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The nonlinear dynamics of microtearing modes in standard tokamak plasmas are investigated by
means of ab initio gyrokinetic simulations. The saturation levels of the magnetic field fluctuations
can be understood in the framework of a balance between (small poloidal wavenumber) linear drive
and small-scale dissipation. The resulting heat transport is dominated by the electron magnetic
component, and the transport levels are found to be experimentally relevant. Microtearing modes
thus constitute another candidate for explaining turbulent transport in such toroidal systems.

It is well established that the cross-field transport of
energy and particles in magnetically confined plasmas is
generally dominated by turbulent processes. Neverthe-
less, important aspects of turbulent transport are not
well understood at present, including the role of field
line stochasticity – although first major results in this
area were already achieved several decades ago. In 1973,
Stix argued that even minute magnetic perturbations can
destroy magnetic surfaces, enhancing the radial electron
heat flux.[1] A few years later, several authors suggested
that one source of such fluctuations may be electromag-
netic microinstabilities like microtearing modes.[2–5] The
latter are gyrokinetic analogues of the well-known mag-
netohydrodynamic tearing modes, driven mainly by elec-
tron temperature gradients and giving rise to small-scale
magnetic islands which may overlap and “stochasticize”
the magnetic field. This discovery was followed by nu-
merous theoretical and computational efforts throughout
the 1980s and 1990s. However, no clear physical picture
emerged concerning both nonlinear and even various lin-
ear effects; in particular, it is not entirely clear from the
published analytical work whether stabilizing or destabi-
lizing effects dominate the linear physics of microtearing
modes under realistic conditions.

Over the last few years, linear gyrokinetic studies
have been undertaken, indicating a role of microtear-
ing modes first in spherical (small aspect ratio) [6–8]
and later also in standard (medium aspect ratio) [9–11]
tokamak plasmas. Furthermore, it was shown that a
semi-analytic transport prediction (using severe simpli-
fications) by Drake and co-workers [12] is consistent with
certain experimental results from the NSTX tokamak.[13]
Investigations of the nonlinear dynamics of microtear-
ing modes by means of ab initio gyrokinetic simulations
would be extremely valuable in this context, but are still
missing to date. This gap shall be closed in the present
Letter. Below, we will investigate (i) what sets the sat-
uration levels of the magnetic field fluctuations; (ii) in
which way the magnetic fluctuation level is linked to the
heat transport level; (iii) which kind of physics sets the
saturation amplitudes and thus the transport levels in
the quasisteady turbulent state – firmly establishing mi-
crotearing modes as additional candidates for explaining
turbulent transport in (standard) tokamaks.

In the following, we will employ the local (flux-tube)
version of the gyrokinetic turbulence code Gene [14, 15]
to address the nonlinear microtearing problem. Such
simulations are extremely demanding, since they re-
quire high resolution in nearly all directions of the five-
dimensional phase space. One main issue is that mi-
crotearing modes tend to produce magnetic perturba-
tions which are fairly extended in the radial direction,
while the parallel current and the electrostatic potential
tend to exhibit fine radial structures. Convergence stud-
ies reveal that (for our present physical parameters) a
perpendicular box size of 150ρi × 300ρi and a grid of
384 × 64 × 24 × 32 × 16 points in (x, y, z, v‖, µ) space
are required. Here, x, y, and z correspond, respectively,
to the radial, binormal, and parallel direction in field-
aligned coordinates, v‖ is the parallel velocity, and µ is
the magnetic moment. Furthermore, the observed small
growth rates require relatively long simulation times to
get good statistics in the saturated turbulent state.
As magnetic geometry, we take the model of a tokamak

with concentric circular flux surfaces described in detail
in Ref. [16]. As the nominal set of physical parameters
we choose an inverse aspect ratio of ǫ = 0.18, a magnetic
shear of ŝ = 1, and a safety factor of q = 3. These are
realistic values for the outer core region of a medium as-
pect ratio tokamak. The ion-to-electron mass ratio is
chosen to be mi/me = 1836, and the ion-to-electron
temperature ratio is taken as unity. Of special impor-
tance is the electron-ion collision frequency νei (using
a linearized Landau-Boltzmann collision operator [15]);
its nominal value is assumed to lie in the semicollisional
regime: νei = 0.02 vte/R, where vte = (Te/me)

1/2 is the
electron thermal velocity and R is the major radius. In
this case, the mean free path λmfp = vte/νei is compara-
ble to, but somewhat larger than the connection length
Lc = 2πqR. The nominal value of the electron plasma
beta is chosen to be βe = 0.6%, and the normalized pro-
file gradients are given by R/LTe

= 3.5, R/LTi
= 0, and

R/Ln = 1 unless stated otherwise.
Let us now turn to the simulation results. In a first

step, we will focus on the magnetic fluctuation lev-
els: what sets them, and how do they depend on var-
ious plasma parameters? According to a model devel-
oped by Drake and co-workers,[12] one should expect a
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FIG. 1: Microtearing modes saturate at a fluctuation level of
B̃x/B0 ∼ ρe/LTe

. Using the nominal resolution and others,
each of which represents a reduction by 1/3 or 1/2 in one of
the phase space directions, leads to only moderate scatter.

relative fluctuation amplitude of the magnetic field of
B̃x/B0 ∼ ρe/LTe

, where ρe is the thermal electron gyro-
radius. This estimate was obtained in the collisional limit
within the framework of a drift-kinetic theory, neglecting
parallel dynamics. The results from about a dozen Gene

simulations for different values of R/LTe
and different

numerical resolutions are displayed in Fig. 1. The Drake
expectation is shown for comparison as a dashed line. In-
terestingly, it describes the gyrokinetic simulation results
quite well, indicating that the general physical reasoning
underlying it might also apply (possibly in some refined
form) to the three-dimensional gyrokinetic system. We
will return to this important point later. In this context,
we would like to note, however, that the magnetic fluc-
tuation amplitude is sensitive to plasma parameters like
βe or νei, as well as various geometrical quantities. As
an example, a βe scan is shown in Fig. 2. Given that
the linear microtearing instability exists only if βe ex-
ceeds a certain threshold (∼ 10−3 in the present case), it
comes as no surprise that the magnetic fluctuation level
increases with increasing βe. Thus, the Drake formula
should only be viewed as a rough estimate which cap-
tures some of the main effects but ignores such additional
parameter dependencies.

In a second step, we would now like to investigate in
which way the magnetic fluctuation level is linked to
the associated transport level. Generally, our gyroki-
netic simulations show that, while the radial particle flux
tends to be very small, the heat flux due to microtearing
turbulence is clearly dominated by the magnetic elec-
tron contribution (> 80%). This raises the question if
the (magnetic) transport can be described by means of
a Rechester-Rosenbluth type [17] ansatz. Since such a
model relies on magnetic field stochasticity, we first con-
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FIG. 2: Dependence of the magnetic field fluctuation ampli-
tude on the plasma parameter βe for R/LTe

= 4.5.

firmed that Poincaré plots of static fluctuating field lines
support this notion. In Fig. 3, one observes that in the
saturated turbulent state, individual microtearing modes
create small-scale magnetic islands which may overlap,
leading to stochastization. While for weak linear drive
(R/LTe

= 2.5 where R/Lcrit
Te

≈ 1.3), individual magnetic
islands survive and the flux surfaces largely remain in-
tact, stronger linear drive (R/LTe

= 3.5) induces fully
stochastic fields. The resulting radial field line diffusiv-
ity can be computed from the Gene simulation data,
and it turns out to be well described by the quasilinear
expression DM ∼ Lc (B̃x/B0)

2 (see, e.g., Refs. [17, 18])
once a certain threshold in B̃x/B0 (and thus in R/LTe

and βe) is exceeded. For thermal electrons following the
fluctuating field lines, the radial heat diffusivity in the
weakly collisional regime is then expected to be

χem
e ∼ vte Lc (B̃x/B0)

2 . (1)

Meanwhile, in the collisional regime, electrons decorre-
late from the field lines before they travel a connection
length. In this case, the relevant parallel length scale is
given by the mean free path λmfp = vte/νei, modifying
Eq. (1). Such a formula was used successfully by Wong
[13] to interpret a rather collisional NSTX discharge.
A plot of χem

e versus B̃x/B0 for various Gene runs is
shown in Fig. 4. The Rechester-Rosenbluth type model
from Eq. (1) is displayed for comparison. One finds that
the agreement is very good, up to a prefactor of the or-
der of unity. As two prominent outliers (weakly driven
cases with R/LTe

= 2.5 or βe = 0.003) indicate, however,
the model breaks down when the fluctuation amplitudes
become small. Here, field line stochasticity is not estab-
lished, as can be inferred from the Gene data, and the
transport level is much smaller than predicted by Eq. (1).
In this context, it is worth pointing out that the magnetic
transport level can also be linked to certain cross-phase
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FIG. 3: Poincaré plots of magnetic field lines intersecting
the perpendicular plane on the outboard side for weak drive
(R/LTe

= 2.5, left plot) and stronger drive (R/LTe
= 3.5,

right plot). The observed features are discussed in the text.

relations as discussed, e.g., in Refs. [19, 20]. One may
write Qem

e = 〈q̃e‖B̃x〉/B0 with

q̃e‖ = −ne0χe‖

(

dT̃e‖

dz
+

B̃x

B0

dT̃e‖

dx
+

B̃x

B0

dTe0

dx

)

(2)

and the parallel electron heat conductivity χe‖ ∼ vte Lc.
If the third term in Eq. (2) dominates, one recovers
Eq. (1). A cross-phase analysis of B̃x and q̃e‖/T̃e‖ shows
that this is indeed true, provided that the fluctuation
amplitudes are sufficiently large.
In this context, we would like to stress that the physics

just discussed implies the existence of an effective thresh-
old in the drive (exemplified by R/LTe

) of the microtear-
ing modes. Weak drive leads to small saturation am-
plitudes of the magnetic islands and a coexistence of
stochastic regions with organized structures. Only if the
drive exceeds a certain value, can the Chirikov overlap
criterion [21] be satisfied, such that the field becomes
fully stochastic. Under such conditions, Eq. (1) applies.
Thus, there is a certain analogy between this effect and
the nonlinear upshift of the effective threshold in ion tem-
perature gradient (ITG) turbulence,[22] although the un-
derlying physics is, of course, completely different.
Interestingly, it is found in our simulations that taking

into account equilibrium shear flows, the transport is only
reduced by a factor of ∼ 2 (∼ 4) for shearing rates of a
few (> 10) times the maximum linear growth rate for the
present plasma parameters. This is in contrast to ITG
turbulence, where a complete suppression is observed.
In a third and final step, we will now address the ques-

tion of which kind of physics actually sets the saturation
amplitudes in the quasisteady turbulent state. In other
words: which are the mechanisms behind the observed
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FIG. 4: Electron heat diffusivity as a function of the rela-
tive fluctuation level of the magnetic field. The Gene re-
sults are described well by the Rechester-Rosenbluth model
χem

e = η vte qR (B̃x/B0)
2 with η = 1.37. At small fluctuation

amplitude, the model breaks down, as explained in the text.

relationship B̃x/B0 ∼ ρe/LTe
? We get some first hints

by inspecting the time-averaged electron heat flux spec-
trum for one of our runs. As is shown in Fig. 5, the linear
growth rate spectrum drops to zero at kyρi ∼ 0.2 while
a substantial fraction of the transport is driven at much
higher wavenumbers. This is in noticable contrast to ITG
or trapped electron mode driven microturbulence (see,
e.g., Refs. [23, 24]) and demonstrates that microtearing
modes are able to transfer free energy to small perpendic-
ular scales quite efficiently. We also show a spectrum of
free energy sources/sinks [25] to demonstrate that (only)
the small scales act as a net sink.

To understand this aspect better, it is helpful to recall
that individual microtearing modes have a peculiar mode
structure. In particular, the electrostatic potential Φ is
highly anisotropic in the perpendicular plane: fine radial
scales are present at rather long wavelengths in the y di-
rection. In Fourier space, the same feature is expressed
by the fact that at a single kyρi ∼ 0.1, a microtearing
mode involves a large number of kx modes which are
coupled via the parallel boundary condition.[26] Once the
mode amplitude is large enough to allow for nonlinear dy-
namics, each mode is able to interact with other modes
and itself, quickly spreading free energy in wavenumber
space and exciting high-k modes which are linearly sta-
ble. Performing a secondary instability analysis of the
self-coupling process, one finds that modes at twice the
value of ky grow linearly with time at a rate of several
vti/R times the square of the primary mode’s (normal-
ized) amplitude Φp. Thus, such transfer processes are
comparable to the linear growth rates of about 0.1 vti/R
for Φp ∼ 0.1. The observed linear growth rates are
comparable to these values, supporting the notion that
the nonlinear interactions tend to establish perpendicular
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FIG. 5: Time-averaged (magnetic) electron heat flux spec-
trum in ky space for R/LTe

= 3.5. The linear growth rate
spectrum is shown for comparison. Net free energy dissipa-
tion is found at kyρi > 0.2.

small-scale isotropy in the system by enhancing high-ky
fluctuations – and damping high-kx fluctuations.
Although the mode couplings just described also cre-

ate zonal flows and fields,[27] the latter are not decisive
in this context as can be shown by zeroing them out:
this test changes the transport level only by up to about
20%. Instead, the key is the observed strong transfer of
free energy to small perpendicular scales. It is evident
that free energy pumped into the system via linear drive
terms at some rate must be dissipated at the same rate
to obtain a saturated turbulence state. Thus, we may
assume a balance between the maximum linear growth
rates γmax

l and the nonlinear damping rates γnl, in the
same spirit as, e.g., Refs. [12, 28, 29]. In the present case,
one may want to model the latter by γnl = χem

e k2diss in
terms of Eq. (1) and a typical perpendicular dissipation
scale kdiss >∼ 0.2/ρi as long as field line stochasticity pre-
vails. Using an expression like γmax

l ∝ (R/LTe
)2 vti/R,

the Drake estimate, B̃x/B0 ∼ ρe/LTe
, could be recov-

ered. However, our linear simulations rather suggest
something close to an offset-linear dependence of γmax

l

on R/LTe
, where both the zero crossing and the slope

depend on various plasma parameters (like βe) in a non-
trivial fashion. Thus, the relation found in Fig. 1 is not
universal, and one should take this fact into account when
trying to predict microtearing-induced transport.
In summary, by means of a series of (computationally

quite challenging) gyrokinetic simulations of microtear-
ing turbulence in axisymmetric toroidal geometry, the
role of field line breaking in the context of turbulent
transport was investigated. In particular, it was shown
that the heat transport – which is dominated by the elec-
tron magnetic component – is linked to the magnetic
fluctuation level via a Rechester-Rosenbluth type rela-
tion, and that the saturation levels of the magnetic field

fluctuations can be viewed in light of a balance between
large-scale drive and small-scale dissipation. Moreover,
it was demonstrated that the Chirikov criterion for island
overlap implies the existence of a threshold in the drive
strength, and therefore a nonlinear upshift of the criti-
cal electron temperature gradient. Our simulations yield
typical electron heat diffusivities of up to a few m2/s, es-
tablishing microtearing modes as additional candidates
for explaining turbulent transport in standard tokamaks.
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