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Abstract 

  

It is often observed that large sawteeth trigger the neoclassical tearing mode (NTM) well below the 

usual threshold for this instability. At the same time, fast particles in the plasma core stabilize 

sawteeth and provide these large crashes. The paper presents results of first experiments in ASDEX 

Upgrade for destabilization of fast particle stabilized sawteeth with electron cyclotron current drive 

(ECCD). It is shown that moderate ECCD from a single gyrotron is able to destabilize the fast 

particle stabilized sawteeth. A reduction in sawtooth period by about 40% was achieved in first 

experiments. These results show that ECCD can be used as a tool for control of sawteeth also in 

presence of fast particles. 

 

Introduction 

In magnetically confined fusion plasmas, a variety of magnetohydrodynamic (MHD) 

instabilities can occur, driven by gradients of kinetic pressure or current density. The sawtooth 

oscillation is one of the fundamental instabilities in tokamaks. It is associated with abrupt changes in 

central plasma confinement due to growth of an (m,n)=(1,1) mode, where m and n are poloidal and 

toroidal mode numbers [1]. Whilst the plasma usually survives the drops in core temperature and 

density due to this instability, the triggering of other, more dangerous instabilities is the main 

concern. It is often observed that large sawteeth trigger the neoclassical tearing mode (NTM) well 

below the threshold for this instability [2]. Example of NTM triggered by big sawtooth crash in 

ASDEX Upgrade is shown in figure 1. It is also shown that changes of the ion cyclotron resonance 

heating (ICRH) power change the sawtooth period [3]. In future reactors like ITER, the fusion born 

                                                 
* email: valentin.igochine@ipp.mpg.de 



 2 

α-particles will stabilize the (1,1) mode and lead to larger sawteeth which are more probable to 

trigger NTMs (see discussion about NTM triggering in Ref[4]). Thus, avoidance of large sawteeth is 

of prime importance for a robust scenario in ITER. The second possible problem for ITER could 

come from redistribution of the fast particles during the crash. Such redistribution is observed with 

collective Thomson scattering (CTS) diagnostic in TEXTOR [5]. 

 

Figure 1. (Color online) Triggering of NTM by large sawtooth crash is shown for ASDEX 
Upgrade discharge 23297: (a) central Soft X-ray channel; (b) magnetic signals. Changes of the 
sawtooth period (c) with changes of applied ICRH power (d) are shown. The average sawtooth 
period is reduced with reduction of ICRH heating. 
 

The main aim of this work is reproducing an ITER relevant situation. The fast α-particles are 

imitated with central ICRH heating and Neutral Beam Injection (NBI) in ASDEX Upgrade. This 

heating produces a population of very energetic ions in the plasma core which stabilizes the (1,1) 

mode and increases the sawteeth period [6]. The fast particle distribution is peaked in the plasma 

centre (inside q=1 surface) for central ICRH heated discharges in ASDEX Upgrade [7]. The fast 

particles with energies higher than 1MeV were also observed by fast particle detector in ICRH heated 

discharges.  

The destabilization of the sawteeth is achieved by local changes of the current profile with 

electron cyclotron current drive (ECCD). This is achieved by changing the ECRH mirror angle. 

(Previous experiments in ASDEX Upgrade used variation of toroidal magnetic field to change ECCD 
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deposition position, which is not possible in ITER [8,9].) In this paper we report the first results 

which were recently achieved on ASDEX Upgrade. 

 

Sawteeth destabilization experiments  

 The reported experiments employ the high 95q  H-mode parameters of ASDEX Upgrade 

tokamak: 1plasmaI MA= , 19 38 10en m−= ⋅ , 2.5toroidalB T= , 95 4.7q = . The heating scheme includes 

high ICRH power ( )4.3 4.4ICRHP MW= −  and one NBI source( )2.5NIP MW= . Toroidal magnetic 

field and plasma current are constant during the experimental phase. The 140GHz ECRH system is 

used to heat the plasma ( )0.8ECRHP MW=  in the core. This allows gaining two different goals 

simultaneously:  

• Influence of the ECRH heating on the ECCD experimental results is strongly diminished 

since core electron heating remains relatively constant during the scan.  

• The impurity accumulation is reduced which provides stable discharge conditions [10].  

The temperature profiles are almost identical with and without applied ECCD [11]. Thus, effect of 

pure heating from ECCD gyrotron is negligible. 

Central ICRH heating produces a population of fast ions in the plasma core which stabilize 

the (1,1) mode and increase the sawtooth period. The destabilization of the sawteeth is achieved by 

local changes of the current profile with electron cyclotron current drive (ECCD). The radial position 

of the ECCD is swept poloidally during the discharge, corresponding to a sweep of the resonant 

location from inside to outside of the q=1 surface ( ), 1.0ECCD gyrotronP MW= . Changes of the sawtooth 

period depending on time and on the deposition position are shown for the co-current drive case in 

figure 2. The experiment shows that co-current ECCD inside the q=1 surface destabilizes sawteeth 

and reduces the sawtooth period by about 40%. Consequently, the outside deposition stabilizes 

sawteeth. The deposition positions and deposition profiles for different time points are shown in 

figures 3(a,b). The width of the deposition profile is relatively broad in comparison with previous 

experiments [8]. On the one hand, this is unfavourable for sawtooth control but on the other hand, a 

similar situation is expected in ITER. This broad deposition profile is a result of the off-axis injection 

geometry and has pure geometrical origin.  The advantage of the present system is an almost self-

similar deposition profile (see figure 3b). Influence of the applied ECCD on equilibrium profiles was 

modelled with transport code ASTRA [12]. The result show small changes of safety factor profile 

with strong changes of shear in the vicinity of q=1 surface (see figure 3c). The total electron 

cyclotron driven current varies from 1.9kA to 2.5kA which is about 1% of the total current inside 
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q=1 radius. Our results confirm recent findings from ToreSupra that moderate ECCD is able to 

destabilize fast particle stabilized sawteeth [13].  

 

 

Figure 2. (Color online) Heating powers during the experiments are shown in the upper figure 
2(a). The central ECRH heating is always on. Co-current ECCD is applied from 3 second. 
Changes of the sawteeth period depending on time (2b) and maximum of ECCD deposition 
position (2c) are shown for co-current drive case. The current drive position changes from 
inside of the q=1 surface to the outside as shown in second figure. The sawtooth inversion 
radius is marked.  
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Figure 3. (Color online) Discharge 25856: (a) changes of the co-current ECCD locations during 
the scan from inside to the outside of q=1 surface; (b) co-ECCD deposition profiles for different 
times; (c) changes of safety factor profile and shear profile.  
 
Stability analysis of co-current drive experiments 

 

Simulations of shot 25856 have been compared to the Porcelli linear crash trigger criterion from 

[14,15]. This analysis results from linear modelling thus it cannot be used to correctly describe the 

sawtooth period but does provide, however, an indication of the stability of the plasma to the internal 

kink which is thought to be responsible at least for the onset of the sawtooth crash (see review in 

Ref.[16]). By using the Hagis Monte-Carlo drift-kinetic code the contribution of the energetic ions to 

the potential energy of the internal kink mode can be numerically assessed to evaluate the efficacy of 

varying the magnetic shear to control sawtooth in the presence of fast ion stabilizing effects. 

Consequently, the closer the total δW is to the threshold predicted for onset of the sawtooth crash, the 

lower the sawtooth period is likely to be. The linear modelling is performed using the Mishka-1 

linear MHD stability code [17] to evaluate the fluid drive for the kink mode and the Hagis wave-

particle interaction code [18] to evaluate the change in the potential energy of the kink mode due to 

the presence of fast ions. 
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The effects of the fast ions are taken into account by making approximations for both the 

NBI and ICRH populations. The ICRH distribution function is assumed to be bi-Maxwellian in form, 

as in references [19, 20]: 
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where the particle energy 2 2E mv= , the magnetic moment 2mv Bµ ⊥= ,  || and ⊥  represent the 

components parallel and perpendicular to the magnetic field respectively, cB  is the critical field 

strength at the resonance and cn  is the local density evaluated at cB B= . The passing NBI ions can 

be approximately represented by a non-symmetric distribution which is slowing down with respect to 

energy and Gaussian with respect to radius and pitch angle [21], such that 
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where 0.1ψ∆ = , 0 0.5λ = , 0 80E keV= , 3cE keV= , 3.5E keV∆ = . The effect of the ECCD is 

taken into account by perturbing the current profile used as input to the HELENA equilibrium code 

[22] by the non-inductive driven currents predicted by TORBEAM. In each of the three generated 

equilibria, the radius of the q = 1 surface is held fixed, as observed on the soft X-ray measurements, 

and accordingly the safety factor on-axis is scaled slightly (less than 10%). These equilibria represent 

three different time points of the same discharge with different position of the ECCD deposition. The 

change in the magnetic shear resulting from the ECCD is the major determining factor influencing 

the stability of the kink mode with respect to the linear crash trigger thresholds. 

 Figure 4 shows the change in the potential energy of the internal kink mode resulting from 

the fluid drive together with that arising from the presence of ICRH and NBI fast ions, all at three 

different times during discharge 25856 (as illustrated in figure 4). At 3.25;3.5;3.75t s= , the peak 

of the deposition of the ECCD predicted by TORBEAM is at polρ = 0.367, 0.398, 0.438 respectively. 

The contribution of the ICRH and NBI fast ions does not change during this time since the q = 1 

surface is assumed not to move in accordance with experimental observation. However, since the 

magnetic shear changes significantly at the q = 1 surface, the  total normalized change in the 

potential energy of the mode is strongly affected, where 1
ˆ

tot totW W sδ δ≈ , where 

1 1
1

2 q
q

dq
s V

dV=
=

 =  
 

is shear at q=1 surface. At the earliest time, when the peak of the ECCD is inside 

the measured inverison radius, the increase in s1 results in an enhanced destabilisation, manifest as 
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ˆ
totWδ  being close to the predicted Porcelli crash trigger threshold. However, as the ECCD is scanned 

outwards and moves to approximately at  q = 1 (t = 3.5s) and outside q = 1 (t = 3.75s), the shear 

decreases and so the internal kink is stabilised, in qualitative agreement with the increase in the 

sawtooth period observed in the experiment. 

 

Figure 4. (Color online) The change in the potential energy of the internal kink mode resulting 
from the fluid drive ( MHDWδ ), the stabilizing effect of the ICRH ( ICRHWδ ) and ( NBIWδ ) fast 

ions, and the total mode energy ( totWδ ) all shown for three different locations of the ECCD 

deposition at t = 3.25, 3.5, 3.75s. Also shown for comparison is the threshold level ( 1pc rρ , 

Porcelli criteria) required for a sawtooth crash to be triggered according to the model in 
reference [14] 
 

Conclusions 

 

Large sawteeth produced by a combination of ICRH and NBI heating in ASDEX Upgrade 

are able to trigger NTMs. First experiments in ASDEX Upgrade show that moderate ECCD from a 

single 1MW gyrotron is able to destabilize the fast particle stabilized sawteeth. The reduction in 

sawtooth period by about 40% was achieved with co-current drive deposited inside the q=1 radius. 

The stabilization influence of ICRH on sawteeth is seen by variation of ICRH power in the 

experiment. First modelling results also suggest a strong stabilization influence from ICRH produce 

fast population. We diminish influence of pure ECRH heating on our results by applying additional 

central ECRH heating. Thus, the reported results reflect essentially influence of the current drive on 

sawteeth.  

The predicted sawtooth amplitude in ITER is about the critical size to trigger NTM [23]. 

Thus, 40% reduction of the sawtooth period could be sufficient to avoid such triggering. At the same 

time, further optimization is necessary if our estimations for ITER are wrong. We think that further 
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strong reduction of the sawtooth period could be achieved by increase of the current drive and 

optimization of current drive position. 

It is clear that further experiments are necessary to explore the case of several gyrotrons 

which will be installed on ASDEX Upgrade with identical mirror systems. It is planned that CTS 

diagnostic will provide distribution function in new experiments which is necessary for more 

accurate modelling of fast particle influence on the sawteeth. 
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