other). We consider a high-beta plasma with the parameters described

in the previous section. The fast-particle density n0f = 2 × 1018 m−3 and the fast-particle

temperature Tf = 0.4 MeV (this corresponds to βfast = 0.027). In Fig. 12, the frequency and

the growth rate resulting from the PIC simulations are plotted. One can see that the mode

frequency increases with the bulk plasma temperature. This tendency has already been

discussed; it is related to the continuum upshift and reshaping which is however now caused

by the bulk plasma pressure (because the fast-particle parameters are fixed). For example,

Fig. 13 shows the continuum for the case Ti = 5 keV. One can see that the frequency found

in the PIC simulations indeed remains within the TAE gap although its absolute value has

clearly increased from Ti = 1 keV.

The mode growth rate decreases substantially with the bulk plasma temperature. We

attribute this to the enhanced radiative damping at larger ion temperatures (i.e. larger

thermal gyroradius). Similarly, there is a strong stabilization effect (not shown here) when

the magnetic field is decreased.

Historically, radiative damping has been introduced as an FLR correction associated with

higher order contributions (∼ k4⊥ρ
4
i ) to the polarization density (see Ref. [15] for example).

In Fig. 12, we compare simulations using the so-called generalized solver [32] which employs

the polarization density exact to all orders in k⊥ρi (detailed description in Ref. [32]) and

simulations using the so-called long-wavelength approximation of the polarization density

(accurate only to k2⊥ρ
2
i ). We see that the effect of the higher-order contributions to the

polarization density is visible but not large. Apparently, these are the terms associated with

the gyro-average in the equations of the motion and in the Vlasov equation which produce

the radiative damping in the case considered. Note that the bulk-ion gyroradius changes

from kθρi ≈ 2mρi/ra = 0.018 for Ti = 1 keV to kθρi ≈ 0.04 for Ti = 5 keV (here, m = 10,

ra = 1 m is the minor radius and the factor 2 accounts for the mode location approximately

on the half minor radius). It is interesting that even for these rather small values of kθρi,

the radiative damping is an important mechanism (which can be described rather accurately
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within the long-wavelength approximation of the polarization density). Of course, the radial

small-scale structures (similar to shown in Fig. 8) will increase the total perpendicular wave

number and, hence, the role of the bulk-ion FLR effects.

On the other hand, one could argue that the ion Landau damping increases as well

with the bulk-ion temperature and that the stabilising effect observed in Fig. 12 can be

explained by this mechanism rather than the larger radiative damping at larger Ti. Then,

the discussion about higher-order terms in the polarization density would become irrelevant

because they do not influence the Landau damping. To check this hypothesis, we perform

the simulations shown in Fig. 14. Here, we fix the bulk-ion temperature Ti = 1 keV and

decrease the bulk-ion charge number Zi so that the resulting bulk-ion gyroradius ρi ∝
√
Ti/Zi

increases in the same way as in Fig. 12 where the bulk-ion temperature increased while Zi

was constant (note that the electron charge must be changed simultaneously Ze = Zi in

order to provide the ambient quasineutrality at the same bulk-plasma beta). One sees that

the frequency remains constant if Ti is constant. Clearly, the pressure does not change.

Hence, the acoustic coupling and the associated frequency upshift remain unchanged. In

contrast, the growth rate decreases almost identically to the case where Ti changes but the

bulk-ion charge number is constant. This indicates that the damping associated with the

bulk-ion FLR effect (i.e. the radiative damping) is indeed the dominant mechanism for the

case considered. Another simulation which supports this conclusion is shown in Fig. 15.

Here, we change the bulk-ion temperature and the charge number simultaneously so that

the ratio Ti/Z
2
i = 5 keV is kept constant (and hence the gyroradius). The result is again

straightforward to interpret. The frequency changes as it does in the case with the fixed

Zi = 1 (because the plasma pressure increases). The growth rate, in contrast, remains

essentially constant (because the bulk-ion FLR effect is fixed). This demonstrates that the

radiative damping (bulk-ion FLR) plays a dominant role in the mode stabilisation.

Summarising, we have shown that our initial assumption about the dominant role of the

radiative damping in the mode stabilisation observed in Fig. 12 was correct. We have also

seen that the long-wavelength approximation is good enough for the case considered. The ion

FLR effect needed for the radiative damping must be related to the gyro-average procedure

(carried to higher orders in k⊥ρi) in the equations of motion and the Vlasov equation.
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IV. CONCLUSIONS

The global gyrokinetic particle-in-cell code GYGLES has been used to address the effect of

the plasma pressure on Alfvénic modes. It has been found that both the bulk-plasma pressure

and the fast-particle pressure are important for the structure of the SAW continuum. For

example, increasing the fast-particle pressure can substantially shift and reshape the SAW

continuum (if the fast-particle beta is comparable to the bulk-plasma one). As consequence,

the TAE gap is shifted to higher frequencies and hence, the TAE frequency increases (this

should be possible to see experimentally). Another quantity which determines the frequency

of the unstable TAE mode is the Alfvén velocity itself which depends on the entire inertia of

the plasma. Usually, the bulk ions make the dominant contributions to the plasma inertia.

One can, however, imagine situations where other species make non-negligible contributions

to the plasma inertia (e.g. some heavy impurity). This might lead to a modification in

the SAW continuum which perhaps can be assessed measuring the associated change in the

frequency of the unstable TAE mode. The subject deserves further studies.

Another interesting effect observed in this paper is the fast-particle stabilization of the

ballooning modes. The mode is stabilized if the fast-particle temperature is large enough.

We attribute this to the energetic-ion FLR and FOW effects [28]. In practice, this effect

could be used (as suggested in Ref. [44]) to stabilize the MHD unstable modes heating

certain groups of particles in the regions of the plasma where the ballooning mode activity

is enhanced. This might help to increase the beta limit in tokamaks.

The bulk-ion FLR and FOW effects must be considered, too. These effects cause, for

example, the radiative damping which was relatively high in the simulations presented in

this paper. The radiative damping is increased with the bulk-plasma temperature and be-

comes smaller with the ambient magnetic field. Thus, one might expect a reduced radiative

damping of the TAE mode (i.e. enhanced instability) for the International Tokamak Exper-

imental Reactor (ITER) [45] parameters compared with present-day experiments (such as

JET). This question will be addressed in future.

There are several other issues which remain to be studied. First, isotropic Maxellian

distribution functions were used for fast particles in this paper. This appears to be sufficient

in order to address the basic behaviour of Alfvénic modes interacting with fast particles

(modelled using a particle-in-cell code). However, in reality the fast-ion population is usually

13



better described as a slowing-down distribution (in some cases anisotropic). This has to be

taken into account when real experimental configurations are modelled. Another issue is

related to the Shafranov shift which has not been included in this paper. It is well known

that the Shafranov shift has an important stabilizing effect on the ballooning modes. This

should also be the case for the TAE stability. For the ballooning modes, the bulk-plasma

pressure gradient destabilizes a mode and, at the same time, causes the Shafranov shift which

is usually stabilizing. Similarly, for the TAE modes, the fast-particle pressure gradient would

destabilize the TAE mode and cause an additional stabilizing Shafranov shift (providing

that the fast-particle pressure is not too small). In our paper, we have included only the

“destabilising part” of the pressure gradient effect, both for the bulk plasma and for the fast

particles. In future, we plan to use the VMEC code [46] in order to construct the magnetic

equilibria which would give us much more flexibility in this respect (there is also a version of

the code which allows to treat effects of the pressure anisotropy caused e. g. by fast particles

on the equilibrium [47]).

ACKNOWLEDGEMENTS

We acknowledge the support of P. Helander and S. Günter for this work. CRPP Lausanne

and in particular O. Sauter are acknowledged for providing the CHEASE code. Most of the

simulations are performed on the HPC-FF (Forschungszentrum Jülich) and Blue Gene/P
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FIG. 1: Safety factor resulting from the solution of the Grad-Shafranov equation (zero-pressure

limit) using the code CHEASE [40].
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FIG. 2: (Color online): The frequency (left) and the growth rate (right) as a function of the fast-

particle temperature at low bulk-plasma beta (βbulk = 0.00142). The effect of the bulk-plasma

temperature gradient [LT = 0.3, see Eq. (8) for details] is small in this parameter range. One sees

that the frequency increases with the fast-particle temperature. This frequency upshift is caused

by the fast-particle pressure and is analogous to the upshift resulting from the acoustic coupling

[16] when the bulk-plasma beta is taken into account.
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FIG. 3: (Color online): TAE mode evolution at low bulk-plasma beta; flat bulk-plasma temperature

on the left and the bulk-plasma temperature profile given by Eq. (8) on the right. The fast-particle

temperature Tf = 0.3 MeV. One sees that the difference between the signals is not large.
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FIG. 4: (Color online): On the left: TAE mode structure at low bulk-plasma beta and flat bulk-

plasma temperature. On the right: TAE mode structure with finite bulk-plasma temperature

profile given by Eq. (8). The fast-particle temperature Tf = 0.3 MeV. One sees that the difference

is rather small, i.e. the effect of the bulk-plasma temperature is not large at low βbulk. Both radial

patterns are measured at the same simulation time.
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FIG. 5: (Color online): The SAW-acoustic continuum corresponding to Tf = 0.2 MeV in Fig. 2.

The frequency resulted from the PIC simulations and the eigenmode location relative to the con-

tinuum are plotted, too (the red dashed line and the blue ellipse). This frequency is within the

TAE gap.
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FIG. 6: (Color online): The SAW-acoustic continuum corresponding to Tf = 0.7 MeV in Fig. 2.

The frequency resulted from the PIC simulations and the eigenmode location relative to the con-

tinuum are plotted, too (the red dashed line and the blue ellipse). This frequency is within the

TAE gap. The SAW continuum is shifted and reshaped compared with Fig. 5. This shift is caused

by the enhanced coupling between the SAW and the acoustic branch [16] caused by the enhanced

fast-particle beta and, consequently, the increased total plasma pressure.
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FIG. 7: (Color online): The fast-particle destabilized mode (Tf = 3 keV). On the left: the bulk

plasma temperature profile is flat. The mode observed is the TAE. On the right: the bulk plasma

temperature profile is given by Eq. (8). The mode is stronlgy driven compared with the case with

the flat bulk-plasma temperature profile. Its frequency is much smaller. This is a ballooning mode.
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FIG. 8: (Color online): The fast-particle destabilized mode (Tf = 0.3 MeV). Both radial patterns

are obtained at the same simulation time t = 0.713 × 10−4 s. On the left: the bulk-temperature

profile is flat (TAE mode). One can see the typical FLR structures corresponding to the mode

conversion (radiative damping of the TAE mode). On the right: the bulk-plasma temperature

profile is given by Eq. (8). The radiative-damping structures are absent. The mode is strongly-

driven (cf. the amplitudes) and has the much smaller frequency (see Fig. 7). This is a ballooning

mode.
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FIG. 9: (Color online): The frequency (left) and the growth rate (right) of the TAE mode in the

high-beta plasma. The bulk-plasma temperature profile is flat. The vthf = vA resonance [6] is

shown.
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line) and the eigenmode location (the blue ellipse) corresponding to large βbulk, Tf = 0.7 MeV and

the flat bulk plasma temperature profile. The mode frequency is within the TAE gap.
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FIG. 11: (Color online): The growth rate of the ballooning mode as a function of the fast particle

temperature. The black dashed line denotes the mode growth rate in the absence of the fast

particles. The line with the squares corresponds to the fast-particle density n0f = 2 × 1018 m−3

and the line with the circles to the fast-particle density n0f = 4 × 1018 m−3. One sees that the

stabilizing influence increases with the fast particle density.
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FIG. 12: (Color online): The frequency (on the left) and the growth rate (on the right) as a

function of the bulk plasma temperature (flat profile). The long-wavelength approximation of the

polarization density (Poisson solver) is compared with the exact expression for the polarization

density (generalized solver, see Ref. [32]).
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FIG. 13: (Color online): MHD continuum structure corresponding to Ti = 5 keV. The mode

frequency resulting from the PIC simulations and the eigenmode locations are plotted, too (the

red dashed line and the blue ellipse). The PIC frequency is within the TAE gap. The coupling

between the acoustic and the SAW branches must be taken into account.
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FIG. 14: (Color online): The frequency (on the left) and the growth rate (on the right) as a

function of the bulk plasma temperature (flat profile) divided by the squared bulk-ion charge

number. The solid line corresponds to the case when the bulk-ion temperature increases while the

bulk-ion charge number is kept constant. For the dashed line, the bulk-ion temperature is kept

constant Ti = 1 keV (i.e. fixed ion Landau damping) while the charge number decreases (hence the

gyroradius and the radiative damping increase). One sees that the damping rate is almost the same

for both lines although the ion Landau damping is fixed for the dashed line and increases with the

temperature for the solid line. This signalises that the radiative damping (i.e. the damping related

to the bulk-plasma FLR) is the dominant mechanism for the case considered.
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FIG. 15: (Color online): The frequency (on the left) and the growth rate (on the right) as a

function of the bulk plasma temperature (flat profile). The solid line corresponds to the fixed

bulk-ion charge number Zi = 1. For the dashed line, the bulk-ion charge number is adjusted with

the bulk-ion temperature so that the bulk-ion gyroradius is constant (hence the radiative damping

does not change). One sees that the growth rate remains almost constant for the dashed line

signalising that the damping associated with the bulk-plasma FLR (i.e. the radiative damping) is

the dominant mechanism for the case considered.
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