Electron cyclotron current drive in low collisionality limit:
on parallel momentum conservation
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A comprehensive treatment of the models used in ray- and beam-tracing codes to calculate the
electron cyclotron current drive (ECCD) by means of the adjoint technique, based on the adjoint
properties of the collision and Vlasov operators appearing in the drift-kinetic equation, is presented.
Particular attention is focused on carefully solving the adjoint drift-kinetic equation (generalized
Spitzer problem) with parallel momentum conservation in the like-particle collisions. The for-
mulation of the problem is valid for an arbitrary magnetic configuration. Only the limit of low
collisionality is considered here, which is of relevance for high-temperature plasmas. It is shown
that the accurate solution of the adjoint drift-kinetic equation with parallel momentum conserva-
tion significantly differs (apart from the supra-thermal electron portion) from that calculated in
the high-speed-limit, which is most commonly used in the literature. For high-temperature plasmas
with significant relativistic effects, the accuracy of the resulting numerical models is demonstrated by
ray-tracing calculations and benchmark results are presented. It is found that the ECCD efficiency
calculated for ITER with parallel momentum conservation significantly exceeds the predictions ob-

tained with the high-speed-limit model.

I. INTRODUCTION

Starting from the proposals of Ohkawa [1] and Fisch-
Boozer [2], electron cyclotron current drive (ECCD) has
been developed into one of the primary tools for the non-
inductive creation of current in plasmas. Having been
intensively studied theoretically [3-8] and experimentally
[8-11], ECCD is sufficiently well understood for practical
applications in both tokamaks (control of the MHD ac-
tivity) and stellarators (compensation of the bootstrap-
current). The main numerical tools for calculation of
ECCD combine the adjoint technique with ray tracing
and a number of such solvers have been developed and
successfully applied [5, 7]. Apart from this, the ECCD
efficiency in tokamaks can be calculated directly by the
bounce-averaged Fokker-Planck solver [12]. Despite qual-
itative agreement of theoretical predictions with exper-
imental results, a number of discrepancies exists. For
example, it was found [13] that the Fokker-Planck calcu-
lations agree much better with the experiment than the
calculations by the adjoint technique in the widely used
high-speed-limit approach. This result was interpreted as
a consequence of neglecting parallel momentum conser-
vation in the latter. Apart from this, it was also found
[14] that in some scenarios the measured current drive
can significantly exceed the value predicted by bounce-
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averaged Fokker-Planck calculations with trapped par-
ticles, being instead much closer to the value calculated
without trapped particles. A leading candidate for expla-
nation of these findings is the effect of finite collisionality
for which the contribution barely trapped electrons be-
comes non-negligible. As a consequence, the validity and
the range of applicability for theoretical models must be
revised after undergoing careful analysis.

The adjoint technique proposed in Refs. 15, 16 is an
advanced and convenient method for calculation of the
current drive in plasmas. Moreover, only this technique is
applicable for stellarators as the bounce-averaged Fokker-
Planck model explicitly assumes axisymmetric configura-
tions. Formally, the applicability of the adjoint technique
is limited by the natural condition that the plasma re-
sponse to the rf source in electron cyclotron resonance
heating (ECRH) remains linear, i.e. when the density
of the RF power, Prp, is sufficiently low in compari-
son with the rate of collisional thermalization, ky;, =
PRF/TLeTel/e ~ 2.86 x 1074PRF\/ZTE/(71%0(1 + Zcﬁ‘)) 1’? <
1, but practically, the standard ECRH/ECCD scenarios
(especially in large machines) easily satisfy this condi-
tion (here, Prr in MW/m3, T, in keV, ngy = n./10%,
Ve (V) = Vee (V) + Ve (v) is the electron collision frequency,
and @, = Vpes/vtn With vy, = /2T, /m is the normalized
resonance velocity which corresponds to the maximum
contribution in the absorption). The central idea of the
adjoint technique is exploiting the self-adjoint properties
of the linearized collision operator to express the cur-
rent through the (steady state) adjoint Green’s function,



which is proportional to the linear plasma response in the
presence of a parallel electric field that is formally iden-
tical to the solution of the Spitzer problem [17-21]. The
effectiveness of this method was demonstrated first for
calculation of the electron fraction of the current driven
by a neutral beam in a homogeneous magnetic field [15],
and was then repeated with toroidicity accounted for
[22]. This technique was subsequently applied also to
determine the current generated by different kinds of RF
sources [5-7, 16, 23-27]. At present, the adjoint tech-
nique is commonly used for calculations of electron cy-
clotron current drive in different ray- and beam-tracing
codes (see for example Ref. 28 and the references therein).

The key point of the adjoint technique is the choice of
model for the corresponding response function, which is
commonly referred to as the Green’s function. Formally,
in toroidal plasmas (not necessarily axisymmetric), the
adjoint 4D drift kinetic equation (3D in tokamaks) must
be solved while taking into account such factors as the
geometry of the problem, the small but finite collision-
ality, conservation of parallel momentum, relativity, etc.
Due to toroidicity, the problem can be reduced to an
easily solvable level only for two opposite limits. In the
highly collisional (classical) limit, where v} > 1 (here,
v¥ = v.R/ww is the collisionality, R and ¢ are the ma-
jor radius and the rotational transform, respectively),
trapped particles do not play any role and the prob-
lem can be reduced to the classical Spitzer problem of
calculation of the electric conductivity in un-magnetized
plasmas. The value of current drive efficiency calculated
with this approach [2, 3] usually corresponds to the up-
per theoretical limit. In the opposite, low collisionality
(or collisionless) limit, where v} < 1, the trapped parti-
cles do not contribute to the current drive, and produce
a non-negligible drag on the passing particles. (In this
limit, kinetic models with bounce-averaging are applica-
ble.) This model, which is accepted as most relevant to
ECCD calculations in toroidal plasmas [5-7, 23-27], usu-
ally tends to underestimate the current drive efficiency as
it neglects all effects due to (barely) trapped electrons.
For this model, the drag over the trapped electrons is as-
sumed to be equal to its upper “geometrical” limit. The
intermediate regime, where finite collisionality effects be-
come significant, will not be considered here but will be
treated in a future paper.

Historically, for calculation of ECCD, the linearized
collision operator in the drift kinetic equation was simpli-
fied by using the high-speed-limit (hsl) approach [3, 5, 7],
where only pitch-angle scattering and the drag were
taken into account. This approach is questionable even
for low temperature plasmas and surely not sufficient for
high temperature plasmas. For plasmas with ITER-like
parameters, the high-speed-limit can lead (depending on
the scenario) to significant underestimation of the cur-
rent drive efficiency for the main ECRH/ECCD scenarios
[28, 29].

Another point which requires attention is the neces-
sity to take relativistic effects into account. Contrary

to transport theory, where these effects are of rather
minor importance (at least, for modern fusion devices),
current drive calculations require a careful consideration
of the supra-thermal electrons. Since the relativistic ef-
fects behave rather differently from the collisional effects
(i.e. their weight increases with the temperature), it is
possible for high-temperature plasmas to apply the rela-
tivistic model in the collisionless limit. Relativistic con-
siderations with parallel momentum conservation (pmc)
for the different current drive mechanisms were given in
Refs. 25-27, 30.

In the present work, recent progress in electron cy-
clotron current drive calculations is reviewed. A com-
parative analysis of the different approaches and their
applicabilities is presented. Considering various ITER
scenarios and calculating ECCD with the different mod-
els implemented in the ray-tracing code TRAVIS [31], the
role of parallel momentum conservation in like-particle
collisions is illustrated. The applied models have been
benchmarked against other ray-tracing codes [28] as well
as the Fokker-Planck code CQL3D [12].

II. ADJOINT TECHNIQUE
A. General definitions

In the ray-tracing codes, the toroidal current driven
on the elementary arc-length of the ray-trajectory can be
calculated. The key value is the current drive efficiency,

n= <¢7H> / <pabs> ) (1)

where < J H> is the density of generated current and
(pabs) the density of the absorbed power, which are the
functions only of the flux-surface label (here, (4) =
Ik A% /[ % denotes averaging over the magnetic surface).
In the linear approach, which is assumed to be valid in
the ray-tracing calculations, the efficiency does not de-
pend on the absorbed power. (For details related to the
practical calculation of the total toroidal current in the
ray-tracing codes we refer to the Appendix.)

Apart from the direct calculation of current drive from
the solution of the Fokker-Planck equation, the easiest
way to calculate the efficiency is with the adjoint tech-
nique. This technique is well described in the literature
and, apart from notation, we follow in this chapter the
line of Refs. 6 and 7. Since the drift trajectory of parti-
cles in the conventional neoclassical ordering is assumed
to remain on the magnetic-flux surface, we represent
the electron distribution function in the variables (s, u),
where s characterizes the position of a particle trajectory
on the magnetic-flux surface and u = (u, §) is momentum
per unit mass, u = vy with v = /1 + u2/¢?, and pitch,
§ = u)/u with u = u-B/B. The normalized magnetic
moment, A = (1 — £2)/b, will also be used when conve-
nient (here, b = B/Bpax With By the maximum value
of magnetic field on the given magnetic surface). Note



also that the relativistic formulation is applied through-
out the paper despite the fact that in some cited papers
only the non-relativistic model has been considered.

The current driven by the RF source, j =
—e [d3u v0fe, can be formally calculated by solving
the linearized drift kinetic equation, which describes the
linear response of electrons to the RF source,

OV~ O (5.) = Qur(forr) = — - T (fear),
(2)
where V|| = 0/0l is the derivative along the field-line (for
the considered problem, the drifts which are not along B
can be neglected), df. = feo — fear is the distortion of
the electron distribution function from the Maxwellian,
fers = pne/[Amc3 Ko(u)] - e with u = meoc? /T, and
K5 the McDonald’s function, C1(§f,.) is the linearized
collision operator and I'rgp = —Dgp + Oferr/Ou is the
quasi-linear diffusion flux in u-space.
Let us consider also the adjoint kinetic equation,

0V (X ferr) + C"™ (X ferr) = —veo U—'L bfor,  (3)

Uy

where x(—uy) is formally identical (apart from normal-
ization) to the generalized Spitzer function in toroidal
geometry, i.e the distribution function in a weak dc “par-
allel” electric field [17, 18, 21]. (Here, we follow the ter-
minology employed in the literature devoted to current
drive and refer to the steady state solution of the ad-
joint kinetic equation, x(s,u), as the Green’s function
which, actually, was introduced for the dynamic problem
[19, 20].) Then, substituting (v B) from Eq. (3) in the
definition of j; and exploiting the self-adjoint properties
of the Vlasov and collision operators,

(oo [0 ])= o [23])

(here, V' = v V), it is possible to express the cur-
rent drive through the convolution of the RF source
with x(s,u). Since V - (j;B/B) = 0, which follows di-
rectly from Eq. (2), jy/B = (j))/(B) = (jyB)/(B”) is
a function of only the flux-surface label, the final ex-

pression for the current drive can be written as follows
[6, 7, 16, 23, 24]:

= —S. <<bb>> - < X xQRF<feM>> )

where veg = 4dmnee’ InA/(mZyvd)) is the collision fre-
quency for the thermal electrons. Since no additional
assumption was made, the expression for the driven cur-
rent Eq. (5) is general and applicable for any configura-
tion and arbitrary collisionality. The limitation is only
the validity of the linear approach and of the neoclassical
ordering.

Finally, since the local density of absorbed power is
Pabs = [ d3u meoc?(y — 1)Qrr, the efficiency can be ex-

pressed as

B ev, (b) <f d3u % 'FRF>
n= —TGOIZO Seh <fd3u . -FRF> . (6)

Being quite convenient for numerical representation, this
form is the usual basis for ECCD calculations in the ray-
tracing codes.

Here, we do not specify the quasi-linear diffusion coef-
ficient Dgp (it is assumed only that this term is known).
It should be sufficient to say only that due to a high lo-
calization in phase space (in ray-tracing, Drr o d(y —
Nwee/w — Njju) /c) along the given ray), knowledge of the
complete x(s,u) is necessary (contrary to calculation of
conductivity and bootstrap current, where only the 1st
Legendre moment of the response function is required).

Since conservation of energy in the linearized colli-
sion operator, C'(g) = Cec(g; fers) + Cee(ferssg) +
Cei(g; finr), is of minor importance for the Spitzer prob-
lem, it is sufficient to keep only the 1st Legendre har-
monic of g in the integral term, ie. Cec(fers;g) =~

ECeen(ferrigr) with g1 = 3 [1, g&d¢ (here and below,
we use, following Ref. 6, the notation C[f(u)P,(§)] =
P, (§)Cy[f(u)]). Apart from this, the collisions with ions
can be considered in the limit m;/m. — co with only the
pitch-scattering taken into account, i.e. Cei(g; fiar) =~
Ve; Lg with L = %6%(1 - {2)8%.

In order to consider this problem in a proper way, at-
tention must be focused on the interplay of geometrical
effects (magnetic configuration) and the collisional re-
sponse, which are described by the Vlasov and collision
operators, respectively. To date, there are no tools for
precisely solving the generalized Spitzer problem Eq. (3)
in arbitrary magnetic configurations which can be rou-
tinely applied for ECCD. Instead, the problem is reduced
to a solvable level by simplifying assumptions which do
not necessarily hold under experimentla conditions.

B. Collisional (classical) limit

In Eq. (3), different time-scales exist: while the first
term (Vlasov operator) is characterized by the transit
time 7, i.e. vV oc T{l, the collision operator is char-
acterized by the collision time 7., i.e. O oc 7.1, For
ordering Eq. (3), we take into account that the ratio of
Tt/Te = V5 = Ve(u)yR/tu can vary significantly.

When collisionality is very high, v} > 1, ie. 7z > 7,
Eq. (3) reduces to the local problem with the straight
magnetic field (formally, the 1st term in Eq. (3) becomes
negligible). In this case, only the 1st Legendre harmonic

of x is necessary, i.e. x = &x1(u) and x; = %f_ll xé&d€.
Then, instead of Eq. (3), it becomes sufficient to solve
the 1D integro-differential equation for 1,

u

alin X1) = —Veo )
! ( 1) ¢ YVUth

(7)



Here, éyn(xl) = C(x1 ferr)/ forr with O™ is the 1st
Legendre harmonic of the linearized collision operator.
This is the classical Spitzer problem for calculation of
the plasma conductivity which has been thoroughly stud-
ied for both non-relativistic [17, 18] and relativistic [21]
approaches (apart from the normalization, y; coincides
with the classical Spitzer function). This gives the up-
per limit for current drive (CD) efficiency, but is of no
practical relevance for hot plasmas in toroidal devices.

C. Low collisionality (long-mean-free-path) limit

In the opposite (low collisionality or “collisionless”)
limit, v} < 1, i.e. 7% < 7, the impact of the trapped
particles is important. In this case, the dimensionality of
the problem can also be reduced to 2D since the spatial
dependence appears only due to the coupling between
the pitch, £ = o1 — A\b with ¢ = 41, and the local
magnetic field, b(s), through the (normalized) magnetic
moment, . By averaging Eq. (3) over the magnetic sur-
face, the Vlasov operator is annihilated and the problem
is reduced to a 2D equation [6, 7],

‘§| YVth

This is the basic model for calculation of CD in the dif-
ferent ray- and beam-tracing codes. The form chosen for
the collision operator is very important for the solution.
Note also that in this approach the problem is antisym-
metric (with respect to £), and, as a consequence, only
the antisymmetric part of the quasi-linear operator con-
tributes in the current drive calculated by the convolution
Eq. (5). X

Expressing the Lorentz operator as L = 2[¢|/b -
0/ON(A|€|0/ON, the general solution of Eq. (8) in the vari-
ables (u, A; o) can be represented, similar to Ref. 27, as
a series

<b aun(x)> — —ov —— (). (8)

X (u,\jo) =0 Z Fie(w)Pr(N) 9)
k=odd

(in order to distinguish this exact solution from the other
approximations, considered below, we mark it by the in-
dex e), where Py, are the eigenfunctions of the operator

b\"' 8 Py
2<|£> 8)\)\<\£|> B + APy = 0. (10)
For the problem considered, the eigenfunctions Py () are
defined for A\ < 1, i.e. only for the passing particles, and
satisfy the boundary conditions Py (0) = 1 and Px(1) =0
(actually, these boundary conditions select the “odd”
modes making the set of eigenfunctions antisymmetric
with respect to pitch). Practically, it is the same as
bounce-averaging which actually was applied in Ref. 27,
where the pitch at the minimum of B, £y = ov/1 — Abin,
instead of X\ was used as a variable. (In Ref.32, where a

similar idea was used for solving the problem of fast-ion
slowing down, the features of the eigenfunctions Py con-
sidered as functions of £ were analytically studied in
detail for circular tokamaks.)

Due to this expansion, the problem is reduced to a set
of 1D integro-differential equations for F(u), which can
be easily solved numerically. In Ref. 27, this system is
solved, similar to Ref. 15, by the variational principle,
where instead of a polynomial fit the spline technique
is applied, which gives a much more accurate solution.
Since the series in Eq. (9) converges rapidly (in practice,
only several odd harmonics are necessary), this method
can be easily applied for ECCD calculations. Being origi-
nally developed only for circular tokamaks, the numerical
model was revised recently to make it applicable for ar-
bitrary magnetic configurations. (In order to distinguish
it from others used below, we refer to this model by the
name of the original code where it was firstly applied, i.e.
SYNCH [27]. This model is presently implemented in the
TRAVIS code as an option.)

Apart from this exact solution, it is possible also to
simplify Eq. (8) without significant loss of accuracy.
Since the pitch-scattering of electrons is the dominat-
ing process, all terms in the collision operator apart from
the Lorentz term can be approximated by only the first
Legendre harmonic [5-7],

alin(X) ~ ye(u)f/(x) +§ (A.lgi;l(XO + Vee(U)Xl) ) (11)

where é}gierfl is the first Legendre harmonic of the lin-
earized e/e collision operator. In this approximation,
Eq. (8) can be solved analytically [6, 7],

X (u,A0) = ?Z%A)K(U),
Loax
H) T 2f, h<1_A)/A (VT—x)  (12)

L 350 [T AdA
fo=1- e = 30 [

where f. and f;, are the fractions of circulating and
trapped particles, respectively, and h(x) is the Heavi-
side function. (The label of the solution, (@, is used
here to indicate that an approximation has been made.)

The function K (u) = %fol dA X9 (u, \;0 = 1), which is

proportional to the Spitzer function, must be found as
the solution of a 1D integro-differential equation [6, 7],

éiin(K ) — Jur Ve
fe
In this approach, only the antisymmetrical part of the
quasi-linear operator can contribute in the convolution
Eq. (5) which gives the driven current. Nevertheless,
when applied only to the collisionless limit, this approach
is sufficiently accurate.

Most important for a precise calculation of ECCD
is the model chosen for the operator Clin, Generally,
the model includes the diffusion over velocity and drag

() K(u) = —veo (13)

YUth



of the test-particle in the Maxwellian background, the
pitch-angle scattering, and the reaction coming from the
Maxwellian which guaranties parallel momentum conser-
vation. In this case, the first Eegendre harmonic of the
relativistic collision operator, C1", necessary for solving
Eq. (13) can be written as follows [6]:

~. 1 d dK dK
Chn K) = —— 2DZ{J67 Fs/ei
1K) w2du \" du + du (14)
— V. K+ Iee(K).

Here, DY and F/° are diffusion over velocity
and friction Coulomb coefficients, respectively, calcu-
lated for the Maxwellian background, and I..(K) =
Cee1(ferr; K)/ fenr is the first Legendre harmonic of the
integral part of the collision operator, which is responsi-
ble for parallel momentum conservation in e/e-collisions
(all the necessary definitions are in Ref. 21). This model
(here and below, this approach with parallel momentum
conservation is abbreviated as the pmc model) is most
useful and correct for calculation of current drive in the
various scenarios.

Recently, using the approximate solution of Eq. (12),
X, a very fast and sufficiently accurate numerical
model for calculating the ECCD efficiency was developed
[30] (below, we refer to this model by name of the code for
which it has been developed, i.e. TRAVIS). This model is
based on the solution of the integro-differential equation
Eq. (13) with the collision operator Eq. (14), where the
Spitzer function, K(u), is calculated with parallel mo-
mentum conservation in the e/e collisions. In order to
simplify and accelerate the numerical solution, relativis-
tic effects are taken into account through a power expan-
sion in p~! = T, /meoc? (in fact, it is a weakly relativistic
approach) and for practical applications it is completely
sufficient to truncate the expansion at the term oc pu=2).
To numerically solve Eq. (13), the variational principle
[15, 33] was applied and the solution is defined as the
minimum of the relativistic functional through a polyno-
mial fit (for details, see Ref. 30). This solver has been
successfully implemented and tested in the ray-tracing
code TRAVIS and is now routinely used for ECCD calcu-
lations [29, 34-37]. Apart from this, this solver is also in
use for current drive calculations in scenarios with elec-
tron Bernstein waves in TJ-II stellarator [38].

1.  High-speed limit

Historically, the high-speed-limit (hsl) approach [3, 5,
7] was commonly accepted as the standard for calculation
of ECCD. This approach is based on the assumption that
only the supra-thermal electrons with pu(y — 1) > 1 (or,
simply, u > vy,) are involved in the cyclotron interac-
tion. Since for supra-thermal electrons, the e/e drag and
the pitch-angle scattering are dominant while the contri-
bution from the diffusion term in momentum space and
the integral term responsible for the parallel momentum
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FIG. 1: The cyclotron resonance lines in momentum space
(u,ur) for Ny = 0.5, nY = 0.885 (solid line) and nY = 0.92
(dashed line) are shown (here, nY = nwece/w). The axis is
scaled for the different electron temperatures: T. = 1 keV
(upper axis) and T. = 25 keV (lower axis). Also the ranges
of the main contribution in absorption are marked by the
pattern along the abscissa.

conservation are negligible, the collision operator Eq. (14)
can be significantly simplified:

dK

Ch\(K) ~ F¢/ k. (15)

Estimating then for u > vy, the necessary Coulomb co-
efficients as

3
v
Ve(u) = Veo 2 ;h (]- + Zeff)a
e/e 1%/21]?}1 (16)
F, (u) ~ —Ve w2

the analytical hsl-solution of Eq. (13) can be found [7],

K" () = <7+ 1>p/udu’ <“l)3 (7' — 1>p,
v \Y =1/ Jo ' v +1

(17)
where p = (1 + Zeg)/2f.. Due to its simplicity for nu-
merical calculations, this approach was implemented in
many ray- and beam-tracing codes (see Ref. 28 and the
references therein) and successfully applied for simula-
tion of the various ECCD scenarios. Unfortunately, in
high-temperature plasmas, the energy range of electrons
which make the main contribution to ECCD is not so far
from the bulk, and the hsl approach fails even for highly
oblique launch.

To illustrate this, let us consider a simplified scenario
with X-mode, 2nd harmonic, constant T, and with in-
creasing B along the ray with Ny = 0.5. In Fig. 1,
the cyclotron resonance lines, v = Njuj/c + nY (here,
Y = wee/w and n = 2), are shown on the plane (u),u)
for nY = 0.885 (solid line) and nY = 0.92 (dashed line).
The axis is scaled for two electron temperatures, 1 keV
(upper axis) and 25 keV (lower axis). Starting from
nY = 0.867 (thick point), the resonance interaction ap-
pears, but actually the absorption becomes significant
for somewhat higher values of nY. Let us first look at
the case T, = 1 keV. Assuming that the density is suffi-
ciently high to make the plasma optically thick, the main
contribution to the absorption is around the line with
nY = 0.92 (dashed line) where electrons not so far from
the bulk become involved in the cyclotron interaction.




The corresponding deposition range (u/uvg, ~ 2.5 — 4) is
marked by the pattern at the upper axis. In this case, the
hsl approach is marginally applicable. Considering then
the same resonance for T, = 25 keV, one finds that the
resonance interaction starts practically within the bulk
(u/ven ~ 1.8) and the power will be absorbed completely
much closer to the point where the resonance appears, i.e
within the narrow layer around nY = 0.885 (solid line)
where the electrons with u/vy, ~ 1 produce the main
contribution to absorption. In this case, taking into ac-
count parallel momentum conservation is mandatory.

2. Solution of Spitzer problem in different approaches

In Fig. 2, the solutions of Eq. (13) obtained in the
different approaches are shown. The calculations were
performed for a circular tokamak with a magnetic field
B = By/(1+4€cosf) and € = r/Ry = 0.2 (here, 0 is the
poloidal angle). In order to illustrate the weight of rel-
ativistic effects, a temperature typical for ITER is used,
T, = 25 keV. Both exact, x(¢), and approximate, x(*, so-
lutions (Eq. (9) and Eq. (12), respectively) were used for
calculations. Apart from this, the approximate solution
was used in three different approaches, weakly relativis-
tic and non-relativistic polynomial fit, as well as the fully
relativistic hsl.

Comparing the non-relativistic and the relativistic so-
lutions shown in Fig. 2, one finds that for 25 keV rela-
tivistic effects are significant. This means that the non-
relativistic pmec-solvers developed in the Refs. 6, 33 have
a very limited applicability (practically, only for T, < 1
keV). It is found also that the discrepancy between the
numerical pmc-solutions, obtained by the solvers TRAVIS
(approximate solution x(*)) and SYNCH (exact solution
X(e)), is rather small in this range (this discrepancy is
the fault of the rather simple trial function chosen in
Refs. 15, 30 for fitting and is not due to the weakly rela-
tivistic approach itself).

The most important result is that in the range v <
4vyy, which is predominant for driving the current, pmc-
solutions significantly exceed the hsl-solution. Note that
contrary to the transport theory, where the current is
completely defined by (x1), i.e the first Legendre har-
monic of x averaged over the flux surface (see Ref. 39
and the references therein), the ECCD efficiency, 7, is
much more sensitive to the local behavior of y. Indeed,
as follows from Eq. (6), n is defined not by y itself but
rather by the projection of the x-gradient onto the quasi-
linear flux in momentum space. Formally, since the pitch-
dependence of x defined by the function H(A) in Eq. (12)
is the same for both hsl- and pmc-approaches, hsl may
lead (formally) not only to underestimation of the local
ECCD efficiency but even to overestimation of it depend-
ing on the resonance condition. In practice, nevertheless,
for realistic scenarios, the current drive calculated in the
hsl-approach tends to be underestimated.

It is useful to mention here also that both the hsl and
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FIG. 2: (Color online) Spitzer function, calculated with dif-
ferent approaches for circular tokamak with € = 0.2. Plasma
parameters T. = 25 keV and Z.g = 1. Exact fully relativistic
solution is calculated by solver SYNCH. All other approxi-
mate solutions (fully-relativistic hsl, weakly-relativistic and
non-relativistic polynomial fit) are calculated by TRAVIS.

pmec models have the same “pitch”-dependence, while the
u—dependence is different (see Eq. (9) and Eq. (12)).
Since the current drive efficiency in Eq. (6) is actually
defined by the dot-product dx/0u - T'rr, the difference
between the hsl- and pmc-approaches is strongly pro-
nounced only if 9x/0u becomes dominant.

III. LOCAL ECCD EFFICIENCY IN
TOKAMAKS

For comparison of the considered approaches,
the local dimensionless ECCD efficiency, (* =
(€*/ed)(ne/Te) (j)) /27 (pabs) (here, we use the def-
inition and notation from Eq. (10) in Ref. 7), is
calculated for X-mode, 2nd harmonic with the different
values of N = 0.34, 0.42 and 0.5 (which correspond to
the different launch angles 20°, 25° and 30° measured
from the perpendicular to the magnetic field, respec-
tively) in the same circular tokamak as above. The
plasma parameters, n, = 2 x 10 m™3, T, = 5 keV
and Zeg = 1, are chosen in such a way that the main
contribution in current drive is generated by electrons
with u ~ 2wy, where parallel momentum conservation
starts to be important.

In Fig. 3, the local ECCD efficiency is plotted as a
function of the normalized magnetic field, nY = nwe./w,
which actually defines the location of the resonance line
in the phase space for the given N|. The calculations
were performed for two spatial points with poloidal an-
gles # = 0 and 6 = 180°, i.e. for the minimum of B (a)
and the maximum of B (b), respectively, on the same
magnetic surface, ¢ = 0.2. In the figures, only the case
nY < 1is shown, where only the electrons with kv > 0
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FIG. 3: (Color online) Dimensionless ECCD efficiency for X2-
mode, calculated for different N| as function of normalized
magnetic field, nY = nwee/w, with different approaches for
circular tokamak. Plasma parameters: n. = 2 x 10*°m™3,
Te =5 keV, Zeg = 1. For the same magnetic surface, e = 0.2,
calculations were performed for two points, which correspond
to minB (a) and maxB (b).

contribute in generation of the current. In the opposite
case (not shown), with kjv < 0, when both v > 0 and
v < 0 belong to the same resonance line, the Fisch-
Boozer current is generated in both directions, partly
annihilating itself. This case, which can be met only in
tenuous or at least optically gray plasmas, is not of in-
terest for ECCD scenarios.

One can see in both Fig. 3 (a) and (b) that the local
ECCD efficiency, ¢*, calculated with the hsl model, sig-
nificantly differs from the pmc values. This is the most
important result of this paper. Note also that (* cal-
culated by both exact and approximate pmc models are
in satisfactory agreement. The small discrepancy arises
from the choice of the trial function for fitting the solu-
tion in the approximate solution of Eq. (13), which is too
simple to accurately cover the complete velocity range.
As a consequence, the exact pmc model gives a some-
what better convergence to the hsl model in the range
of lowest nY values, where only supra-thermal electrons
contribute in ECCD (see also Fig. 2). In practice, nev-

ertheless, the resonance line for these values of nY is
situated sufficiently far from the bulk (see also Fig. 1),
where the absorption is negligible, and this discrepancy
does not produce any significant error in calculation of
the current drive profile and the total current.

The efficiency calculated for the minimum of B (see
Fig. 3(a)) decreases with increasing of the magnetic field
and changes sign well before the point nY = 1, where the
resonance line in velocity space crosses the axis v = 0.
This effect (inverting of the sign) is induced by the
trapped particles and is called the Ohkawa effect (see,
e.g. Ref. 5, 6). Strictly speaking, this behavior is in-
duced by influence of the trapped/passing boundary in
the collisional response described by the Green’s function
and not by the quasi-linear diffusion of the passing elec-
trons into the trapped domain itself, as was assumed by
Ohkawa [1]. Actually, the effect originally proposed by
Ohkawa appears only when the resonance line crosses the
passing/trapped boundary. In Fig. 3(a), one can see that
the slope of the efficiency at this point sharply changes
sign and rapid dropping of the efficiency appears. This
happens since the trapped electrons absorb the power
but do not contribute to the current. Here, we follow the
terminology already employed in the literature and also
refer to this general influence of the trapped particles as
the Ohkawa effect.

It is important to mention here also that the hsl model
can both underestimate and overestimate the local value
of CD efficiency (see Fig. 3(a)), depending on the cho-
sen conditions. But being weighted by the deposition
profile, which practically nullifies the contribution from
the supra-thermal electrons, the total CD efficiency cal-
culated by the hsl model is, as shown in the section 1V,
almost always (apart from high launch angles) underes-
timated. In the case of highly oblique prapagation of the
RF beam in optically thick plasmas, the deposition pro-
file nullifies also the contribution from the bulk, making
the difference between the approaches small.

IV. BENCHMARKING OF THE MODELS:
ECCD IN ITER

The practical importance of performing accurate cal-
culations of the current drive can be illustrated for quite
typical ECCD scenarios in ITER. In Fig. 4(a), the re-
sults of ray-tracing calculations for the ITER reference
scenario-2 are presented, where the angle-scan for the
equatorial launcher (top-mirror) is depicted. Three dif-
ferent codes were applied, TORAY-GA (Ref. 40) with
hsl-model, TRAVIS (both hsl- and pmec-models) and the
Fokker-Planck code CQL3D. For calculations by TRAVIS,
both “exact” and “approximate” numerical solvers were
applied, which are based on the fully relativistic splining
and the weakly relativistic polynomial fit, respectively.

One can see in Fig. 4(a), that the results obtained by
both TORAY-GA and TRAVIS with the same hsl approach
applied are in perfect agreement. On the other hand, a
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FIG. 4: (Color online) ECCD efficiency as function of the
toroidal launch angle for ITER, equatorial launcher, top mir-
ror (a), and the ECCD profiles obtained in a gedankenexper-
iment for ITER [28] (b), by different codes using different
approaches. Toroidal current drive calculated in gedankenex-
periment: TRAVIS - 25.4 kA/MW for pmc and 12.6 kA/MW
for hsl; GENRAY (pmc) - 25.8 kA/MW; CQL3D (pmc) - 24.0
kA/MW [28]; TORAY-GA (hsl) - 11.62 kA/MW [28].

comparison with the results obtained with the pmc model
shows that the hsl model significantly underestimates the
ECCD efficiency (especially for small and moderate an-
gles) and the convergence with pme results is observed
only for very high obliqueness. For the angles which are
of the main interest, i.e. for the toroidal launch angle
B =20° —40°, the discrepancy between the hsl and pmc
models varies from 10% to 30%. This is not surprising
given the previous considerations stated previously.

From comparison of results obtained by TRAVIS with
the pmc-model and by CQL3D shown in Fig. 4(a), one
finds that these results also coincide well. As the most
important consequence of this benchmark, it can be
pointed out that the accuracy of the pmc-model is well
confirmed by Fokker-Planck calculations. Indeed, despite
the slight discrepancy of the results at the large angles,
where the Fokker-Planck results do not converge to the
hsl values (this can be explained by the different rep-
resentation of the quasi-linear term in the ray-tracing

and the Fokker-Planck codes, and, additionally, by accu-
mulation of discrepancies induced by different numerical
representations due to the long ray-trajectory for large
angles), the qualitative and quantitative agreement is suf-
ficiently high.

As an additional and transparent test of the role of
parallel momentum conservation, in Ref.28 the gedanken-
experiment was proposed with a moderate launch angle
(12.3° from radial) just to make the bulk electrons re-
sponsible for absorption. Additionally, the magnetic field
was scaled in order to locate the electron cyclotron reso-
nance quite close to the axis, where the trapped-particles
fraction is small (the friction of passing electrons with
trapped ones can significantly mask the effect of parallel
momentum conservation). By simulations, it was found
that the hsl model in several different codes underesti-
mates the total current by a factor of two in compari-
son with the Fokker-Planck calculations. These results
are shown and discussed in Fig. 12 in Ref. 28. The rea-
son for such a strong underestimate of the ECCD with
the hsl model is that the electrons with s ~ 1.5vp
are responsible for the current drive which clearly vi-
olate the applicability of the hsl model. Furthermore,
Fokker-Planck calculations even without parallel momen-
tum conservation show clearly that also diffusion over
velocity, which is neglected in the hsl model (compare
Eq. (14) and Eq. (15)), plays an important role. For ref-
erence, these results are partly reproduced here also in
Fig. 4(b).

The same scenario has been recalculated by the
TRAVIS code with both pmec and hsl models (see
Fig. 4(b)). It must be mentioned here that despite qual-
itative agreement and approximately the same toroidal
current, the current drive profile calculated for the pa-
rameters from Ref. 28 is slightly shifted by dp ~ 0.02.
(The best candidate for explanation is the different repre-
sentations and accuracy of the equilibrium in the codes.)
In order to have a similar location of the current pro-
file as shown in Fig. 12 of Ref. 28, the magnetic field
here was slightly “corrected” by 0.5%, i.e. instead of
5.63 T as originally was applied, the value B = 5.6 T
was used. At the same time, since plasma parameters are
practically constant near the axis, the shift of the (jj)(p)
profile being sufficiently small does not produce any sig-
nificant effect and the total toroidal current is practically
the same. In calculations, both exact and approximate
models (Eq. (9) and Eq. (12), respectively) were applied,
but the results obtained are practically indistinguishable.

As expected, the results from the hsl model are very
similar to other ray- and beam-tracing calculations from
[28], while the results from the pmc model agrees well
with the results from the Fokker-Planck code. Apart
from this, the same scenario was simulated recently by
the GENRAY code [41] which has already implemented
the numerical package [25, 42] for calculation of the
Green’s function with parallel momentum conservation.
The latter is also shown in Fig. 4 (b) and both the shape
and the value of the current are quite similar to other



pmc calculations. All results obtained here confirm the
conclusion that the pmc model is mandatory for simula-
tions of ECCD scenarios in high temperature plasmas.

V. SUMMARY

In this paper, a description of the different approaches
necessary for calculations of the electron cyclotron cur-
rent drive in plasmas with low collisionality has been pre-
sented. All the formulations based on the adjoint tech-
nique are oriented for usage in ray- and beam-tracing
codes, which at the present time are the main tools for
numerical studies of ECRH and ECCD physics. The
main attention was focused on parallel momentum con-
servation in the like-particle collisions which is much
more precise for calculations of ECCD than the high-
speed-limit (especially in hot plasmas). It was shown
that an accurate kinetic solution of the Spitzer problem
with parallel momentum conservation in like-particle col-
lisions is of high importance in ECCD physics and may
give a significant effect.

In order to make it applicable for practical calcula-
tions, simple and fast numerical solvers have been de-
veloped recently to solve the Spitzer problem in the col-
lisionless limit with parallel momentum conservation in
the e/e collisions. These solvers cover the desired range
of applicability well and are suitable for arbitrary 3D
magnetic configuration. These solvers have been imple-
mented in the ray-tracing code TRAVIS and successfully
benchmarked against the Fokker-Planck code for ITER
scenarios. It was shown that the model with parallel mo-
mentum conservation reproduces well the Fokker-Planck
results from the code CQL3D, while the high-speed-limit
can significantly underestimate the current drive. One
of the solvers that has been developed (based on the
numerical fit and weakly-relativistic expansion) is being
routinely for ECCD calculations for both tokamaks and
stellarators.

It is important to mention also that while the current
drive for tokamaks can be calculated with both the ad-
joint technique and the bounce-averaged Fokker-Planck
code, for stellarators only the adjoint technique can be
applied. Indeed, the drift-kinetic equation for stellarators
(contrary to tokamaks) cannot be rigorously reduced to
3 variables (or, if to omit the radial diffusion, to 2 varu-
ables in momentum space). Practically, it can be done
only for some partial cases [11, 43]. Since the numeri-
cal solvers [27, 30] developed recently are already suffi-
ciently rapid and accurate, the adjoint technique used in
ray- and beam-tracing codes covers practically the whole
spectrum of tasks for ECCD calculations.

In the paper, only the case of “low” collisionality
was considered. While for hot plasmas in the ITER-
scale tokamaks this approach is well applicable, for high-
density and moderate temperature plasmas in stellara-
tors like W7-X (especially in reactor-sized stellarators
with large aspect ratio), the finite collisionality effects

can produce a non-negligible contribution. Furthermore,
these effects can also be important in tokamaks of the
present generation. These effects are most complicated
for consideration and to date no generally accepted model
has been developed. From our point of view, the main
emphasys of future work must be directed to these ef-
fects. Since some progress in this direction has already
bin obtained [30, 39, 44-46], the preliminary results will
be published in a coming paper.
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APPENDIX A: TOROIDAL CURRENT IN
RAY-TRACING SIMULATIONS

Since the formulas necessary for numerical calculations
of the toroidal current drive in ray- and beam-tracing
codes are rather dispersed in the literature, it seems
meaningful to collect the main definitions here. All def-
initions given below are valid for an arbitrary 3D mag-
netic configuration and do not depend on the choice of
the coordinate set.

The elementary toroidal current drive which circu-
lates through the area d A between the neighboring flux-
surfaces ¢ and ¢ + 61 (here, v is the flux-surface label)
can be defined in two alternative forms:

_ I w e 410 _ iB)

where Wy, is the toroidal magnetic flux. Since the effi-
ciency, 7, and not < j||> directly, is calculated in the ray-
and beam-tracing codes, there is the current drive gen-
erated on the elementary arc-length at the given ray in
use,

dpabs
ds ’

dItor

o (B V)

(A2)

where V' = dV/dW;o,, V is the volume within the mag-
netic surface ¢, dP,ps/ds = Py ae™7 the power absorbed
on the elementary arc-length, « is the cyclotron absorp-
tion coeflicient, and 7 = fos a ds the optical depth. Then
the elementary toroidal current for the given ray can be



calculated from
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where §V/ds is the rate of change of the volume along the
ray trajectory. Summing the elementary contributions
from all rays, the total toroidal current can be calcu-
lated by direct integration of Eq. (A3). When necessary,
the value (j|) can also be obtained from Eq. (A1) and
Eq. (A3).

Apart from I, and <jH>, in the tokamak literature
(see, e.g. [7, 28]) the density of the toroidal current,
Jror (), is frequently used. Numerically, this value dif-
fers from < j||> only by a “geometrical factor”, which de-
pends on the magnetic configuration. Strictly speaking,
Jtor (1) is not necessary for performing calculations, but
may be useful for interpretation of the results. Apart
from this, jior(¢) can be defined in a unique way only
for axisymmetric configurations, while for an arbitrary
3D configuration only the conventional definition can be
introduced.

By definition, the toroidal current density is jior =
0Iior /0 A, where 01, is expressed by Eq. (Al). In order
to make it well defined, one needs to find the relation
between the elementary magnetic flux ¥y, and the ele-
mentary cross-section area, A. In the general magnetic
flux coordinates (1,60, ¢) with 6 and ¢ the poloidal and
toroidal angles, respectively, the elementary toroidal flux
between the neighboring magnetic surfaces is given by

Wi = [ (B-Vp) Va0t = 33V (B- Vi), (A4

where /g is the Jacobian. While the toroidal flux is the
function of only the flux-surface label, Wi, = §Wt0r (1)),
the elementary area in the toroidal cross-section ¢ =
Const in arbitrary 3D configuration is more complex,
dA = 0A(, ). On the other hand, one can introduce
the conventional elementary area averaged around the
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torus,

- 1 2 1
0A=— d didp=—96§
5 | de [ Vel vadsdy = oV ().
(49)

which leads to the relation

<7 (B-Vyp)

§Wior = 04 (A6)

' (IVel)

and to the final expression for the “conventional” toroidal
current density:

KN 5It0r

jtor(¢) - <B . VSO>

2~ I B el

(A7)

which is the product of an average parallel current den-
sity and a geometrical factor. The physical meaning of
Jror (1) is the average toroidal current density at the mag-
netic surface.

For the axisymmetric (tokamak) configurations,
Eq. (A7) is uniquely defined due to an equivalence §A =
JA. In the flux-coordinates (¥pol,0,¢), where ¥, is
the poloidal flux and ¢ is the toroidal symmetry angle
(the surfaces ¢ = Const are the vertical planes with
|[V¢| = 1/R), the magnetic field in tokamaks can be rep-
resented as

B = F(¢)Vé + %w X VU pol, (A8)

where F'(v) is the poloidal current function. Then the
toroidal current density can be easily obtained,

F(y) (1/R?)
(B)(1/R) ~

where the tokamak’s “geometrical factor” coincides with
that obtained in [7].

Jror(¥) = (J)) (A9)
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