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Abstract. In the fully tungsten clad ASDEX Upgrade, the sputtering rates of

tungsten have been determined at all relevant plasma facing components using fast

spectroscopic measurements with temporal resolution down to 0.5ms. The sputtering

strongly increases during an edge-localised mode (ELM) and the ELMs are often

the dominant cause for tungsten sputtering. A modelling approach was employed

to calculate the tungsten source at the limiters and the resulting tungsten density at

the pedestal top inside of the H-mode edge transport barrier (ETB). In the ETB, it is

assumed that tungsten transport is collisional, i.e. behaves like other impurities. The

collisional transport leads to strong inward drifts and steep density gradients in the

ETB, which are flattened during an ELM causing an efflux of tungsten. The collisional

transport in the ETB is also calculated for typical ITER conditions and the resulting

tungsten density profiles as well as the transport of the helium ash through the ETB

are evaluated.

PACS numbers: 52.55.Fa, 52.25.Fi, 52.25.Vy
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1. Introduction

The erosion rate of tungsten is much less than for the lighter elements, which

substantially increases the lifetime of the respective plasma facing components (PFC)

in a fusion reactor [1]. However, use of tungsten also implies the risk of strong central

power losses by impurity radiation due to its high cooling factor at large temperatures.

The influence of tungsten on the minimum triple product for ignition nTτE has been

studied for a reference case with global He confinement time τ ∗
He = 5τE and no other

impurities [2]. It was found, that a central tungsten concentration of only 3×10−5

increases the minimum triple product by 20% and at 1.9×10−4 the ignition condition

can not be satisfied. Due to this low concentration limit, a good understanding of

the erosion mechanisms, the edge transport, and the radial transport in the confined

plasma are mandatory to predict and control the tungsten source as well as the tungsten

confinement. In the fully tungsten clad ASDEX Upgrade, these aspects can be studied.

The central impurity transport and the control of central impurity accumulation has

previously been investigated [3]. Here, we focus on the erosion, the penetration in

the confined plasma and the transport in the edge transport barrier (ETB) of H-mode

plasmas and investigate the relation between the erosion rates and the tungsten density

at the pedestal top.

In H-mode plasmas with type-I ELMs, the tungsten dynamics at the edge is to

a large extent governed by the ELMs [4]. The tungsten production at the plasma

facing components is dominated by the erosion during ELMs mainly due to sputtering

by light impurities. Nevertheless, discharges with a lower ELM frequency have a

higher tungsten concentration in the confined plasma and a minimum ELM frequency is

required to perform long steady discharges with constant tungsten concentration. The

ELM frequency is usually increased by increasing the deuterium puff level. The flushing

of tungsten from the confined plasma during the ELM seems to be dominant compared

to the expected increase of tungsten production due to the same ELM [4].

It was found that the tungsten source at the outboard limiters has the strongest

influence on the tungsten density in the confined plasma. For example, an increase

of the limiter source obtained by an outward shift of the plasma column yields an

increase of the tungsten density inside the separatrix by a factor of 3. This density

increase happens, even though the total tungsten sputtering rates in the outer divertor

and at the heat shield are a lot larger. The sputtering rate at the outer divertor,

essentially constant during the sweep, is ≈20 times stronger, while the tungsten source

rate at the inner heat shield is ≈2 times higher and decreases during the outboard

shift [4]. The minor role of the tungsten source in the outer divertor is also consistent

with experiments and modelling on the divertor retention of tungsten [5, 6, 7]. Even

though further experiments are needed to better quantify the divertor retention for

various operation scenarios, a simplifying assumption used in this study is to neglect

the divertor sources. Thus, a modelling approach with an upgraded version of the

1D radial impurity transport code STRAHL was employed to calculate the erosion,
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penetration and edge transport of tungsten eroded at the limiters. Using this approach,

the calculated confinement times of tungsten form an upper bound since only the limiter

source is assumed to be responsible for the measured tungsten concentration in the

confined plasma.

One important modelling element is the radial impurity transport in the ETB.

Here, the density profile evolution of helium, carbon, neon and argon was measured with

charge exchange recombination spectroscopy [8] and it was found that between ELMs,

all impurities are subject to a strong inward pinch leading to steep impurity density

gradients in the ETB which are flattened during an ELM. The evaluated impurity

transport coefficients between ELMs are in accordance with neo-classical theory and

cause an increase of the peaking with rising impurity charge state [9, 8]. Thus, we

assume also predominantly neo-classical transport for tungsten and find an even stronger

peaking than for the light elements. The effect of the ELM is modelled by a strong

increase of the diffusion coefficient. This flattens the steep negative gradient of the

impurity density in the ETB and leads to an efflux of impurities from the confined

plasma. Since the code models tungsten and light impurities in one run, the efflux of

light impurities onto the limiters can be used to self-consistently model the time history

of tungsten erosion by physical sputtering and the radial transport of tungsten in the

plasma edge.

New measurements of ELM resolved erosion rates, which complement previous local

measurements, will be discussed in section 2. The main elements of the transport model

are described in section 3. The model is not predictive and contains parameters which

are not well known. Therefore, the dependence of the modelled tungsten confinement

on the radial and parallel transport parameters and the ELM frequency are discussed

in section 4. In section 5, the transport model is applied to fit experimental values

from ASDEX Upgrade H-mode discharges with different ELM frequencies. The study

described there evaluates the relative probability of extracted transport parameters from

the knowledge of the tungsten density at r/a ≈0.8 for a given tungsten erosion rate at

the outboard limiters. In ITER, temperatures in the ETB will be much higher than in

ASDEX Upgrade and the neo-classical impurity transport coefficients are more than an

order of magnitude smaller. We discuss in section 6 the consequences of a prevailing

neo-classical impurity transport in the ETB on the edge profiles of tungsten and on the

transport of the helium ash through the ETB.

2. ELM Resolved Tungsten Erosion Rates

The experimental information on the influx of tungsten and on the W density in the

confined area is gained from spectroscopic measurements. Tungsten influx is measured

in the visible spectral range using a WI spectral line at 400.9 nm. Simultaneous

measurements on 38 lines-of-sight are used to quantify the influx at all major erosion

areas, i.e. the outer divertor, the heat shield at the inner column and the outboard

limiters (a sketch of the PFC geometry and the lines-of-sight is shown in [4]). The W
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concentration cW in the outer part of the confined plasma is deduced from W-spectra

in the VUV region. The quasi-continuum at 5 nm emitted by ions around W30+ yields

cW at Te ≈1.5 keV [10], i.e. well within the ETB typically at r/a=0.8 for the H-mode

plasmas discussed below. Another quasi-continuous spectral feature around 15 nm is

presently studied to quantify the concentration of lower ion stages around W20+ [11].

The effect of ELMs on the tungsten influx from the main chamber plasma facing

components (PFC) has previously been determined by fast spectroscopic measurements

on a single line-of-sight observing one spot in the middle of one low-field side limiter

[12] or in the divertor [4]. The repetition time of the measurement was 253µs. The

total erosion rates can only be estimated, when the poloidal W influx profiles along the

PFC are available, which requires measurements on many lines-of-sight for each PFC [4].

However, simultaneous recording of about 10 spectra increases the minimum repetition

time of the CCD-cameras to about 4ms, which is often too slow to have enough data

points in the measured time series that are not affected by ELMs. When adding the

spectra of all lines-of-sight on the camera into one single binned spectrum (the charges

which are created in all pixels at one wavelength are combined during read out), the

repetition time can be reduced substantially to 0.5ms for the cameras measuring the

limiters and the outer divertor and to 1.2ms for the camera recording the spectra from

the inner column. As will be explained later in this section, the calculation of the total

influx rate from the binned spectra can be performed, when knowing the respective

weights of each individual line-of-sight in the binned spectrum, which depend on the

influx profiles.

Thus, the investigated discharges were performed twice, with slower profile

measurements in the first pulse and with faster recording using spectra binning in the

second discharge. For the slow measurements, the total influx rate Φ in [atoms/s] is

calculated by first fitting the WI line of each spectrum, which yields a count rate Ṅi

emitted by the WI line on the ith line-of-sight. Ṅi is multiplied with the sensitivity Si

to get a line radiance in [photons/(m2 s sr)]. Multiplying further the line radiance with

4πS/(XB) delivers the local influx density, where the number of ionisations per emitted

photon S/(XB)=20 [13, 7, 14] was used. This is multiplied with an effective area Ai

and finally, the sum is taken over all lines-of-sight:

Φ = 4π
S

XB

∑

i

AiSiṄi. (1)

The sum of the count rates equals the count rate of the binned spectrum Ṅb =
∑

i Ṅi

and yields the conversion factor kΦ = Φ/Ṅb for the calculation of the rate from the

binned data. This factor kΦ depends on the shape of the plasma with respect to the

shape of the PFC, i.e. where the PFC is mainly hit, and is slowly varying in time during

the flat top phase of the investigated discharges.

Fig.1 shows an example for the evolution of the tungsten source from the outboard

limiters during a type-I ELM for pulse #25095, a discharge of the series discussed in the

next paragraph. The data were recorded with an exposure time of 0.5ms and cover 117

ELMs during a 1s time interval. All measurements are mapped on a common time base
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Figure 1. Evolution of the W source rate ΦW at the outboard limiters during a type-I

ELM. The temporal co-ordinate ∆t is the time difference to the arrival time of the

ELM in the outboard divertor and the data of 117 ELMs are overlaid. The individual

data point averages over an exposure time ∆texp=0.5ms.

∆t = t − tELM giving the time difference to the arrival time tELM of the ELM in the

outboard divertor. The red curve shows a fit to the data using a simple model function

for the source rate:

ΦW (∆t) = ΦW,off + (ΦW,max − ΦW,off)
∆t

τc

exp [1 − ∆t

τc

]Θ(∆t) (2)

Here, ΦW,off is the rate between ELMs, ΦW,max is the maximum rate during the ELM,

τc is a characteristic time and Θ(∆t) is the Heaviside function. The parameters for the

example of Fig.1 are ΦW,off=5×1017 s−1, ΦW,max=1.5×1019 s−1 and τc=0.35ms. The

function is convolved with a boxcar function of 0.5ms width to obtain the red curve in

the figure. The time duration with increased source due to an ELM ∆tELM is about

2ms. Outside of this interval the ELM peak has dropped below 5% of its maximum

value.

A series of type-I ELMy H-mode discharges with Ip=1MA, BT =2.5T, q95=4.5,

PNBI=7.5MW, PECRH=1.6MW and n̄e=7.5×1019 m−3 were performed, which had slow

radial shifts of the plasma column, such that either the inner column or the outboard

limiters were closer to the separatrix. We designate flux surfaces by ∆R, the radial

distance of the flux surface to the separatrix on the low-field side at the height of the

magnetic axis and define the distance of a main chamber PFC to the separatrix by the

lowest value of ∆R on the poloidal shape of that component, again, referenced to the

outer midplane. For the limiters, the shifts covered a range ∆Rlim=4.2-7.2 cm and for

the heat shield ∆RHS=3.2-5.5 cm. The ELM frequency fELM was varied by applying

different deuterium puff levels and covers a range fELM =30-130Hz. The average energy

loss per ELM was in the range ∆WELM=19-50 kJ.

A database was formed by dividing the evolution of the tungsten erosion rate during

the radial sweeps into intervals of 100ms duration and forming mean values for each
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Figure 2. (a): ELM erosion at the main chamber components versus erosion at the

outer divertor. (b): Ratio of the erosion rates of inner heat shield to the outboard

limiters versus the difference of the distances of the respective component to the

separatrix.

interval. An ELM causes a large spike of the influx rate and for each interval, the offset

rate Φoff between ELMs was evaluated. To this end, we calculate the fraction foff of

data points which are not affected by ELMs: foff = (∆tcycle −∆tELM −∆texp)/∆tcycle.

Here, ∆tcycle = 1/fELM is the average duration of the ELM cycle, ∆tELM=2ms is the

duration of increased influx due to an ELM (see discussion of fig.1) and ∆texp=0.5,1.2ms

is the exposure time of the camera. Sorting the n measured rates in ascending order,

the first nfoff data points are offset values and the mean of these values was taken for

Φoff . The difference to the mean value 〈Φ〉 of the 100ms time interval represents the

mean rate during ELMs.

NW =
〈Φ〉 − Φoff

fELM

(3)

is the mean number of eroded tungsten atoms per ELM, and

cELM =
〈Φ〉 − Φoff

〈Φ〉 (4)

is the fraction of the total sputtering rate, which is caused by ELMs.
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Fig.2(a) shows the number of eroded tungsten atoms per ELM for the main chamber

components NW,lim +NW,HS versus the eroded atoms in the divertor NW,div. In the main

chamber, an ELM causes an erosion between (10-20)% of the divertor value. The ELM

erosion dominates the sputtering at the limiters. All values for the ELM fraction at the

limiters cELM,lim are in a range 0.6-0.8 with no trend on the energy loss per ELM or the

ELM frequency, i.e. larger ELMs, which come with lower ELM frequency, contribute as

much as faster, lower energy ELMs. There is a trend with the distance from the limiter

to separatrix ∆Rlim. The values of cELM,lim are around 0.65 for ∆Rlim≈4.5 cm and

rise to 0.8 for ∆Rlim≈6.5 cm. Thus, the ratio of ELM to inter-ELM W limiter sources

rises with ∆Rlim by about a factor of 2 and the decay length is by the same factor

longer during an ELM than between ELMs. For the ELM fraction at the heat shield

cELM,HS, the values are in a range 0.3-0.5 without a clear dependence on ELM energy

or distance to the separatrix. These results agree with the earlier local measurements at

the limiters [4], however, at the heat shield we now find cELM,HS values which are lower

by 0.2 than before, where the present spectra have much better data quality, especially

between ELMs. In Fig.2(b) rates at the limiters and at the heat shield are compared. It

shows the ratio of the respective sputtering rates versus the difference of the distances to

the separatrix. Positive values of the x-coordinate (∆Rlim −∆RHS) represent plasmas,

where the outboard limiters are further away from the separatrix than the heat shield.

For the flux between ELMs, ΦW,lim/ΦW,HS approximately passes through 1 for about

equal distance to the separatrix given the systematic uncertainties of the equilibrium

reconstruction of ≈0.5-1 cm and the flux measurements (factor ≈2-3). For large limiter

distances, the source ratio deacays with reduced slope. Thus, the inter-ELM tungsten

sources at the inboard and outboard components decrease with the same decay length

for lower ∆R values. The data points with reduced slope belong to cases with very large

∆Rlim above 5.5 cm, where the source at the limiter decreases with a large decay length

(very large distances of the heat shield are not in the data set). During ELMs, however,

substantially more influx comes from the outboard limiters and the ratio increases by a

factor of 4-5. Thus, the ion flux and/or the temperatures, which strongly determine the

erosion yield, increase more at outboard components than at the inner column during

an ELM.

3. Impurity Transport Model

Modelling of the impurity transport in principle requires a three dimensional code which

includes the impurity production at the limiters and the transport perpendicular and

parallel to the magnetic field lines. 3D or 2D codes are computationally very demanding

and here, a first approach is done with a 1D impurity transport code.

The STRAHL code [15] solves the coupled radial continuity equations for the

flux surface averaged densities nz of each ionised stage of an impurity. The code

can model light impurities and tungsten during one run in order get a more realistic

description of collisional radial tungsten transport and tungsten erosion during the ELM
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cycle. For the ASDEX Upgrade runs, carbon and oxygen were included, while for the

ITER simulations, helium, oxygen and argon were considered. The background plasma

parameters like ne, Te and Ti are input parameters to the code, and the main ion density

is calculated from the quasi-neutrality condition. For the radial transport, turbulent

diffusion coefficients and drift velocities are set ad hoc (for historical reasons, turbulent

transport is also termed anomalous transport). Usually, the anomalous coefficients are

set to fit the measured evolution of the impurity density profiles after a fast disturbance

[16]. Here, we will study the effect of different settings for the turbulent transport in

the edge of the plasma on the confinement of tungsten (see below). The neo-classical

transport parameters are calculated using the NEOART code [17, 15], which has been

included as a subroutine to STRAHL.

The radial co-ordinate r used in STRAHL is defined by the volume V enclosed

by the flux surface r =
√

V/(2π2Raxis). For an impurity transport code it is essential,

that the calculation domain extends into the scrape-off layer (SOL), where the impurity

sources are located. However, in a diverted plasma r and V are not defined in the

SOL and the volume change per poloidal flux change dV/dΨ diverges when approaching

the separatrix. The commonly adopted workaround is to blow-up the last closed flux

surface to match for a given poloidal flux value the true flux surface at the height of the

magnetic axis. When comparing the major radius at the low-field side equator Rlfs with

r, we have for the investigated ASDEX Upgrade discharges dr/dRlfs ≈ 1.8 around the

separatrix and in the SOL, i.e. a radial gradient in the ETB appears in the co-ordinate

r a factor of ≈1.8 less steep than the measured gradient at the low-field side equator.

Outside the separatrix, the parallel transport towards the divertor or to the limiting

elements in the main chamber is simply described by volumetric losses, i.e. by adding a

term −nimpν‖ to the transport equation being proportional to the parallel loss frequency

ν‖. A sketch of the parallel losses and the tungsten influx in STRAHL is shown in figure

3. The loss frequency ν‖ is given by the parallel connection length between the surface

elements, L‖, and the mean flow velocity of the impurities towards the surfaces, v‖,imp,

i.e.

ν‖ =
2v‖,imp

L‖

(5)

The SOL is divided into a divertor SOL with a large connection length of 50m and

a limiter SOL with 1m connection length. Thus, ν‖ strongly increases when entering

the limiter SOL. The mean flow velocity of the impurities, v‖,imp, is poorly known and

essentially a free input parameter to the code. It will be used later to fit the measured

tungsten confinement. In the divertor SOL, the collision frequency of the impurities is

much larger than the loss frequency, and the impurities are entrained in the deuterium

flow

v‖,imp ≈ v‖,D = M

√

kB(3Ti + Te)

mD

, (6)

which is described by the adiabatic acoustic speed and an average Mach number M .

The Mach number M is set ad hoc and assumed to be constant throughout the entire
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Figure 3. Sketch of the parallel losses and the tungsten influx in STRAHL.

SOL. This description allows to change v‖,imp for all impurities by changing just one

number in the input parameter set discounting details in the radial shape of v‖,imp that

can anyway not be resolved by our measurements. In the limiter SOL, the densities are

very low, the parallel heat conduction is always sheath limited and only small parallel

temperature gradients are expected [18]. Furthermore, the impurity collisionality is

small, i.e. there is only a weak coupling of deuterium and impurity flow speed, and

kinetic effects are important. Here, the isothermal acoustic speed of the impurity

v‖,imp =
√

kB(Ti + Te)/mimp would be more appropriate. For W at Ti = 2Te, this

formula yields the same result as eq. 6 when using M = 0.068, which is within a factor

of 2 the Mach number that was needed to fit the ASDEX Upgrade results. Having

these complications in mind, the loss frequency in the whole SOL is calculated with

eq.5 and 6, expecting the large difference in the connection length to be the prevailing

effect when entering the limiter shadow. The radial grid extends up to the boundary

radius rbnd. Here, a boundary condition dnz/dr = −nz/λ with radial decay length

λ =
√

D(rbnd)/ν‖(rbnd) is used.

The neutral impurities start at the limiter tip with r = rlim,which is a simplification

of the radial distribution of starting positions. Furthermore, they have a constant radial

velocity v0. Their density decays radially according to the rate νion = ne〈σionve〉 for

ionisation:

n0(r) = n0(rlim)
rlim

r
exp [−

∫ r

rlim

νiondr

v0

]. (7)

For the light impurities, the neutral impurity influx rate is set ad hoc to get the desired

impurity concentration in the confined plasma. Complete recycling at the limiters can

be included by adding the loss rates onto the limiters to the influx. For tungsten, the

code calculates the source rate of W using erosion yields for physical sputtering. To this

end, the rate of ions with charge Z that are lost to the limiters is determined using:

Φ||,lim = 2πR0

∫ rbound

rlim

ν||(r)nz(r)2πrdr (8)

This rate is multiplied with the sputtering yield YW (E, m) and the sum over all charge

stages of all elements yields the total influx rate. The yield depends on the energy and
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the mass of the impinging ions. The energy of the impinging ions is approximated by

the value for a collision-less deuterium plasma [19], which yields

E = 2kBTi + 3ZkBTe (9)

for Ti = 2Te. The first term is the average ion energy at the sheath entrance and the

second term is due to acceleration within the sheath. The yield is calculated with the

revised Bodhansky formula as given in [20]. The energy distribution of the sputtered W

atoms is assumed to be a Thompson distribution [21] with a cos-angular distribution. It

depends on the mass and the energy of the sputtering ion, where the energy is a function

of the ion charge Z for a given Te via eq.9. For each sputtering element and ion stage,

the code calculates the mean radial starting velocity v0 of W from the distribution.

For tungsten, also the fraction of promptly redeposited ions is calculated. Prompt

redeposition, i.e. the immediate return to the surface during the first gyration after

ionisation, depends on the product of cyclotron frequency of singly ionised tungsten

ωc = eB/mW and the time delay of the ionisation after the impurity starts at the

surface, ∆tion. For a homogeneous plasma and a cosine angular distribution of the

starting velocities, the fraction of particles that do promptly redeposit is:

fredep =
1

1 + (∆tionωc)2
(10)

The code uses this simple prescription to estimate the prompt redeposition at each radial

grid point, where ∆tion = (rlim − r)/v0 is used. The redeposited particles are removed

from the radial profile of the neutrals, i.e. eq.7 is multiplied with (1 − fredep(r)) such

that the effective volume source of ions at radius r becomes n0(r)(1 − fredep(r))νion(r).

For each fractional W source rate due to sputtering by one ion species, STRAHL

calculates the radial profiles of the neutral W as described above and removes from this

contribution the prompt redeposition profile. Finally, it adds up the neutral density

profiles for sputtering by all species. For helium in ITER, also the volume source due

to fusion was included.

For the modelling of the impurity behaviour in the edge plasma, radial transport

coefficients in the edge, roughly for r/a >0.7, are needed. From previous experimental

impurity transport studies in ASDEX Upgrade H-mode plasmas, there is good

knowledge about the radial transport coefficients inside of the ETB and in the ETB,

while transport coefficients in the SOL are not known. In the edge of the core plasma but

still on the inside of the ETB, impurity transport is dominated by plasma turbulence and

diffusion coefficients have typical values of a few m2s−1, while v/D values are low. This

was shown by investigations on helium, neon [22], silicon [23] and argon [24]. Further out

in the ETB, recent impurity transport investigations on helium, carbon, neon and argon

have shown, that the radial transport in the ETB between ELMs is in accordance with

collisional transport coefficients [9, 8], i.e. in the ETB turbulent impurity transport is

low with respect to the collisional level. All impurities are in the Pfirsch-Schlüter regime

and the collisional transport coefficients are just the sum of the classical (CL) and the

Pfirsch-Schlüter (PS) contribution. Thus, the collisional diffusion coefficient Dneo is
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Figure 4. Profiles of impurity diffusion coefficient (upper box) and drift parameter

(lower box) for the modelling of AUG discharge #22895. In the upper box, the lower

solid black line (an. no ELM) is the assumed turbulent diffusion coefficient between

ELMs Dno ELM
an . The coloured lines are the sum of neoclassical diffusion coefficients

Dneo and Dno ELM
an for the different elements, and the upper solid black line (an. ELM)

is the diffusion coefficient at the start of the ELM. It decays linearly within 1 ms to

the lower black line. The black dashed lines indicate the boundaries of the Dno ELM
an

profile, that were covered in the sensitivity analysis. In the lower box, the different

lines represent v/D = vneo/(Dneo + Dno ELM
an ) for the quiet phase between ELMs.

During the ELM v/D is negligible.

Dneo = DCL +DPS and the collisional radial drift velocity vneo is vneo = vCL + vPS. The

collisional radial transport is characterised by a strong inwardly directed pinch velocity

vneo and the ratio vneo/Dneo increases with the impurity charge. Tungsten has even

higher collisional transport coefficients than the light impurities and its transport must

be dominated by the effect of Coulomb collisions. The ratio vneo/Dneo is expected to

be larger due to the higher charge. The collisional transport of tungsten is dominated

by collisions with low-Z impurities and it is necessary to include impurity-impurity

collisions in the calculation of the transport coefficients of W. With increasing low-Z

impurity concentration the diffusion coefficient Dneo increases. The impurity diffusion

coefficient in the SOL is not well known, however, it will be shown below, that the fit

of the discussed measurements by the model is very insensitive to this parameter.

The elements of the radial transport model are depicted in Fig.4. The turbulent

transport coefficients Dan and van are assumed to be equal for all charge stages of

all impurities. In the phase between ELMs, the anomalous diffusion coefficient was

reduced in the ETB to DETB
an (solid black line) being well below the collisional diffusion

coefficient of all impurities. In Fig.4 it is about a factor of 10 below the collisional

values where W has the largest diffusion coefficient. The curves in colour show the sum
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of anomalous and collisional diffusion coefficients for each element. The total values

of the drift parameter v/D in this phase are shown in the lower box. The turbulent

drift velocity is assumed to be negligible compared to the neoclassical drift and is set

zero. Thus, the drift parameter is v/D = vneo/(Dneo + Dan). W has the strongest

inwardly directed drift parameter. The minimum is just inside the separatrix. For

r ≥ rsep, the neoclassical coefficients are not defined, however, for the numerical solution

of the transport equations, a large discontinuity in the transport coefficients at the

separatrix must be avoided. Therefore, the logarithmic divergence of the safety factor

was circumvented by linearly extrapolating the radial dependence of q between ρpol=0.9

and 0.95 up to the separatrix. Thus, the collisional transport coefficients were calculated

up to r = rsep+1.5 cm and switched off for larger radii. From r = rsep+0.5 cm to

r = rsep+1.5 cm, the anomalous diffusion coefficient in the inter-ELM phase is increased

to a second plateau DSOL. During a sensitivity scan (see below), DSOL and DETB
an were

independently varied by a factor of 10 and the boundaries of the corresponding Dan

profiles are indicated by the dashed lines. An ELM is induced by a sudden switch-on

of a large diffusion coefficient in the edge (upper black curve), which decays linearly in

time within 1ms.
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Figure 5. In fig.(a), the modelled evolution of the total tungsten density nW during an

ELM cycle of 10ms duration is shown for AUG discharge #22895. DSOL=1m2s−1 and

DETB
an =0.032m2s−1 was used. The lower right frame shows the temporally averaged

profile in comparison with the profile of exp [
∫

(〈v〉/〈D〉)dr]. Fig.(b) depicts the time

evolution of the tungsten sputtering rate Φ and effective source Φ(1 − fredep).

An example of the modelled density evolution of the total tungsten density nW

during an ELM cycle of ∆tELM=10ms duration for discharge #22895 is shown in

Fig.5(a). Here, the settings for the two plateaus of the turbulent diffusion coefficient
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were DSOL=1m2s−1 and DETB
an =0.032m2s−1 (other parameters are in Tab.1). The radial

co-ordinate is the distance to the separatrix at the low-field side equator. All impurities

are in quasi-equilibrium, i.e. the temporal average density over an ELM cycle

〈n〉 =
1

∆tELM

∫ ∆tELM

0

n(t)dt (11)

is constant in time. The profile of 〈nw〉 is depicted in the lower right box and the

other boxes show various time points ∆t with respect to the start of the ELM. The

gradients of the strongly peaked edge profile at ∆t=0ms are flattened in the first few

100µs after the start of the ELM. At the same time the tungsten sputtering rate Φ

rises as is shown in Fig.5(b), however, the prompt redeposition leads to a much smaller

increase of the effective source Φ(1− fredep). After ∆t=1ms, the edge gradient recovers

till the start of the next ELM. At a major radius of ≈-1.2 cm inside of the separatrix,

a peak of the density evolves, which is due to a maximum in the v/D profile at slightly

positive (outward directed) value of 17m−1. Inside of -2.5 cm, the drift velocity is zero.

Nevertheless, there is still a slightly hollow profile up to about -20 cm for about the

second half of the ELM cycle. However, the average profile is perfectly flat in that

region and has just the expected shape, since inside the separatrix, the tungsten source

is zero and the temporally averaged radial flux density 〈Γw〉 must be zero as well:

〈Γw〉 = −〈Ddnw/dr〉 + 〈vnw〉 = 0 . For a weak modulation, the following linearization

can be done.

1 =
〈vnw〉

〈Ddnw/dr〉 =
〈v〉〈nw〉

〈D〉d〈nw〉/dr
→ d〈nw〉/dr

〈nw〉
=

〈v〉
〈D〉 (12)

Inside of ≈ −2 cm, the modulation is sufficiently weak and the average profile can just be

calculated from the time averaged transport coefficients. Inside of -2.5 cm, v is anyway

zero for all times and 〈nW 〉 is flat. Closer to the separatrix, the modulation is strong

and the averaged gradients are steeper than in the linearised approximation.

4. Main Dependences of the Tungsten Transport Model

The model was applied to three discharge phases with different deuterium puff levels

ΦD and ELM frequencies (see Tab.1). The model has previously been applied to these

discharges [25] in order to find one consistent solution, without studying the dependence

on the above mentioned parameters. Another difference with respect to [25] is, that

on top of the turbulent DSOL, neoclassical transport coefficients were used within the

divertor SOL, which has been avoided in this work.

Before trying to fit the measurements of individual discharges with the model, it

is important to study and understand the dependence of the modelling results on the

free knobs of the code, i.e. the parameters, which are not well known from theory or

measurement. In our case, these free parameters are the perpendicular and parallel

transport parameters in the SOL. To this end, an independent scan of the ELM

frequency with fELM=25, 50, 100, and 200Hz, the inter-ELM anomalous diffusion

coefficients DETB
an =0.01, 0.0316 and 0.1m2s−1, DSOL= 0.1, 0.316, 1 and 2m2s−1 and
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Figure 6. Regression of the particle confinement time of tungsten τp on the ELM

frequency, the average parallel loss time from SOL to divertor 〈〈τSOL→div〉〉 and the

SOL diffusion coefficient DSOL. The dashed lines denote a factor of 2 deviation from

the regression.

the average Mach number M=0.033, 0.1 and 0.3 was performed. The variation in M

leads to a change of the parallel loss time to the divertor τSOL→div according to eq. 5

and 6. It varies across the divertor SOL and during time due to the dependence on

the temperature (see eq.6). The spatially and temporally averaged parallel loss time

from SOL to divertor 〈〈τSOL→div〉〉 was around 6.6, 2.2 and 0.72ms for the three Mach

numbers. The transport model for each input parameter set was solved until temporal

quasi-equilibrium of all impurities was reached. Finally, the scan was repeated using the

background profiles ne, Te and Ti of all three discharges. For each setting, the particle

confinement time of tungsten

τp =
〈NW 〉
〈ΦW 〉 (13)

was calculated from the average number of tungsten ions in the confined plasma 〈NW 〉
and the neutral production rate at the limiters 〈ΦW 〉. 〈ΦW 〉 also includes the atoms

which promptly redeposit. A regression of τp on fELM , the spatially and temporally

averaged parallel loss time from SOL to divertor 〈〈τSOL→div〉〉 and DSOL describes all

values within a factor of 2 as is shown in Fig.6. It yields

τp = 1.4 × 10−2 s f−1.1
ELM 〈〈τSOL→div〉〉1.1 D0.1

SOL (14)

for [fELM ]=s−1, [〈〈τSOL→div〉〉]=s and [DSOL]=m2s−1. The dependence on DETB
an was

negligible, since this parameter was only scanned in a range, where the neo-classical

diffusion coefficient is dominant. Thus, τp varies almost linearly with 1/fELM and

〈〈τSOL→div〉〉, while the dependence on DSOL is very weak. Qualitatively, the weak

dependence on DSOL is due to the twofold effect of SOL diffusion, driving a radial

flux from the source location to the inside as well as to the outside. Quantitatively, it is

already known from the much simpler case with temporally and spatially constant DSOL,
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τSOL→div and a constant source at fixed radial distance ∆r = r − rsep to the separatrix.

With such fixed SOL parameters, analytical solutions of the transport equation can be

found [26, 16] which yield a maximum of τp at Dmax
SOL ≈ ∆r2/τSOL→div. Using this result

and replacing ∆r and τSOL→div by average values, the investigated data set delivers Dmax
SOL

around 0.5, 1.7 and 5m2s−1 for the three settings of 〈〈τSOL→div〉〉. For the individual

subsets with one fixed value of 〈〈τSOL→div〉〉, one finds a dependence of τp on DSOL which

is consistent with the analytical solution, i.e. τp rises when DSOL approaches Dmax
SOL. In

the complete data set, this leads to a very weak dependence on the diffusion coefficient

in the SOL. Thus, when knowing an experimental value for τp at a given ELM frequency

fELM , the most robust modelling output is the parallel loss time in the SOL provided

that the radial transport during the ELM is well described. However, lower values of

DSOL produce more strongly peaked profiles near the source radius. The density profile

near the source radius has a characteristic radial decay length

λSOL,div =
√

DSOLτSOL→div (15)

and high impurity concentrations appear at the source location for the lower values of

DSOL. In the limiter shadow, the characteristic decay length λSOL,lim =
√

DSOLτSOL→lim

also increases with increasing DSOL.

5. Application to the modelling of ASDEX Upgrade H-mode discharges

The model was applied to three H-mode discharges, with fELM =50, 100 and 200Hz,

where the erosion rates and the concentration inside the pedestal top are known from

measurement (see Tab.1). Due to the weak dependence of τp on DSOL, the parallel losses

to divertor and limiter were tuned to fit the measured tungsten concentrations cW,0.8 at

r/a ≈ 0.8 for three values of DSOL= 0.1, 0.32 and 1m2s−1 and fixed DETB
an =0.032m2s−1.

Carbon and oxygen influxes are set to a constant value and complete limiter recycling

was assumed. The influx values were chosen to yield the measured concentrations cC,0.9

and cO,0.9 at r/a = 0.9 (see Tab.1).

The neutral tungsten influx from divertor, inner column and low-field side limiters

was measured by visible spectroscopy. We assume the influx from the outboard limiters

to be the dominant source for the tungsten concentration in the confined plasma [4].

Thus, only 1/3 of the low-Z impurity losses onto the limiters are considered for the W

production where this choice reflects the measured ratio of W influx from the outboard

limiters to the influx from the inner heat shield. Using this choice, the calculated

confinement time of tungsten τp,W is an upper bound, since the effect of the heat shield

source is neglected. The ELM fraction of the total W source is known to be around

70% (see section 2). Thus, the modelled W sputtering rate shall deliver the measured

rates and ELM fraction. There is a very strong dependence of the sputtering yield on

temperature in the 10 eV region. However, measurements of Ti and Te at the limiters

are either not existing or far too uncertain, such that experimental values could not

be used as input to the code. Thus, the maximum value during the ELM TELM
e,lim and
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# 22898 # 22895 # 22901

ΦD,puff [1022s−1] 1.5 1 0.1

fELM [Hz] 200 100 50

〈ΦW,lim〉 [1018s−1] 2.0 3.3 3.6

cELM
W,lim 0.7 0.7 0.7

〈cW,0.8〉 [10−5] 0.84 1.8 3.6

〈cC,0.9〉, 〈cO,0.9〉 [%] 0.9, 0.23 1.2, 0.3 2.1, 0.51

DSOL [m2s−1] 0.1 0.32 1 0.1 0.32 1 0.1 0.32 1

Te,lim [eV] 7.7 7.1 6.7 11 9.5 8.3 12 10 8.2

TELM
e,lim [eV] 13 12 11 26 22 18 36 28 21

〈〈τSOL→div〉〉 [ms] 5.8 5.9 6.5 7.1 5.7 5.0 4.9 3.4 2.6

〈〈λSOL,div〉〉 [cm] 4.5 6.1 9.2 3.9 5.1 7.5 2.9 3.7 5.3

〈〈λSOL,lim〉〉 [mm] 2.8 4.3 6.9 2.8 4.1 6.1 2.4 3.3 4.8

〈nW,0.9〉/〈nW,sep〉 4.4 3.9 3.6 8.9 8.1 7.8 22 21 20

〈nC,0.9〉/〈nC,sep〉 1.9 1.7 1.6 2.6 2.4 2.3 4.0 3.8 3.7

τp,W [ms] 4.0 5.1 9.4

1 − 〈fredep〉 0.34 0.38 0.40 0.29 0.33 0.36 0.36 0.38 0.41

∆NW /〈NW 〉[%] 6.7 8.4 9.7 7.9 9.7 10.6 8.7 9.7 10.3

Table 1. Experimental and impurity transport modelling parameters for W edge

transport of three H-mode discharges in ASDEX Upgrade. The first block gives

experimental values. The second block comprises input parameters to the code or

derived quantities, which are a direct consequence of the input parameters. The

third block shows output values of the code, i.e the result of the impurity transport

calculation.

the inter-ELM value of Te,lim need to be prescribed in order to obtain the measured

sputtering rates from the model. Ti,lim was set to 2Te,lim. The discharge with lowest

deuterium puff and largest W influx, has the highest limiter temperatures. For each

discharge, there is a small temperature variation with DSOL. For increasing DSOL, the

radial decay length in the limiter shadow 〈〈λSOL,lim〉〉 increases leading to a larger loss

onto the limiters Φ‖,lim (eq.8) and thus causing an increased tungsten sputtering rate.

Therefore, the limiter temperatures, which are input to the model, need to be reduced

with increasing DSOL to arrive at the measured tungsten influx as can be seen in Tab.1.

Finally, the Mach number is adjusted to fit the measured tungsten concentration

cW,0.8. For the discharge #22901, which has the lowest ELM frequency, the variation

of the inter-ELM diffusion coefficient in the SOL DSOL has the strongest influence

on 〈DSOL〉 being the temporal average of the SOL diffusion coefficient during the

ELM cycle. Here, the increase of DSOL by a factor of 10 needs the largest change

in 〈〈τSOL→div〉〉 and can be compensated by a factor of 2 decrease of 〈〈τSOL→div〉〉 to get

the same particle confinement time (the W confinement would increase with increasing

DSOL at constant 〈〈τSOL→div〉〉). The 〈nW 〉 profiles for the three DSOL cases are shown in
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Figure 7. Modelled radial profiles of 〈nW 〉 yielding the measured W concentration

at r/a = 0.8 for the measured W influx for three different levels of the inter-ELM

diffusion coefficient in the SOL.

Fig.7 for #22901. The profile for DSOL =0.1m2s−1has a pronounced maximum around

the source radius, and also for C and O very large concentrations around the source are

found which might even lead to violations of the quasi-neutrality shortly after the ELM.

Therefore, such low DSOL values are less probable. Furthermore, measurements of the

nW decay lengths in the limiter shadow [27] of ≈ 5mm also point in the direction of

larger diffusion coefficients.

Besides the SOL transport issues, a strong effect of the ELM frequency on the

average impurity density gradient is found. For decreasing ELM frequency, the ratio of

the W density at r/a=0.9 to the separatrix value 〈nW,0.9〉/〈nW,sep〉 increases somewhat

stronger than linear, rising from 3.9 to 21 with a weak dependence on DSOL. The

dependence on fELM simply reflects that the more frequent the evolution towards a

strongly peaked profile in the ETB is reset by an ELM the lower is the average peaking.

The weak dependence on DSOL can be understood when observing the flushing of

tungsten from the confined region during an ELM. Each ELM reduces the tungsten

content by ∆NW /〈NW 〉=6.7-11%. For fixed ELM frequency, this flushing of tungsten

becomes strongest when the density inside the pedestal top and in the SOL differs most,

i.e. for the cases with DSOL=1 m2s−1, where the tungsten density in the SOL is lowest

(see Fig.7).

In general, the suppression of the neo-classical W peaking due to ELMs depends

on the strength and the duration of the increased diffusion in the model and details can

only be tested by impurity density measurements around the ETB with good spatial

and temporal resolution. Previous application of the ELM model agreed well with Si

and Ne measurements [22], however, fast measurements of W concentrations around the
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ETB are very difficult and still evolving [11]. In the present modelling approach, all

ELMs are identical in terms of transport coefficients.

Finally, the prompt redeposition reduces the calculated tungsten confinement by

a factor of 2.5-3 for these discharges with BT =2.5T. This can be seen from the time

averaged fraction of W atoms, which do not promptly redeposit (1− 〈fredep〉 in Tab.1).

6. Impurity transport in the ITER H-mode edge transport barrier

The focus in this section is mainly on the perpendicular transport in the ETB and the

consequences of a dominantly neo-classical impurity transport in the ETB between the

ELMs. An attempt is made to calculate the average peaking of tungsten in the ETB

of ITER plasmas for different ELM frequencies. It is an estimate for an ITER with

tungsten PFCs in the main chamber, which might become relevant at a later stage of

the ITER operation.
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Figure 8. Edge profiles of ne, Te, and Ti before (solid lines) and after a 1MJ-ELM

(dashed lines) used for the impurity transport calculation.

The calculations are for the ITER-FEAT reference scenario for inductive operation.

The main parameters are: Rgeo =6.2m, a=2.4m, BT =5.3T, Ip=15MA, PNBI=40MW,

Pfus=400MW, i.e Q=10. The central profiles up to the pedestal top are taken from

transport calculations [28, 29] using heat and particle fluxes from the GLF23 code

[30], which is based on ITG/TEM physics. The pedestal top values, that fulfil the

Q = 10 requirement are Te,ped=Ti,ped=4.8 keV, and ne,ped=7.8×1019 m−3. Modified tanh-

functions were used to describe the edge profiles at the low-field side equator

y(Rlfs) =
yped + ySOL

2
+

yped − ySOL

2
mtanh

[

− 2λy′
ped

yped − ySOL

,
Rc − Rlfs

λ

]
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mtanh[α, z] =
(1 + αz) exp [z] − exp [−z]

exp [z] + exp [−z]
(16)

where yped is the pedestal top value, ySOL the SOL offset, λ the decay length, y′
ped

the asymptotic slope inside of the pedestal top, and Rc the location of the pedestal

centre [31]. For the pedestal width of Te, a scaling with machine size was assumed and

λ=3.5×10−3Rgeo was used [32]. The separatrix value of Te is quite well defined by parallel

heat conduction [33]. It was set to Te,sep=195 eV and defines the central position of the

function. The asymptotic slope inside the pedestal was set to dTe,ped/dR=-5 keVm−1

yielding a smooth transition to the core profile. The modified tanh-function without

offset value in the SOL leads to very low electron temperatures at the limiters. Therefore,

Te,SOL was set to 8 eV to have some W erosion at the limiters due to physical sputtering

by impurities. This value of Te,SOL is arbitrary and not important for the conclusions of

this section. For the ion temperatures all parameters are the same, but the decay length

was increased by 25% and Ti,sep=2Te,sep was chosen, which defines the centre position

of the Ti function. The electron density decay in the ETB was calculated from the Te

profile assuming ηe = (dTe/dR)/(dne/dR) = 2 [34, 31] down to a an offset value of

1×1019 m−3. The profiles after an ELM are constructed by increasing for all profiles the

decay length by the same factor and shifting Rc by the same amount, such that the total

energy is conserved and that the ELM energy loss ∆WELM is shifted from the confined

region into the SOL. This was done for the maximum permissible ELM energy loss in

ITER, which is about ∆WELM =1MJ [35]. The profiles before and after an ELM are

shown in Fig.8. Many of the assumptions are certainly questionable, however, for the

further considerations only the high ETB temperatures and the scaling of the pedestal

width with machine size are essential.

Fig.9 shows the calculated neo-classical transport coefficients between ELMs and

the assumed anomalous profiles of the diffusion coefficient D and of the drift parameter

v/D. Additional impurities which contribute to the collisional transport of tungsten

are helium with a concentration of cHe,0.9=2%, oxygen with c0,0.9=0.9%, and Ar with

cAr,0.9=0.05%. The concentration are chosen to yield a Zeff of ≈1.6. corresponding to a

dilution that is compatible with a fusion power of 400MW. The neo-classical diffusion

coefficient Dneo in the ETB is shown for each impurity. For tungsten and argon, Dneo

is strongly dominated by the PS contribution, while for He the banana-plateau term

DBP contributes about 60% at r − rsep=-20 cm and only 10% near the separatrix. In

the radial range, where DBP is important, the approximate banana width w ≈ √
ǫρp of

all ions are well below the gradient lengths of temperature and density and the basic

assumption of neo-classical transport theory is valid. The values of Dneo are in the range

0.01-0.03m2s−1and thus more than an order of magnitude below the typical values in

ASDEX Upgrade. In order to have a dominant neo-classical impurity transport in the

ETB the anomalous diffusion coefficient was reduced from 1m2s−1at the pedestal top

to an order of magnitude smaller values than Dneo, i.e. 1×10−3 m2s−1in the ETB, and

increased again to 0.5m2s−1in the SOL in order to avoid very small characteristic length

scales in the divertor SOL (see sec.5). The ELM is again induced by the same recipe as



Main Chamber Sources and Edge Transport of Tungsten in H-mode Plasmas at ASDEX Upgrade20

0.001
0.01

0.1

1

10

D
 [m

2 /s
] W

Ar
He
O

an. ELM

an. no ELM

-30 -20 -10 0
r-rsep [cm]

-60

-40

-20

0
v/

D
[m

-1
]

He
O
Ar
W

Figure 9. Radial profiles of the transport coefficients used in the ITER transport

model. In the upper box, the lower solid black line (an. no ELM) is the assumed

turbulent diffusion coefficient between ELMs Dno ELM
an , the coloured lines are the sum

of neoclassical diffusion coefficients Dneo and Dno ELM
an for He, O, Ar and W, and the

upper solid black line (an. ELM) is the diffusion coefficient at the start of the ELM.
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linearly within 1ms.
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Figure 10. Modelled tungsten profiles in the ITER edge averaged over one ELM

cycle. The profiles were calculated for different ELM frequencies and are normalised

to the same effective source rate 〈Φ(1 − fredep)〉.
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A rough estimate of the ELM frequency can be gained from the assumption that 1/3

of the power transported across the separatrix Psep is exhausted within ELMs [36]. Using

Pheat=120MW and Prad,core=0.25Pheat gives Psep=90MW and fELM=30Hz. A scan of

the ELM frequency was performed using fELM=33Hz as the highest value and going

down to fELM=5Hz. For the case with highest ELM frequency, the influxes of oxygen

and argon were set to have core concentrations c0,0.9=0.9% and cAr,0.9=0.05%. For

Helium we considered the source due to fusion in the confined plasma, 100% recycling at

the limiters and divertor recycling, which was calculated with a simple divertor chamber

model which describes the pumping and recycling with decay time constants [37]. The

parameters of the decay times were set to get a global confinement time of He

τ ∗
He =

〈NHe〉
ΦHe,fus

(17)

of about 5 times the energy confinement time τE. For the other ELM frequencies the

oxygen and argon influxes and the recycling model for He were left unchanged. Fig.

10 shows the modelled 〈nW 〉 profiles at the edge for the different ELM frequencies. All

profiles are normalised to the same tungsten source rate. The absolute W densities

can not be predicted and we just concentrate on the peaking in the ETB vicinity. The

peaking is very low at the higher frequencies and there is only a remarkable increase when

decreasing fELM to 10Hz. At fELM=10Hz the tungsten peaking across the pedestal is

〈nW,0.9〉/〈nW,sep〉 ≈6 and at fELM=5Hz the peaking factor is about 14. These values

are in the range of peaking factors calculated for the ASDEX Upgrade ETB at about

20 times higher ELM frequencies (see Tab.1 at fELM=100 and 200Hz). For argon and

oxygen, the peaking is even weaker. Thus, the neo-classical impurity peaking in the ETB

seems to be of much lower importance in ITER due to the low neo-classical transport

coefficients leading to equilibration times much longer than the foreseen ELM repetition

time, where it is assumed that the small ELMs in ITER are effectively weakening the

impurity gradient in the ETB. For the case with fELM=5Hz, a series of runs were

performed, where the turbulent diffusion coefficient in the ETB Dan,ETB was increased

from the value of 0.001m2s−1up to 0.1m2s−1. The peaking 〈nW,0.9〉/〈nW,sep〉 steadily

decreases with rising Dan,ETB and is reduced to half of the starting value when reaching

Dan,ETB=0.014m2s−1, which approximately equals the collisional diffusion coefficient.

There remains the concern about the He exhaust, since He, which is created by

fusion in the core of plasma, has to diffuse through the low transport region at the

ETB. Four sets of calculations have been performed. For all sets, Fig.11 shows the

global helium confinement time τ ∗
He and the ratio with τE ≈ 2.5 s as a function of ELM

frequency. In the first set (full symbols in Fig.11), the helium which is transported onto

the limiters is re-injected in the next time step, i.e. with complete limiter recycling,

while He ions that are lost to the divertor do not return. This yields a very low total

He recycling source on the order of the fusion source and represents the case which is

dominated by the perpendicular transport across the ETB. For this set τ ∗
He increases

from 4.2 s at fELM=33Hz to 12 s at fELM=5Hz. When including the simple divertor

recycling model [37], the source in the SOL is about 100 times stronger than the fusion
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Figure 11. Effect of the ELM frequency fELM on the global helium confinement time

τ∗

He in ITER. The blue curve is for the case without He recycling from the divertor,

where the perpendicular transport through the ETB is the only limiting factor. The

red curves are for three assumed levels of divertor recycling which cause a further

increase of τ∗

He.

source. The value of τ ∗
He at fELM=33Hz is determined by the time constants in the

model and was set to three different values: 7.5 s, 13 s, and 18 s. The other values of the

scans are calculated without changing the respective time constants. For these scans,

the effect of the changing perpendicular transport with decreasing ELM frequency is less

visible for the cases with large divertor recycling. In all cases a strong increase of τ ∗
He is

observed for fELM=5Hz, where τ ∗
He is 17.8 s, 25.4 s and 31.4 s for the respective scans.

The divertor recycling model certainly is a crude simplification for the fuelling from the

divertor and shall just demonstrate that the perpendicular transport effects in the ETB

are not very important as long as the ELM frequency is in the expected range around

20Hz even for neo-classical diffusion in the ETB. The details of the change of τ ∗
He with

ELM frequency depend of course on the value, the radial width and the duration of an

increased diffusion coefficient during the ELM.

7. Conclusions

Fast measurements of the total erosion rates at the plasma facing components in ASDEX

Upgrade have shown that at the outboard limiters 70±10% of the erosion is due to ELMs,

while at the inboard heat shield the contribution is lower at a level of 40±10%. The

ELM contribution does not depend on the energy loss during an ELM, i.e. less frequent

larger ELMs cause the same contribution as more frequent smaller ELMs. The ratio of

outboard to inboard erosion rates decreases when the plasma is shifted to the inboard.

However, the balance is different during an ELM and between ELMs with a stronger

outboard contribution during an ELM.

For tungsten, the transport in the ETB is dominated by the effect of Coulomb
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collisions, since it has an even higher collisional diffusion coefficient than the light

elements, for which the agreement with purely collisional transport could be deduced

from direct measurements. The collisional transport produces a strong inward pinch and

a respective peaking of tungsten in the ETB which is relaxed during an ELM. When

modelling the edge transport in ASDEX Upgrade with a 1D radial transport code that

implements the parallel losses in the SOL as volume loss rates, the impurity confinement

time shows a strong decrease with increasing ELM frequency as experimentally observed.

However, there is an equally strong dependence on the characteristic parallel loss time

in the SOL, which is at present not well known and requires further measurements to

restrict this parameter in the model. The dependence on the diffusion coefficient in the

SOL is very weak and can hardly be determined from measured confinement times.

In the ETB of ITER, the collisional impurity diffusion coefficient is about a factor

of 20 smaller than in ASDEX Upgrade. Thus the time to build up a strong edge gradient

is substantially longer, however, the ELM frequency has to be kept high (around 20-

30Hz) in order to achieve small ELMs. Thus, the average edge peaking will be quite

small, provided that the ELMs do not lead to a much smaller increase of the effective

diffusion coefficient than used in the model. Then, the high ELM frequency also helps

to transport the helium across the plasma edge and does not lead to an unacceptably

large value of τ ∗
He.
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