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Abstract

A qualitative invariant description of the characteristic geometries of quasi-axi- symmetric,

quasi-helically symmetric and quasi-isodynamic stellarator configurations is given in terms of

the first order of the distance from the magnetic axis. Relations constraining the following four

functions are obtained: the curvature and the torsion of the magnetic axis, the ellipticity and the

orientation of the flux-surface cross-section as functions of arc length along the magnetic axis.

Introduction

Mercier’s expansion around the magnetic axis of a 3d magnetic confinement configuration

[1] employs the metric

d~r2 = dρ2 +ρ2dϑ 2 +2τρ2dldϑ +[(1−κρ cosϑ)2 + τ2ρ2]dl2

( κ and τ curvature and torsion (positive for right-handed helicity) of this axis, ρ and ϑ polar

coordinates in a plane perdendicular to the axis and l the arclength along this axis) and yields

Bκρ cosϑ (with B the field strength along the axis) for the field strength in first order in ρ .

Transformation [2] of this quantity to Hamada or (with nearly identical algebra) magnetic

coordinates yields

φ = 1
I
∫

Bdl and Bκρ cosϑ = Bκξ (l,θ)s
1
2

in magnetic coordinates with I the poloidal current encompassed by the magnetic axis, φ

the toroidal magnetic coordinate, s the normalized toroidal flux Ft , θ the poloidal magnetic

coordinate and

ξ = ξc cos2πθ +ξs sin2πθ

with

ξc =
√

F ′t /πB(
√

esinK sinα + cosK cosα/
√

e)

ξs =
√

F ′t /πB(
√

ecosK sinα− sinK cosα/
√

e)

where e is the half-axis ratio of the elliptical (to lowest order) flux surface cross-section (with

the convention e > 1 ), α the angle counted from the binormal of the magnetic axis to the

major half-axis and K is related to the rotational transform ι (counted positive for left-handed

helicity of the configuration) through

dK/dl = (dJ/dFt−2τ +2dα/dl)/(e+1/e)+2πBι/I

with J the toroidal current through the flux surface cross-section and K satisfying the boundary
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condition

K(L)−K(0) = 2πm+α(L)−α(0)

where α(L)−α(0) = nπ ( n/2 number of full turns of elliptical cross-section, m number of

turns of the normal to the magnetic axis, L the length of the magnetic axis).

So, to this order, the qa, qh and qi conditions constrain the quantities B(l) and Bκξ .

Results

i) qa

In qa symmetry B is not allowed to be a function of φ so that it is constant and κξ is a

function of θ only, which results in κξc and κξs being constants. Therefore,

κ = const/
√

e sin2 α +(1/e) cos2 α

so that the curvature is a nonvanishing function of the elliptic shape and its turning angle. For

stellarator symmetric configurations with the convention α = K = 0 for l = 0 ,

sinK =
√

e sinα/
√

e sin2 α +(1/e) cos2 α

So, since m = 0 for this quasi-symmetry, the magnetic axis is a perturbed toroidal circle and

the above constraint determines the torsion for vanishing longitudinal current density on the

magnetic axis. For constant ellipticity and turning rate ( n = 1 per period) (which characterizes

the simplest so called l = 2 stellarator) K = α in contradiction to the above constraint so that

the magnetic axis must exhibit torsion for achieving qa symmetry.

Figure 1 shows an example of a qa equibrium [3]; the four functions κ,τ,e and α and their

two above constraints are plotted. Since the torsion changes sign the functions α and K exhibit

quite similar behabior.

ii) qh

Here, again, B is not allowed to be a function of φ so that it is constant and φ = l/L .

κξ is a function of θ + φ only, which, for stellator symmetry, results in κξc = const cos2πφ

and κξs = −const sin2πφ . Therefore the constraint for the curvature is the same as in qa so

that, again the curvature is a nonvanishing function [4,5]. Since m = 1 (per period) for this

quasi-symmetry, the magnetic axis is a perturbed helix. The constraint for K becomes

sinK = [
√

e sinα cos(2πl/L)+
√

1/e cosα sin(2πl/L) ] /
√

e sin2 α +(1/e) cos2 α

Figure 2 shows an example of a qh equibrium [6]. Since the torsion does not change sign the

secular behavior of K and α ( n =−1 )is opposite.

iii) qi

Quasi-isodynamicity - in the order considered here - requires stationarity of the second adi-

abatic invariants of all reflected particles in the neighborhood of the magnetic axis. In case of

stellarator symmetry, this condition is satisfied if the even (with respect to l ) part of Bκξ
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Figure 1: Curvature (black), torsion (red), half-axis ratio (green), angle α (dark blue),
the function K (brown), κ[esin2 α +(1/e)cos2 α]

1
2 (orange), sinK (cyan) and its con-

straint (magenta, broken) as functions of arclength along one period.
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Figure 2: See Figure 1.
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Figure 3: The two parts of the qi equa-
tion (without the positive definite fac-
tor
√

B ), first line (black), second line
(broken black) and their sum (red) be-
tween the minimum of B (left) and the
maximum of B (right), ie. along half a
period.
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Figure 4:
See
Figure 1;
instead of
κ 10 ·κ is
plotted.

evaluated along field lines vanishes:
√

Bκ[
√

e sinK sinα + cosK cosα/
√

e]cos(2πι
∫

Bdl/
∮

Bdl)

-
√

Bκ[
√

e cosK sinα− sinK cosα/
√

e]sin(2πι
∫

Bdl/
∮

Bdl) = 0

Figure 3 shows the evaluation of the qi configuration obtained by integrated optimization of

several physics goals described in [7]. The tendency for cancellation of the two terms of the qi

equation is clearly seen but far from perfect as has to be expected since the optimization was not

excusively dedicated to achieving quasi-isodynamicity. Figure 4 shows the constituents of the qi

equation and tendencies to be expected: i) the curvature cannot be concentrated near the extrema

of B because of the confinement requirement for deeply trapped particles and requirement of

elimination of transiting particles; ii) the curvature must be concentrated at significant ellipticity

of the cross-sections because of the requirement of MHD stability; iii) the favorable influence

of K and α being near π for significant ellipticity is obvious.
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