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The linear response of a collisionless stellarator plasma to an applied radial electric

field is calculated, both analytically and numerically. Unlike in a tokamak, the electric

field and associated zonal flow develop oscillations before settling down to a stationary

state, the so-called Rosenbluth-Hinton flow residual. These oscillations are caused by

locally trapped particles with radially drifting bounce orbits. These particles also cause

a kind of Landau damping of the oscillations that depends on the magnetic configu-

ration. The relative importance of geodesic acoustic modes and zonal-flow oscillations

therefore varies among different stellarators.
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1 Introduction

In the present article we explore the collisionless evolution of zonal flows in stellarators.

This topic has been the subject of recent interest [1, 2, 3, 4], partly because of the

suggestion by Watanabe, Sugama and Ferrando-Margalet [5] that the linear neoclassi-

cal damping of zonal flows can be of decisive importance for regulating the nonlinear

turbulence level. The experimental and numerical evidence for this is still scant, but

in any case the linear neoclassical response of the plasma to an applied electric field is

something that needs to be understood and can serve as a non-trivial test on gyrokinetic

codes.

In a tokamak, the plasma partly shields out an applied radial electric field, because

the ion orbits are polarisable: their radial centre of gravity moves in the direction of

the applied field (although the bounce points do not move). The plasma thus acts as

a dielectric and the residual electric field is smaller than the applied one. Something

similar happens in a stellarator [1, 2, 3], but the presence of locally trapped particles

leads to qualitatively new behavior. In Ref. [4] it was predicted that the response of

the plasma should, in fact, be oscillatory. This occurs because a stellarator plasma

does not act simply as a dielectric. In addition to the polarisation of the orbits, there

is an effect having to do with the fact that locally trapped orbits drift radially. If an

electric field is applied at t = 0, these drifts initially vanish on a flux-surface average,

because there are as many inward as outward drifting particles on each flux surface.

But as time proceeds and these particles drift radially they either gain or lose energy

from the electric field, which affects their drift velocity. A net radial current thus arises

which is proportional to the time integral of the applied voltage – just like the current

in an inductor. The plasma thus acts like an LC-circuit and produces an oscillatory

response.

In the present paper we develop the theory of these zonal-flow oscillations further

and show that they undergo a kind of Landau damping. If the electric field has a radial

variation, particles with different energies phase-mix because they drift radially with

different speeds. The strength of this damping is found to depend on the magnetic

configuration. We also confirm the existence of zonal-flow oscillations in gyrokinetic

simulations. Two different numerical codes are used for this purpose, one local (flux-

tube) and one global. The local code is GENE, a continuum code originally developed
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for tokamaks and later modified to account for stellarator geometry. The global code

is EUTERPE, which based on the particle-in-cell method and solves the gyrokinetic

equation in arbitrary stellarator-symmetric geometry. Landau-damped zonal-flow os-

cillations are found to exist in both types of simulations, as predicted by the analytical

theory, but their persitence is very different in different magnetic configurations. Once

the oscillations have been Landau damped, there is still a finite residual electric field,

just like in the tokamak, and the magnitude of this also depends on the magnetic con-

figuration. It is the level of this residual field that has been suggested to affect the

saturated turbulent state of the plasma [5].

The remainder of the paper is organized as follows. In the next section, the the-

ory of Ref.[4] is extended to include the radial drift acting on the perturbed particle

distribution function. This is shown to lead to phase mixing and Landau damping in

the following section, which is followed by a section where the late-time behavior is

computed. The numerical results are described in the penultimate section, which is

followed by the conclusions.

2 Initial-value problem

We consider the so-called Rosenbluth-Hinton problem [6] in a stellarator, i.e., we calcu-

late the collisionless, linear response of the plasma to a radial electric field imposed at

t = 0, restricting our attention to time scales much longer than the bounce time. The

electrostatic potential φ is then constant on flux surfaces, and its evolution needs to

be calculated consistently with the distribution functions fa for each species a. These

satisfy the drift kinetic equation

∂fa

∂t
+ (v‖b + vd) · ∇fa − ea(vd · ∇φ)

∂fa

∂ǫ
= 0,

where the independent variables are the kinetic energy ǫ = mav
2/2 and the mag-

netic moment µ = mav
2
⊥/2B. The drift velocity is denoted by vd and b = B/B

is the unit vector along the magnetic field. We linearise the kinetic equation in the

smallness of Φa = eaφ/Ta ≪ 1, taking the equilibrium to be Maxwellian, fa0 =

na(ma/2πTa)
3/2 exp(−x2) with x2 = mav

2/2Ta, and obtain in first order

∂fa1

∂t
+ (v‖b + vd) · ∇fa1 = −eaφ

′

Ta
(vd · ∇r)fa0,
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where r is an arbitrary flux-surface label and φ′ = ∂φ(r, t)/∂r. To simplify the analysis,

we now take fa1 and φ to vary as eikr in the radial direction, with a wavelength 2π/k

that is assumed to be much longer than the gyroradius but smaller than the minor

radius. We write

fa1 = ha − Φafa0, (1)

and take a Laplace transform,

ĥa =

∫ ∞

0
hae

−ptdt,

so that

pĥa + v‖∇‖ĥa + ikĥavd · ∇r = pΦ̂afa0 + fa1(0),

where the last term represents the intitial condition. It is useful to split the radial drift

velocity into an orbit-averaged and a fluctuating part,

vd · ∇r = v̄r + v‖∇‖δr,

where the orbit-averaged drift velocity v̄r vanishes for circulating particles. For trapped

ones it depends on ǫ, µ, and on the magnetic field in the well where the particle is

trapped. The function δr depends additionally on the position of the particle and is

chosen to be odd in v‖. Physically, δr represents the radial displacement of the orbit

from its mean flux surface. The resulting equation,

v‖∇‖ĥa + (p + ikv̄r + ikv‖∇‖δr)ĥa = pΦ̂afa0 + fa1(0), (2)

is now easily expanded in p/ωb ≪ 1, so that we consider the evolution on time scales

exceeding the inverse bounce frequency ωb. Expanding ĥa = ĥa0 + ĥa1 + . . . correspond-

ingly gives in zeroth and first order

ĥa0 =
pΦ̂afa0 + fa1(0)

p + ikv̄r
eikδre−ikδr , (3)

v‖∇‖

(

ĥa1e
ikδr

)

= (pΦafa0 + fa1(0))
(

eikδr − eikδr

)

, (4)

where the time average over an orbit is denoted by an overbar. The evolution of the

electrostatic potential is determined by the radial neoclassical current,

Γa =

〈
∫

fa(vd · ∇r)d3v

〉

=

〈
∫

(

fa1v̄r − v‖δr∇‖fa1

)

d3v

〉

, (5)
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which upon substitution of Eqs. (1), (3) and (4) becomes

Γ̂a = −Φ̂′
a

〈

∫

fa0

v̄2
r +

(

1 − eikδre−ikδr

)

(p/k)2

p + ikv̄r
d3v

〉

+

〈

∫

fa1(0)
v̄r +

(

1 − eikδre−ikδr

)

p/ik

p + ikv̄r
d3v

〉

(6)

after Laplace transformation. This result is valid for radial wavelengths 2π/k that are

short enough to satisfy the eikonal approximation we have employed when replacing

radial derivatives by ik. In addition the wave length needs to be longer than the gyro-

radius since we have used the drift kinetic equation, but the extension to gyrokinetics

would be straightforward. In the following, we find it however convenient to special-

ize to kδr ≪ 1, so that the wavelength exceeds the orbit width δr. Then the current

reduces to

Γ̂a = −Φ̂′
a

〈

∫

fa0
v̄2
r + p2δ2

r

p + ikv̄r
d3v,

〉

(7)

where we have neglected the contribution from fa1(0), which turns out to be small.

This current is related to the time variation of the guiding-center density na(r) by

the continuity equation,

pn̂a = − 1

V ′

∂

∂r

(

V ′Γ̂a

)

,

where V (r) is the volume of the flux surface labelled by r. The density is related back

to the potential by the gyrokinetic quasineutrality condition,

∑

a

〈

naea + ∇ ·
(

mana∇⊥φ

B2

)〉

= 0,

which closes the system. After Laplace transformation, we obtain

∑

a

〈

mana

B2
|∇r|2(pφ̂′ − φ′

0) − eaΓ̂a

〉

= 0,

where φ′
0(r) = φ′(r, t = 0). This equation expresses an ambipolarity condition, where

the first term is the classical polarisation current

〈

J
cl
p · ∇r

〉

=
∑

a

〈

mana

B2

∂E

∂t
· ∇r

〉

and eaΓ̂a the corresponding neoclassical current. The latter consists according to

Eq. (7) of two parts: a neoclassical polarisation current related to the guiding-centre

orbit width δr (which also exists in tokamaks) and a current caused by the cross-field
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drift v̄r of locally trapped particles. This drift is specific to stellarators and makes the

electrons contribute to the radial current to a similar degree as the ions [1, 2, 3, 4].

Finally, upon substituting Eq. (6) we find

(p + L(p))φ̂′ = φ′
0, (8)

where

L(p) =
∑

a

e2
a

Λ0Ta

〈

∫

fa0
v̄2
r + p2δ2

r

p + ikv̄r
d3v

〉

, (9)

and we have defined

Λ0 =

〈

|∇r|2
B2

〉

∑

a

mana. (10)

This result agrees with Ref. [4], except for the appearance of ikv̄r in the denominator

of Eq. (9). This is formally a small correction, which however leads to qualilitatively

new behavior as it causes the zonal-flow oscillations to undergo Landau damping.

3 Landau damping

Given an arbirtrary initial condition φ′
0, the subsequent evolution of the electrostatic

potential is given by the inverse Laplace transform

φ(t) =
φ′

0

2πi

∫ σ+i∞

σ−i∞

eptdp

p + L(p)
,

where the contour should be chosen so as to pass to the right of all poles of the integrand.

As in the usual Landau-damping problem, we can deform this contour to the left in the

complex plane whilst still making if pass to the right of all poles, and conclude that for

large t the potential will evolve as φ ∝ exp(p0t), where p0 is the root of p + L(p) = 0

with the largest real component. If several roots are included, the potential evolves as

a sum of such exponentials. In the present problem, the root with the largest real part

is trivial, p = 0. That this is a root follows from Eq. (9) and 〈v̄r〉 = 0, and implies

that the potential remains finite as t → ∞. However, there is a second root, which

is nontrivial and has a real part that is only slightly negative. To find it, we need to

continue the function L(p) analytically into the left half of the complex plane, which

can be done as follows.

In the integral (9) defining L(p), the bounce-averaged radial drift velocity is pro-

portional to velocity squared,

v̄r = x2D(r, λ),

6



with

D =
Ta

ea

(

2

B
− λ

)

(b × κ) · ∇r,

where κ = b · ∇b is the magnetic-field curvature, λ = µ/ǫ, x2 = mav
2/2Ta, and the

bounce average has again been denoted by an overbar. D vanishes in the circulating

part of phase space, and in the trapped region it is positive on those parts of the flux-

surface where the mean drift is outward and negative elsewhere. We decompose (9)

accordingly and write L(p) = L+(p) + L−(p), where

L±(p) =
∑

a

e2
a

Λ0Ta

〈

∫

fa0
x4D2 + p2δ2

r

p + ikx2D
H(±kD)d3v

〉

,

where H is the Heaviside step function, so that only those parts of the flux surface

where the mean drift multiplied by k is outward contribute to L+(p) and only those

where it is negative to L−(p). Using the velocity-space element

d3v =
πBvdv2dλ√

1 − λB
,

and writing

δr = xE(r, λ),

we obtain

L±(p) =
∑

a

nae
2
a

π1/2Λ0Ta

〈

B

∫ 1/B

0

H(±kD)dλ√
1 − λB

∫ ∞

0

x2D2 + p2E2

p + ikx2D
e−x2

x3dx2

〉

. (11)

The integrand has a pole at x2 = ip/kD, which is unproblematic along the original

integration contour, i.e., for Rep > 0. In the integral for L+(p), where D > 0, this pole

has positive imaginary part and the contour of integration in the x2-integral passes

below the pole. In order to analytically continue the function L+(p) to the entire

complex plane we thus need to distort the contour of integration so that it always

passes below the pole, which has a negative imaginary part when Re p < 0, see Fig. 1.

Conversely, the x2-integral in the expression for L−(p) should always pass above the

pole.

It is now straightforward to evaluate the effect of the drift D when the wavelength

2π/k is sufficiently long. When kD ≪ p and D is neglected altogether, we recover the

result of Ref. [4],

L+ + L− =
1

Λ0

(

Λ1p +
Λ2

p

)

≡ L0(p),
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where Λ0 was defined in Eq. (10) and

Λ1 =
∑

a

3nae
2
a

4Ta

〈

B

∫ 1/B

0

E2dλ√
1 − λB

〉

, (12)

Λ2 =
∑

a

15nae
2
a

8Ta

〈

B

∫ 1/B

1/Bmax

D2dλ√
1 − λB

〉

.

We recall that D vanishes in the untrapped region of phase space, λ < 1/Bmax, where

Bmax denotes the maximum value of the mangetic field strength on the flux surface in

question. The root to p + L(p) = 0 is now given by

p0 = ±i

√

Λ2

Λ0 + Λ1
= iΩ0, (13)

so that the electric field undergoes harmonic oscillations. If the drift is included, the

frequency acquires a small imaginary part,

p = iΩ0 − γ,

with γ ≪ Ω0, corresponding to a weak Landau damping. Mathematically, this arises

from the pole

x2 = ip/kD ≃ −Ω0/kD,

in the x2-integral (11). Since this integral is taken only along the positive x2-axis, such

a pole will contribute to L−(p) if Ω0 > 0 and to L+(p) if Ω0 < 0. In either case, the

contribution is equal to

Lres(iΩ0) ≃
∑

a

π1/2nae
2
a|Ω0|5/2

Λ0Tak7/2

〈

B

∫ 1/B

1/Bmax

H

(

− Ω0

kD

)

e−|Ω0/kD|dλ

|D|3/2
√

1 − λB

〉

,

where the Heaviside function restricts the surface integral to be taken only over that

part of the flux surface where the drift has the correct sign for a resonance to occur.

The damping rate is finally obtained from the root to

iΩ0 − γ + L0(iΩ0 − γ) + Lres(iΩ0) = 0,

which is approximately

γ =
Lres(iΩ0)

2(1 + Λ1/Λ0)
. (14)

The approximations made in this derivation require Ω0/kD ≫ 1 so that the damping

rate is small, γ ≪ Ω0. Since D/Ω0 ∼ E ∼ δr according to Eq. (13), the calculation

is formally consistent if kδr ≪ 1, as already assumed in the derivation of Eq. (9).

8



However, the eikonal approximation requires ka ≫ 1, where a is the plasma radius,

and we thus require kδr ≪ 1 ≪ ka. In fact, the relative error introduced by the eikonal

approximation can be shown to be of order 1/(k2aδr), so we actually require

1 ≪ 1

kδr
≪ ka.

Although this condition can formally be satisfied in the small-gyroradius limit, an

actual device may not be large enough to make the approximation accurate. The

analytical results should therefore be seen more as a qualitative guide to the physics

of zonal flow oscialltions than a quantitative prescription for the calculation of their

frequencies and damping rates. If higher accuracy is warranted, it is straightforward to

use Eq. (6), which is valid down to kδr = O(1), at the expense of making the integrals

more complicated [7].

4 Late-time behavior

From the analysis in the previous section, it is clear that Landau damping occurs of the

zonal-flow oscillations found in Ref. [4]. This damping is due to phase mixing that arises

because particles with different energies have different radial drift velocities. As in the

original Landau problem, the damping is exponentially weak when the wavelength is

long, but unlike the original problem, the damping is not complete: the oscillations are

not damped all the way to zero.

As already mentioned, this follows from the fact that besides the root to the equation

p+L(p) = 0 that was found in the previous section there is another, trivial, root, p = 0.

The final-value theorem for Laplace transforms together with Eq. (8) implies

lim
t→∞

φ′(t)

φ′
0

= lim
p→0

pφ̂′(p)

φ′
0

= lim
p→0

p

p + L(p)
6= 0, (15)

since L(p) = O(p) for small p. Indeed, for small p, we may expand the first term of the

x-integral in Eq. (11),

x2D2

p + ikDx2
=

D

ik

(

1 − p

ikDx2
+ · · ·

)

,

to find (in the trapped region)

D2
∫ ∞

0

x5e−x2

p + ikx2D
dx2 =

π1/2p

2k2
+ O(p5/2),
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where we have omitted terms that are odd in D and therefore vanish on a flux-surface

average. Hence

L(p) =
Λ1 + Λ3

Λ0
p + O(p5/2), (16)

with

Λ3(k) =
∑

a

nae
2
a

k2Ta

〈

√

1 − B

Bmax

〉

, (17)

where 〈
√

1 − B/Bmax〉 is the fraction of trapped particles on the flux surface in question.

The final value of the zonal-flow potential (15) thus becomes

lim
t→∞

φ′(t)

φ′
0

=
Λ0

Λ0 + Λ1 + Λ3(k)
.

We now estimate the size of the various terms in this expression, letting

√
ǫ ∼

〈

√

1 − B

Bmax

〉

denote the fraction of trapped particles and

E ∼ vr

ωb
∼ qρ√

ǫ
,

their typical orbit width, with q = ι−1 the safety factor and ρ the gyroradius. The

trapped particles provide the dominant contribution to the integral (12) in the definition

of Λ1,
〈

B

∫ 1/B

0

E2dλ√
1 − λB

〉

∼ q2ρ2

√
ǫ

,

and we conclude that
Λ1

Λ0
∼ q2

√
ǫ
,

Λ3

Λ0
∼

√
ǫ

k2ρ2
i

,

so that

lim
t→∞

φ′(t)

φ′
0

=

(

1 +
αq2

√
ǫ

+
β
√

ǫ

k2ρ2
i

)−1

, (18)

where α and β are constants of order unity (see also Ref. [8]). (In a circular tokamak

with large aspect ratio, α = 1.6 [6].) The β-term is formally larger than the α-term by a

factor (kδr)
2, with δr taken for trapped ions, so the residual flow level is correspondingly

smaller in a stellarator than in a tokamak (if indeed kδr < 1). It is important to note

that the contribution from the electrons is as important as that from the ions: both
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species contribute to the sum in Eq. (17) and thus to the reduction of the residual zonal

flow (18).

Before concluding this section, we note that the presence of a term proportional to

p5/2 in Eq. (16) implies that, in addition to the the poles at p = 0 and p = ±iΩ0 − γ,

the response function has a branch cut emanating from the origin. This can be traced

back to the fact that the analytical continuation from positive to negative Re p that

we carried out in the previous section is, in fact, path-dependent. Referring to Figure

2, when the analytical continuation from a point p1 in the right half-plane to p2 in

the left half-plane is carried out, it matters whether the path followed passes below or

above the origin. This is because the x2-integral in Eq. (11) is only carried out along

the positive real axis and if we, for example, consider L+(p) so that D > 0, the pole

x2
0 = ip/kD will cross the positive x2-axis only if the lower path in Fig. 2 is followed.

In addition to the poles at the origin and at p = ±iΩ0 − γ, there is thus a branch cut

that can be taken to follow the negative real axis. Mathematically, this is reflected in

the fact that according to Eq. (16) the reponse function has the structure

φ̂′(p)

φ′
0

=
1

p + L(p)
=

c0

p + c1p5/2 + · · · = c0

(

1

p
− c1p

1/2 + · · ·
)

at the origin. Adding the contribution from the poles at p = ±iΩ0 − γ, we conclude

that the full late-time behaviour is of the form

φ′(t)

φ′
0

∼ c0

(

1 +
c1

2π1/2t3/2

)

+ c+e(iΩ0−γ)t + c−e(−iΩ0−γ)t.

Thus, the oscillations are damped exponentially whilst the residual level is approached

algebraically. A similar algebraic decay has earlier been established for ion-temperature-

gradient-driven modes [9, 10].

5 Numerical simulations

In order to verify the analytical predictions, we have carried out numerical simulations

using two independent and complementary gyrokinetic codes, GENE and EUTERPE.

GENE is an Eulerian code solving the gyrokinetic system of equations in either tokamak

[11] or stellarator [12] geometry. It has recently been extended to cover the full minor

radius in tokamak geometry, but the stellarator version operates in a flux tube with

periodic boundary conditions. EUTERPE is a global particle-in cell-code using full
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stellarator geometry [13, 14]. The simulations shown below are linear, collisionless and

employ adiabatic electrons, but the codes are also capable of simulations involving

multiple kinetic species, electromagnetic effects, collisions, and nonlinear terms. As

already noted, in stellarators the contribution from the electrons is as important for

the evolution of zonal flows as that from the ions, so the electrons ought to be treated

kinetically. They should then increase the zonal-flow oscillation frequency (and affect

their damping rate) by contributing to Λ2, and reduce the residual flow through their

contribution to Λ3, which should have an effect on the turbulence level in nonlinear

simulations. In the present simulations, however, our aim is simply to verify the main

features of the zonal flows identified above and we neglect the electron contribution to

keep the calculations as simple as possible.

Two specific stellarators have been simulated, the Large Helical Device (LHD) and

Wendelstein 7-X (W7-X), and the behaviour of zonal flows and geodesic acoustic modes

(GAMs) was found to be different in the two devices. Figure 3 shows the evolution of

the flux-tube averaged potential, calculated linearly as in Sec. II with the GENE code

in the two devices. An initial perturbation of the density and potential was applied

to a flux tube intersecting the midplane in an up-down symmetric poloidal section of

the plasma. It is important to choose such a stellarator-symmetric flux tube, because

it is necessary to ensure that certain averages which appear in the theory above and

vanish when they are extended over the entire flux surface (such as 〈D〉 = 0) retain this

property when the average is instead taken over a flux tube of finite length. When this

is the case, qualitatively similar results are obtained in flux-tube and global simulations.

The minor radius of the simulated flux tubes was chosen to be r = 0.6 in both devices,

where r is defined as the square root of the toroidal magnetic flux normalised to its

value at the plasma edge. It is obvious from the figure that the oscillation frequency is

much larger in LHD than in W7-X. In LHD the oscillations are predominantly GAMs,

whilst in W7-X they are mostly zonal-flow oscillations of the type calculated above.

The reason for the different behaviour has to do with the respective damping rates.

Geodesic acoustic modes are damped by ordinary (parallel) Landau damping, which

results in a damping rate proportional to [1]

γGAM ∼ − exp
(

−cq2
∗

)

,

where c is a constant and q∗ is a quantity that is approximately, but not exactly, equal
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to the safety factor (inverse rotational transform). Because of its sensitivity to q∗,

the damping of GAMs is much greater in W7-X than in LHD. The safety factor is

equal to 1/ι = 1.9 on the flux surface under consideration in LHD, which is almost

twice as large as in W7-X. Conversely, the damping of zonal-flow oscillations, which is

approximately given by Eq. (14), is stronger in LHD than in W7-X. This can be traced

back to the fact that W7-X has smaller neoclassical losses than LHD. In the present

theory, the unconfined orbits enter through the quantity D, which in turn affects the

zonal-flow oscillation frequency Ω0. In a stellarator that has been well optimized for

neoclassical confinement, Ω0 is small, and vanishes in the limit of perfect omnigeneity

(e.g., in a tokamak). The Landau damping (14) then becomes small, which is what

makes the zonal-flow oscillations visible in W7-X, while in LHD they are so quickly

damped that they are practically indiscernable in Fig. 3. They nevertheless occur

in LHD, as is illustrated by Fig. 4, where a similar, but global, simulation has been

carried out with the EUTERPE code. In this simulation, a large-scale perturbation has

been applied to LHD, by choosing the initial density perturbation to be proportional to

cos πs, where s∈[0, 1] is the normalised toroidal flux. Superimposed on the GAMs, a low-

frequency oscillation is barely visible. Again, the GAMs are much more prominent than

these slower oscillations, but the latter are clearly visible in Figs. 5-6, where a Fourier

transform has been taken of the LHD signals from Figures 3 and 4, respectively. The

zonal flow oscillations show up in these figures as a peak in the spectrum at a frequency

roughly an order of magnitude below that of the GAMs. In addition, there is third peak

at zero frequency, corresponding to the residual zonal flow calculated in the previous

section. As predicted by Eq. (18), this level depends on the radial wavenumber, and the

corresponding numerical result for the global LHD simulation is shown in Fig. 7. That

the oscillations indeed correspond to GAMs and zonal-flow oscillations, respectively, is

confirmed by analysis of the poloidal side bands (not shown), which are qualitatively

different for these oscillations.

6 Conclusions

As first predicted in Ref. [4], the response of a stellarator plasma to an applied ra-

dial electric field is oscillatory, even on time scales exceeding the bounce frequency so
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that GAMs have been damped away. We have confirmed this prediction by gyroki-

netic simulations, both in local (flux-tube) and global geometry, using two independent

gyrokinetic codes. These simulations also include GAMs, and it is observed that the

relative importance of GAMs and zonal-flow oscillations is sensitive to the magnetic

geometry, which affects the oscillation frequencies and damping rates. This can be

understood from an extension of the theory undertaken in the present paper to include

the effect of magnetic drifts on the perturbed distribution function. Because particles

of different energy have different radial drift velocities, they undergo phase mixing in

a radially varying electric field. The damping of GAMs depends exponentially on the

rotational transform squared and becomes very strong in a tightly wound field, whilst

the damping of zonal-flow oscillations (as well as their frequency) is related to the de-

gree of neoclassical orbit optimization. In our simulations, GAMs were weakly damped

and zonal-flow oscillations stongly damped in one case (LHD) and vice versa in another

(W7-X). Once these respective oscillations have died out, a finite “Rosenbluth-Hinton”

residual flow remains, whose level also depends on the magnetic configuration. It has

been suggested that this residual can be instrumental in regulating the turbulent trans-

port level, but it appears equally possible that it could be the approach to this state

(for instance the oscillations) that matters, if the linear properties of zonal flows are at

all important. This issue will be expored in a future publication.
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Figure 1: Integration path for L+(p) in Eq. (11).
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Figure 2: The integration countour for the inversion of the Laplace transform is shifted

to the left, but stays to the right of the poles and the branch cut along the negative real

axis. This branch cut arises because of the path-dependence of the analytical continua-

tion, which is different along the paths A and B.
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Figure 4: Zonal-flow response in LHD. The radial electric field as a function of time

after a perturbation cos πs has been applied at t = 0.
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Figure 5: Fourier transform of the signal from LHD displayed in Fig. 3. Three peaks are

visible, corrsponding to the Rosenbluth-Hinton residual at zero frequency, low-frequency

oscillations of the zonal flow, and GAMs at high frequency.
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as function of radial wave number in LHD.
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