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Abstract— The stellarator Wendelstein 7-X (W7-X) has a divertor consisting of 10 units 
installed inside the plasma vessel (PV). It was decided not to install the long pulse high-heat 
flux (HHF) divertor targets at the first two years stage of W7-X operation and to start with an 
adiabatically cooled test divertor unit (TDU) and shorter plasma pulses operation. This allows 
to accumulate operation experience with much simpler components, and as a result to adjust 
accurately the actively cooled HHF divertor which replaces the TDU for the stationary 
operation. Finite element (FE) analyses have been performed for better understanding of 
thermo-mechanical problems of divertor targets, and to guide the design of the TDU and HHF 
divertors. 

This paper presents the detailed results of the temperature response, the deformation and 
thermal stress of the divertor components. 

 

Keywords: W7-X stellarator, High heat load, Divertor, Thermo-mechanical finite element 
analysis 



 

1  Introduction 

W7-X (major radius R = 5.5 m, minor radius a = 0.55 m, five periods) is designed for 

stationary operation (30 min) at Bo ≈3 T with continuous wave heating by ECRH with up to 

10MW power, and additional heating by NBI and ICRH with power up to 14MW for 10 s. 

W7-X is now under construction at Max-Planck Institute for Plasma Physics in Greifswald. 

The goal of the experiment is to demonstrate the suitability of the advanced stellarator concept 

as a desirable alternative to the tokamak for a future fusion reactor [1,2]. 

W7-X has a divertor consisting of 10 units installed inside the PV along the helical edge of 

the plasma contour to control the energy and particle flow at the plasma boundary under steady 

state operation. For long-pulse plasma operation of W7-X, the actively water cooled HHF 

target plates are designed to withstand thermal loads up to 10MW/m2 [3,4]. However, it has 

been decided for the first stage of W7-X operation to start with TDU for shorter plasma pulse 

operation. Afterward, the TDU will be replaced with the actively cooled HHF divertor for 

stationary operation. In order to accumulate operation experience during TDU phase as 

relevant as possible, the geometry features of the TDU and the HHF are largely similar [5]. 

The TDU, like the HHF divertor, consists of four distinct areas, see Fig. 1. These are the 

horizontal target, the vertical target, the high Iota tail and the low heat-flux region between the 

high Iota tail and the horizontal target [1]. 

One of the most serious challenges for the design of plasma facing components is the 

thermo-mechanical problem [6,7]. In order to develop and confirm the design of the TDU and 

the HHF divertors, FE calculations with ANSYS® code have been performed to resolve the 

following thermo-mechanical issues: (a) Pulse length of plasma operation and temperatures of 

the in-vessel components for the TDU phase, (b) Temperature distribution and maximum 



temperature of the target elements, (c) Bowing and overall deflection of the target elements, 

cooling pipes, and so on, (d) Thermal stresses in each component.  

2  TDU 

2.1 Thermal analysis of TDU 

During the first pulse operation stage ofW7-Xexperiments, passive cooling is to be used not 

only for TDU but also for some other in-vessel components. For high power operation up to 8–

10MW, the un-cooled divertor target is rapidly heated up and becomes a heat source for other 

in-vessel components due to thermal radiation. Therefore it is very important to analyse the 

thermal behaviour of the passive target and other in-vessel components since the allowable 

temperature limits strictly define the duration of the pulse, the dwell time and the number of 

sequential cycles. The FE thermal analyses have been carried out with simplified 2D FE model 

(see Fig. 2) where the TDU target is a simplified flat graphite tile (30 mm thickness, 400 mm 

length). The shield between the target and the stainless steel (SS) thin pipes protects the pipes 

from direct radiation from the backside of the target. The baffles are made of fine grained 

graphite, while the lines and PV are made of SS.  

The maximum energy of 50 MJ with a power density of 8MW/m2 is applied on the target 

central area of 10cm (width of strike line). The actively cooled PV is simulated by fixed 

temperature of 20 °C in the cooling channels, while other components are kept passive. 

The calculation of the heat transfer by thermal radiation was performed for 50 cycles with the 

heat load applied for 6.25 s and a dwell time of 10 min between cycles. The temperature of all 

components approaches an equilibrium state after 50 cycles. The maximum temperatures of in-

vessel components after 10 and 50 cycles are listed in Table 1. 

The maximum temperature of the target front reaches 1962 °C and 1913 °C after 50 and 10 

cycles, respectively, which are both beyond the limit of about 1800 °C (sublimation 



temperature of the graphite). The temperature of the baffles is less than the mentioned above 

allowable value. Also the temperature of the copper chromium zirconium (CuCrZr) heat sink 

at the baffle backside stays below the allowable 450 °C. The temperature of 231 °C at the 

liner-2 after 10 cycles is slightly higher than the allowable temperature of 200 °C. In addition, 

the shield behind the target is heated up to 400 °C due to high radiation heat from the target 

backside (788 °C). Therefore an appropriate material should be used for the shield. Further 

analysis for 10 cycles has been performed for longer pulse operations (12.5 s and 25 s) with the 

same input energy onto target and smaller heat flux density of 4MW/m2 and 2MW/m2, 

respectively. The calculated results show that the peak temperature reached at the target 

decreases down to 1461 °C and 1153 °C, respectively, but the temperatures of other 

components do not change due to the same input energy.  

In order to avoid that both the surface temperatures of the target exceed the allowable 

1800 °C and the component temperatures exceed the specified limits, duty cycles of operation 

should be longer than 10 min, the pulse length should be limited to less than 10 s for full power 

operation, and restrictions on the number of sequential cycles have to be taken into account. 

2.2 The thermal stresses and deformation of TDU 

The TDU design is based on fine grained graphite instead of carbon–carbon fibre (CFC), 

bonded to water cooled copper. Each target module comprises 7 or 8 tiles which are mounted 

onto a SS module frame by springs (see Fig. 3). The graphite tiles are 30 mm thick, 50 mm 

wide and 250–600 mm long, depending on location. They are castellated with slots 6 mm 

deep and 1 mm wide at 25 mm intervals along their length. Each spring is fastened at one end 

to the graphite tile, via a titanium zirconium molybdenum (TZM) pin and a screw, and at the 

other end to the frame. The springs and screws are made of Inconel 625 which has good 

mechanical properties and low conductivity at high temperature. Such material choice 



minimises the heat transfer to the module frame and allows cooling of the tiles by thermal 

radiation loss. In order to avoid large deformation of the central area of the tiles an additional 

TZM pin is used inside the tile and connected to a central support frame as shown in Fig. 3b. 

The pin allows the tile to rotate freely around the pin. Thermo-mechanical analysis of one 

target module has been carried out using a 3D FE model. The following heat load and the 

boundary conditions are used: (a) The temperature field calculated with a heat load of 

8MW/m2 is applied for 6.5 s on the central area or on the edge area with a width of 10cmis 

used for the static mechanical analysis. (b) Each spring is fastened at one end to the graphite 

tile, and at the other end to the support frame. Positions A and B of the support frame (see 

Fig. 3a) are fully fixed, while C and D allow in plane sliding. (c) The tiles are restrained from 

moving upwards by the TZM pin, and are allowed to rotate a small angle. (d) Radiation from 

hot top surface of the tiles is considered.  

Fig. 4a shows the temperature distribution of one target module at 6.5 s. The top surface 

temperature variation over the central area of the tile (width ≈10 cm) is about 1400 °C<T < 

1780 °C. The temperature at the end of tile is still kept at low temperature. As a result a 

maximum total deflection of about 0.6 mm is observed at the edge of the tile, at the centre of 

the heat loaded area it is about 0.4 mm. Fig. 4b shows the deflection in vertical (Z-axis) 

direction. The positive and negative values signify the movements downwards and upwards, 

respectively. The maximum movement at the centre of heat loaded area is about 0.3 mm 

upwards, at the edge of the tile it is about 0.5 mm downwards. The Von Mises stress in 

graphite tile is not beyond 40 MPa and stresses in TZM pins are below 100 MPa. A maximum 

stress of about 277 MPa is observed in the Inconel spring. The value does not exceed the 

maximum allowable limit (3 * Sm) of 957 MPa at room temperature for the combination of 

primary and secondary stresses. Similar analysis has been performed for the case of heat load 



applied to the edge area of the tiles above the spring support region. The maximum 

temperature of the surfaces of the tiles arrives at 1775 °C at 6.5 s. The temperature of the 

Inconel spring is about 300 °C. The maximum movement at the edge of the tile is about 0.9 

mm downwards. The stress in graphite tile is also not beyond 40 MPa and the maximum 

stress of about 251 MPa observed in the Inconel spring at about 300 °C is below the allowable 

stress limit of 820 MPa. 

3 HHF 

The HHF divertor targets are made of 3D reinforced CFC NB31 as plasma facing material 

which is bonded via an active metal casting (AMC) copper interlayer to the water cooled 

CuCrZr structure [3]. The NB31 presents better mechanical properties to guarantee the 

reliability of the joint to the heat sink. The CuCrZr elements are grouped into modules 

(between 8 and 12 elements per module) in which the elements are supported on a SS module 

frame. Special pipes connect the elements to water manifolds mounted on the back of the 

module frame. Depending on the location within the machine, 3 or 4modules are mounted 

together to form the divertor as shown in Fig. 1. The thicknesses of CFC, Cu interlayer and 

CuCrZr are 8 mm, 3 mm and 19 mm, respectively. The width of the target element is about 

55  mm.  

Each target element of type 3 (for horizontal target) or type 5 (for vertical target) is mounted 

on the support frame by two supports as shown in Fig. 5b. The support point near the water 

inlet fully fixes the target element against the frame. The second point fixes the target element 

just against movements perpendicularly to the frame for allowing thermal expansion. For long 

target elements of type 1 (for horizontal target) three support points are considered as shown in 

Fig. 5a. But the third support point is not considered in calculations because it is not mounted 

on the target modules to avoid mechanical stresses, and just connect the target elements 



together. The water cooling channels inside the target elements are shown in Fig. 5c. 

Thermo-mechanical analyses have been performed with 3D FE models of the target elements 

without the target frame. The aim was to estimate temperature levels, deflections and stresses 

for the elements, the pipe connectors and the fixings. Orthotropic heat conductivity and 

thermal expansion coefficient for 3D CFC were used. The following heat loads and boundary 

conditions were taken: (a) 10MW/m2 over a width of 10cm applied on the central area of the 

element as load case 1 (LC1) or on the area above the water connection region as load case 2 

(LC2) for the static mechanical analysis. (b) Support 1 is fully fixed and support 2 allows 

sliding in horizontal direction. The option with allowed rotation in this point is also 

investigated as a measure to avoid high stresses in fixings. (c) The heat from wall to cooling 

water is defined by q = h (Twall −Twater) with the wall heat transfer coefficient h as a function 

of temperature. (d) Radiation cooling from hot surface of the CFC. 

Fig. 6 shows the results for type 1 HHF element in case of the heat load applied to the central 

area of the element between support 1 and 2. The maximum temperatures of CFC tile, Cu layer 

and CuCrZr heat sink are 885 °C, 423 °C and 266 °C, respectively, which are acceptable for 

the components. The profiles of the surface temperature of three components and vertical 

deflection of the element along the path from A to B (see Fig. 5a) are presented in Fig. 6a. 

The positive value and negative value signify the movement downwards and upwards, 

respectively. The maximum movement at the centre of heat load application area is about 

0.8 mm upwards. The maximum movement at the end of the tile is about 2.0 mm downwards 

where the support is not constrained. The deflection of the pipe connector is about 0.6 mm. 

The profiles of the stresses of three components along the path from A to B are plotted in Fig. 

6b. The Von Mises stress is not beyond 100 MPa in CFC tile and is below 150 MPa in CuCrZr 

heat sink. But the stresses reach 550 MPa in Cu layer and 530 MPa at the support position. 



However, the Cu stresses are not real since elastic material properties were assumed in the 

analysis. The Cu layer is intended to yield plastically, and its proper function was tested 

extensively [8]. Similar calculations performed for type 3 and type 5 elements with different 

heat load areas show that the temperature of the CFC is not beyond 1000 °C for all cases, the 

deflection is still below 2 mm. However, the stress levels in the support 1 region for type 5 of 

788 MPa and 894 MPa for LC1 and LC2, respectively, are clearly above the limits. The high 

stresses result from the fully fixed boundary condition. To avoid these high stresses, the variant 

with rotation allowed in both supports was considered. The results show considerable 

reduction of the stresses in support 1 for LC2 from 894 MPa to 190 MPa. The change of 

boundary conditions does not result in an enhanced movement of the element. 

4 Summary 

FE thermo-mechanical analyses have been carried out for the W7-X divertors. The design of 

the TDU without active cooling has been verified by FE analyses with the main conclusion that 

the passively cooled TDU meets the main requirements for the first stage pulse operation of 

W7-X. However, some limitations summarised in Section 2.1 are to be taken into account. For 

the HHF divertor the FE calculations indicate that the temperatures of all components of the 

target element remain within an acceptable range for the heat flux of 10MW/m2 under 

stationary operation. To avoid high stresses, rotation in the supports has to be allowed. 

However in order to get correct deformation and stresses the exact geometry should be taken 

into account. Further FE analyses are to be performed for the design of the HHF divertor with 

a FE model which includes a more realistic support structure and will be compared with 

experimental tests in Gladis facility [8]. 
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Fig. 1. Front surfaces of the TDU:  (a) Vertical target, (b) horizontal target, (c) low heat flux area, (d) high Iota 

tail, surrounded by (e) baffle and (f) toroidal closure.AD view of W7-X. 
 



 
 

Fig. 2. Simplified 2D model of bean-shaped cross section of W7-X plasma vessel.



 

                   

 

Fig. 3. TDU module (a) backside view with focus on attachment features and (b) view from  plasma side  with 
indication of TZM pins (part of tiles are removed). 

 



 

 
 

Fig. 4. (a) Temperature distribution after application of 8MW/m2 on central area of tiles for 6.5 s. (b) Deflections in vertical direction (mm) of the TDU module. 
 
 
 



 

 

 
Fig. 5. Geometry of target element: (a) type 1, (b) type 5 and (c) cross section of type 5 with water cooling channels. 

 
 



  
Fig. 6. Detail Profiles along path from A to B (see Fig. 5a) (a) surface temperature for three components and vertical deflection of HHF element. (b) Von Mises Stress. 

 

 



Table 1: Maximum temperature of in-vessel components 

Case: 8MW/m2, 
6.25s 

Tmax(oC) after 
10 cycles 

Tmax(oC) after 
50 cycles 

Target front side 1913   1962  
Target back side 788     832    
Baffle-4 208     352    
Baffle-9 247     383    
Liner-1 204     333    
Liner-2 231     368    
Shield 400     460    
Pipe 196     280    
Block 48       220    
PV 30       39      

 
 

 


	1  Introduction
	2  TDU
	2.1 Thermal analysis of TDU
	2.2 The thermal stresses and deformation of TDU

	3 HHF
	4 Summary
	References

