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The aim of this paper is to calculate the collisionless limit of the bootstrap current in
a way that makes no distinction between tokamaks and stellarators, and also to consider
the correction due to a small but finite collisionality. This correction is proportional to the
square root of the collision frequency and tends therefore to be important even in fairly
low-collisionality plasmas. We compare the analytical result with a numerical solution of
the drift kinetic equation and find excellent agreement in the appropriate collisionality
range.

We consider the problem of solving the first-order drift kinetic equation

v‖∇‖fa1 − νa
DLfa1 = −vda · ∇fa0 −

eav‖∇‖φ1

Ta

fa0,

where the collision operator has been approximated by pure pitch-angle scattering and
the interaction between different species is thus neglected. The notation is standard and
follows Ref. [1]. Instead of solving this equation directly, we consider the adjoint equation

v‖∇‖ga + νa
DL(ga) = − v‖B

〈B2〉fa0, (1)

from whose solution the bootstrap current can be constructed as

〈
Ja‖B

〉
=
〈
eaB

∫
fa1v‖d

3v
〉

= −ea

〈
B2
〉〈∫

gavda · ∇ ln fa0d
3v
〉
. (2)

At low collisionality we may expand ga = ga0+ga1+ · · · in the same way as when treating
the banana regime in a tokamak, giving

ga0 =
σvfa0

2νa
D

∫ 1/Bmax

λ

dλ′〈√
1− λ′B

〉 . (3)

ga1 =
∫ l

lmax

fa0

[
− B

〈B2〉 +
1

B

∂

∂λ

(
H
(
B−1

max − λ
) λξ
〈ξ〉

)]
dl′, (4)

with ξ =
√

1− λB . The Heaviside function H appearing in this expression vanishes in
the trapped domain, and lmax denotes the position along the field line where the field
strength is the largest, B(lmax) = Bmax . Substituting this expression in Eq. (2) gives the
current as a sum of two terms, 〈Ja‖B〉 = Ja1 + Ja2 , corresponding to the two terms in
the integrand of Eq. (4). The first one is

Ja1 =

〈
eaB

∫ ∂fa0

∂ψ
2πv2dv

∫ 1/B

0

vda · ∇ψ
ξ

dλ
∫ l

lmax

Bdl′
〉
,

where ψ is the toroidal flux and

vda · ∇ψ =
mav

2

ea

ξ (b×∇ψ) · ∇
(
ξ

B

)
. (5)
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It is straighforward to carry out the integrals over v and λ to obtain

Ja1 = paA1a

〈
(B×∇ψ) · ∇

(
1

B2

) ∫ l

lmax

Bdl′
〉
,

where we have written A1a = d ln pa/dψ + (ea/Ta)dΦ/dψ , with Φ(ψ) the equilibrium
electrostatic potential. Writing

g2(l) = B2
∫ l

lmax

(b×∇ψ) · ∇B−2dl′,

we obtain Ja1 = −paA1a 〈g2〉 . The second term in Eq. (4) makes the following contribu-
tion to the current,

Ja2 = −
〈
B2
〉〈

ea

∫ ∂fa0

∂ψ
2πv2dv

∫ 1/Bmax

0

Bvda · ∇ψ
ξ

dλ
∫ l

lmax

∂

∂λ

(
λξ

〈ξ〉

)
dl′

B

〉
,

where we substitute the drift velocity (5) and integrate by parts in λ to obtain

Ja1 =
3paA1a 〈B2〉

4

∫ 1/Bmax

0

〈g4〉
〈ξ〉 λdλ,

with

g4(λ, l) = ξ
∫ l

lmax

(b×∇ψ) · ∇ξ−1dl′, (λ < 1/Bmax).

The total current of each species is thus

〈
Ja‖B

〉
= Ja1 + Ja2 = paA1a


3 〈B2〉

4

∫ 1/Bmax

0

〈g4〉λdλ〈√
1− λB

〉 − 〈g2〉

 , (6)

as originally found by Shaing and Callen [2] using a very different argument.
The result (6) is valid in the collisionless limit. Hinton and Rosenbluth [3] considered

the effect of a small but finite collisionality in the geometry of a large-aspect-ratio toka-
mak with circular flux surfaces. We extend their calculation to arbitrary axisymmetric
geometry and find that the result then also applies to an important class of stellarators.
The first correction to the bootstrap current is proportional to the square root of the
collisionality and therefore cannot be obtained by simply continuing the expansion of
ga = ga0 +ga1 + · · · to higher order. Instead, it is found from a boundary-layer analysis of
the region around the trapped-passing boundary, λ = 1/Bmax . Because ga0 vanishes in
the trapped region and is equal to Eq. (3) in the passing region, its derivative ∂ga0/∂λ is
discontinuous at the boundary, making the collision operator infinte, since the pitch-angle
scattering operator contains two λ -derivatives. Collisions therefore need to be retained
in a boundary layer whose width is proportional to the square root of the collisionality.
In this layer, Eq. (1) can be replaced by

v‖∇‖ga + νa
DL(ga) = 0,

with boundary conditions obtained by asymptotic matching to the collisionless solution
(3) away from λ = 1/Bmax . Remarkably, this boundary-value problem is identical to one
arising in the theory of transport across magnetic islands [4]. The solution, which can be
obtained with the Wiener-Hopf method, has the asymptotic behavior

ga(x, y) → ±(c0 + c1x), x→ −∞
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on the circulating side of the boundary layer. Here c0/c1 =
√

2(
√

2−1)ζ(1/2) ≃ −0.855 ,
ζ denotes the Riemann zeta function, and

x(λ) =
λBmax − 1√

νa0

,

νa0 =
2νa

D

πv

∮ √
1− b(l)

dl

b(l)
. (7)

with b = B/Bmax . Hence it is possible to compute the bootstrap current

〈
Ja‖B

〉
= −Ipa

ι

{(
1− f eff

c (v)
) [
A1a +

(
mav

2

2Ta

− 5

2

)
A2a

]}
,

where I = RBϕ and A2a = d lnTa/dψ . Here the brackets denote a velocity-space average
[1]

{· · ·} =
∫

(· · ·) mav
2

3Ta

fa0

na

d3v,

and f eff
c = fc + δfc(v) is an effective fraction of circulating particles. Its collisionless

value is

fc =
3〈B2〉

4

∫ 1/Bmax

0

λdλ

〈
√

1− λB〉 , (8)

and the correction from the boundary layer is

δfc = 0.51
〈
b2
〉√√√√ νa

D

v
〈√

1− b
〉
∮ dl

b
(9)

In a large-aspect-ratio tokamak with circular cross section, B = B0(1−ǫ cos θ) , we obtain

f eff
c ≃ 1− 1.46ǫ1/2 +

1.35ν∗1/2

ǫ1/4
, (10)

where ν∗ = νa
DR/ιv .

This calculation applies to an axisymmetric tokamak of arbitrary cross section but
appears difficult to generalize to general stellarator geometry. Of course, it immediately
applies to quasiaxisymmetric and quasihelically symmetric configurations, since their neo-
classical properties are identical (in leading order) to those in tokamaks. However, there
is another important but less trivial case amenable to a similar analysis, and this is the
case of a perfectly quasi-isodynamic stellarator [5], i.e., a stellarator where the contours
of constant |B| are poloidally closed and the bounce-averaged radial drift vanishes for all
particle orbits. The latter property is also referred to as omnigeneity in the literature. In
such a magnetic field, it can be shown that if B = ∇ψ ×∇α , then the radial excursion
(in terms of ψ ) for passing particle orbits can be written as [5]

∆a = −µ0J(ψ)

2π

v‖
Ωa

+
∂

∂α

∫ Bmax

B
k
∂

∂B′

(
v′‖
Ω′

a

)
dB′, λ < 1/Bmax, (11)

where J(ψ) is the toroidal current enclosed by the flux surface ψ , and the function
k(ψ, α,B) encapsulates all other necessary geometric information of the magnetic field.
As shown in Ref. [5], it then follows that the first-order distribution function is equal to

fa1 = −∆a
∂fa0

∂ψ
+ ha,
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where as a result of the α -derivative in Eq. (11), which disappears on an orbit average, the
equation for ha is the same as in a tokamak, with the replacement I(ψ) → −ιµ0J(ψ)/2π .
The solution therefore coincides with that in a tokamak, not only in lowest order [5] but
also in the trapped-passing boundary layer. In particular, if the flux surface in question
does not enclose any net toroidal current, J(ψ) = 0 , which is the usual situation in a
stellarator, then ha = 0 and the bootstrap current vanishes. Thus we conclude that
the bootstrap current in a quasi-isodynamic stellarator vanishes to a very high degree
of accuracy: not only is there no current in the collisionless limit [5], but the leading
correction due to finite collisionality is also absent.

Finally, we verify our results numerically, by using the DKES code [6] for a high-
beta-poloidal NSTX equilibrium [7]. Figure 1 shows the bootstrap current coefficient
computed numerically for three different radii as well as the result obtained from the
analytic representation (8)-(9) of f eff

c and the large-aspect-ratio limit given by the last
term in Eq. (10) but using the exact fc value (8) instead of the first two terms. The
DKES results clearly confirm the boundary-layer analysis. With increasing value of the
local inverse aspect ratio ǫ , the plateau regime shrinks and is shifted to higher ν∗ . The
difference bewteen the full analytical result (solid lines) and the large-aspect-ratio limit
(dashed lines) increases with ǫ .

Figure 1: The mono-energetic bootstrap current coefficient vs. collisionality, ν∗ , for
ǫ = 0.0335, 0.119 and 1.047 (from top to bottom at low ν∗ ) with DKES results (full
circles), the analytical form of f eff

c from Eqs. (8)-(9) (solid lines) and the limit of a large-
aspect-ratio tokamak with circular cross section for δfc (dashed lines). The dotted lines
represent interpolations to the DKES data.
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