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Prüfer der Dissertation: 1. Hon.-Prof. Dr. S. Günter

2. Univ.-Prof. Dr. A. Burkert

Die Dissertation wurde am 31.05.2010 bei der Technischen Universität
München eingereicht und durch die Fakultät für Physik am 01.03.2011

angenommen.





Abstract

In this work, statistical properties of compressible hydrodynamic and magnetohydrodynamic turbulence
are studied using direct numerical simulations. The properties of turbulent flows change when average
flow velocities within the turbulence exceed the speed of sound in the medium. High flow velocities lead
to the formation of shocks, and some of the base assumptions of turbulence theories of incompressible
fluids no longer hold. This work presents a systematic study of the influence of flow parameters such
as the sonic Mach number and the Alfvén Mach number on low-order statistical properties of isotropic,
isothermal turbulence. Numerical results for both non-magnetic and magnetic turbulence are presented
and compared to model predictions. In addition, this work suggests a turbulent cascade mechanism that
is governed by momentum conservation in compressible turbulence.

Kurzfassung

In dieser Arbeit werden statistische Eigenschaften kompressibler hydrodynamischer und magnetohydro-
dynamischer Turbulenz mit Hilfe direkter numerischer Simulation untersucht. Die Eigenschaften turbu-
lenter Strömungen ändern sich, wenn die mittlere Flussgeschwindigkeit der turbulenten Fluktuationen
die Schallgeschwindigkeit des Mediums übersteigt. Die hohen Flussgeschwindigkeiten führen zur Aus-
bildung von Stoßwellen. Durch diese Stoßwellen werden einige der grundlegenden Voraussetzungen der
existierenden Turbulenztheorien für inkompressible Flüssigkeiten hinfällig. Diese Arbeit beschreibt den
Zusammenhang statistischer Eigenschaften der kompressiblen Turbulenz mit Strömungsparametern wie
der sonischen Machzahl und der Alfvénischen Machzahl. Die Ergebnisse der numerischen Simulationen
werden mit den Vorhersagen einiger, auf kompressible Effekte erweiterter Turbulenzmodelle verglichen.
Des Weiteren wird die besondere Rolle der Impulserhaltung in kompressibler Turbulenz im Bezug auf
selbstähnliche Skalierung von Spektren untersucht.
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1. INTRODUCTION

In the description of fluids the term turbulence describes a complicated state of motion, strongly irregular
in time and space. A snapshot-picture of a turbulent flow reveals spatial structures that are present at
all sizes. The time evolution of a turbulent flow appears to be non-deterministic and unpredictable, con-
tradicting with the deterministic rules of classical mechanics. On earth, turbulence is observed mainly
in electrically neutral fluids and gases. The air in the earth’s atmosphere is in turbulent motion, its
irregularity and unpredictability is an every-day challenge to local weather forecasts. The motions of
water, whether observed on large scales such as oceanic currents or on smaller scales such as stirred tea
water in a mug, are in a turbulent state. Since turbulence in fluids plays an important role, physicists
have studied the processes that describe and govern turbulence in neutral fluids for quite some time. The
equation describing the motion of a neutral and incompressible fluid, the Navier-Stokes equation, has
been known since Navier in 1823. However, the solution to this non-linear partial differential equation is
still a conundrum. The break-through findings of Kolmogorov and Obukhov in 1941 provide a means of
describing fluid turbulence in a statistical sense.
The properties of turbulent flows change when the fluid or gas is electrically conducting. On earth, exam-
ples of electrically conducting fluids in turbulent motion are e.g. the outer part of the earth’s core or the
liquid sodium used as a cooling agent in nuclear fission plants. Electrical conductivity of a medium leads to
coupling of magnetic-field fluctuations and velocity-fluctuations. Magnetic fields have considerable effect
on the properties of turbulent flows. The statistical properties of incompressible magnetohydrodynamic
(MHD) turbulence have been described by phenomenologies presented by Iroshnikov and Kraichnan,
Goldreich and Sridhar, and others.
In the universe, it is said that 99% of all visible material is ionized gas. Ionized gas, called plasma, is
electrically conducting, and most of this matter is in turbulent motion. Examples for turbulent plasma
in the extraterrestrial world range from the sun’s convection zone and the solar wind in our solar system
to large-scale turbulent plasmas in the interstellar medium (ISM). In the description of extraterrestrial
plasma, complications arise due to high flow-velocities, compared to the sound speed in the plasma.
Supersonic flows, i.e. flows in which the average velocity of turbulent fluctuations is significantly higher
than the sound speed in the medium, lead to compression of mass-density in the plasma. The density-
fluctuations are genuinely coupled to velocity fluctuations. This coupling of fluctuations is likely to change
the statistical properties of turbulence condiderably. In the given examples of extraterrestrial plasma,
the turbulent motion can thus not be approximated well by what is known about incompressible flows.
Compression alters the flow properties.
The perception of turbulence as the mechanism that governs motions in the interstellar medium over
a wide range of spatial scales developed after Crovisier and Dickey discovered a power-spectrum for
the brightness distribution of the 21-cm line of H1 emission [15]. The scaling-exponent of the power-
spectrum resembled the Kolmogorov scaling exponent of incompressible Navier-Stokes turbulence. At
the same time, density-clouds in the ISM were found to have filamentary and criss-crossed structure with
little resemblance to expected ballistic and uncorrelated clouds [46]. By the late 1980s, turbulence was
considered to be the governing mechanism for compression and star formation in the interstellar medium
[52]. However, many physical processes determine the motion and properties of the ISM, such as self-
gravity, thermal phases, and chemical processes. This work concentrates on the fluid properties and thus
on turbulence in a compressible fluid.
Numerical simulations of the hydrodynamic or magnetohydrodynamic (MHD) equations provide the pos-
sibility to observe compressible turbulence in action. Direct numerical simulations have been in use for
40 years. Through technological progress and readily available massively-parallel computers, simulations
in three spatial dimensions have become possible. The first simulations of supersonic hydrodynamic tur-
bulence at moderately high resolutions were carried out by Passot, Pouquet and Woodward in 1988 [58].
Magnetic-fields were included in supersonic turbulence simulations by Mac Low et al. [47] in 1998, and
Padoan and Nordlund in 1999 [56].
This work deals with low-order statistical properties of turbulence in neutral gas and plasma at high flow
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velocities. Direct numerical simulations at high spatial resolutions are used to simulate supersonic and
super-Alfvénic turbulence in a statistically steady-state. The organization of this work is as follows: In
Chapter 2, the fluid equations of hydrodynamics and magnetohydrodynamics are introduced as well as
the existing turbulence models. An introduction to the models for incompressible fluid turbulence and
incompressible MHD turbulence is provided. In addition, some recent modifications to the theories of
incompressible turbulence are outlined. These modifications are efforts to include compressible effects
into statistical models of turbulence. The end of Chapter 2 shows some analytical work on the equation
of motion of a compressible fluid. This analytical work presents an effort to better understand non-linear
energy-transfer processes in compressible hydrodynamic and compressible MHD turbulence, by obtaining
observable quantities that capture non-linear energy transfer.
A major part of this work consists of the design and implementation of direct numerical simulation codes.
The underlying numerical schemes are outlined in Chapter 3. A part of the numerical work was to com-
bine a shock-capturing scheme for the neutral gas with a magnetic field update-scheme that conserves
the solenoidal constraint of the magnetic field. The properties of the simulation codes, tested on 2D and
3D settings, are described in detail in Chapter 4. Before the results of this work’s numerical studies are
presented, an overview of recent observational results and results from recent numerical experiments is
given in Chapter 5.
Finally, Chapter 6 presents the results of statistically-stationary turbulence simulations in the supersonic
and super-Alfvénic regime. A systematic approach is taken to test the influence of variations of turbulent
flow parameters, such as the average sonic Mach number and the average Alfvén Mach number, on the
statistical properties of turbulent flows. The results obtained are compared to current phenomenologic
model predictions. In addition, evidence for a momentum-led cascade mechanism that governs power-law
behavior of power-spectra in compressible turbulence is outlined.



2. TURBULENCE THEORY

In this Chapter, hydrodynamic and magnetohydrodynamic (MHD) turbulence are introduced, starting
with the basic Euler and MHD equations. A brief survey of the theory of incompressible turbulence is
provided as a basis for the more complex models of compressible turbulence. Finally, the extensions of
the models of incompressible turbulence to compressible turbulence are presented.

2.1 Fluid description

The macroscopic behavior of an electrically conducting plasma in a fixed frame of reference can be
described by the MHD fluid approximation. Here, macroscopic behavior means the behavior on time scales
and length scales much larger than the intrinsic time and length scales of the microscopic constituents of
the plasma. The MHD equations in dimensionless form are (for derivation, see e.g. [5]):

∂ρ

∂t
= −∇ · (ρv), (2.1)

∂(ρv)

∂t
= −∇ ·

(
ρvvT

)
−∇(p+

1

2
B2) +∇ · (BBT ) + f +∇ · σ, (2.2)

∂B

∂t
= ∇× (v×B) + η∇2B, (2.3)

∂e

∂t
= ∇ ·

(
e+ p+

1

2
B2

)
+∇ · [(v ·B)v]. (2.4)

Here v is the fluid bulk velocity, ρ is the mass density, and B is the magnetic field. The force per unit
mass f is an external force that may include gravity or other external forces acting on the fluid. In the

last term in the momentum equation (2.2), σ denotes the viscous shear stress tensor σ = σ
(µ)
ij , a term

that includes the fluid viscosity µ. For a Newtonian fluid, that means for a fluid whose viscosity does not
depend on the forces acting on the fluid, the shear stress tensor can be written as:

σ
(µ)
ij = µ

[
(∂ivj + ∂jvi)−

2

3
δij∇ · v

]
(2.5)

The induction equation (2.3) contains the magnetic resistivity η.
The internal energy e is connected to the thermal pressure p by an equation of state. In thermal equilib-
rium, pressure p is computed by:

p = (κ− 1)

(
e− 1

2
ρ |v|2 − 1

2
|B|2

)
, (2.6)

with the ratio of specific heats κ = cp/cV = (f + 2)/f . The specific heat at constant pressure p is cp,
the specific heat at constant volume is cV . The ratio of specific heats depends of the degrees of freedom
f in a gas. The number of degrees of freedom of an ideal monoatomic gas is three, the resulting ratio of
specific heats is thus 5/3.
The MHD equations (2.1)-(2.6) are given in dimensionless form. The position, time, and fields are written
in multiples of characteristic length l0, characteristic velocity v0, and characteristic density ρ0. In the
dimensionless MHD equations, the kinematic viscosity ν = µ∗/(l0v0ρ0) and the magnetic resistivity η =
η∗/(l0v0) comprise a special meaning. Here, ν and η are dimensionless quantities derived from dimension
containing quantities µ∗ and η∗. The parameters 1/ν and 1/η are referred to as Reynolds number Re
and magnetic Reynolds number Rm, respectively. The dimensionless Reynolds number characterizes the
relative importance of the non-linear advection term over the viscous term in the momentum equations
(2.2). A flow becomes turbulent when the Reynolds number exceeds a certain geometry-dependent critical
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value Recrit, at which point non-linear interactions dominate the flow. Below this critical value, the
viscous dampening inhibits turbulence and the flow is called laminar. The magnetic Reynolds number
accordingly characterizes the relative importance of the advection term over the resistive term in the
magnetic induction equation (2.3). Typical Reynolds numbers in turbulent physical systems range from
106 in atmospheric clouds to 1013 in the convection zone of the sun (see [63] and [9]). The Reynolds
number within the cool part of the interstellar medium is of the order of 105 − 107 [22]. A compilation
of typical magnetic Reynolds numbers can be found in [11], page 7. The Alfvén number B0/v0 is set
to unity by a proper choice of B0. The Alfvén number B0/v0 expresses the importance of the Lorentz
force compared to advection in equation (2.3). Thus the magnetic field B is given in units of a reference
Alfvén speed vA = B0/(4πρ0)1/2.
In dealing with an inviscid neutral fluid, the MHD equations (2.1)-(2.6) can be reduced to the Euler
equations by omitting magnetic field contributions. The resulting set of equations is:

∂ρ

∂t
= −∇ · (ρv), (2.7)

∂(ρv)

∂t
= −∇ ·

(
ρvvT

)
−∇p+ f, (2.8)

∂e

∂t
= ∇ · (e+ p) . (2.9)

The equation of state simplifies to

p = (κ− 1)

(
e− 1

2
ρ |v|2

)
. (2.10)

When describing either astrophysical plasma or neutral gases, a barotropic relation of the thermal pressure
to the mass density is rather common (see [67], page 64):

p(ρ) = Kργ . (2.11)

Here K is a constant and γ is the polytropic index. If the fluid is isothermal, than the polytropic index
γ = 1. In the isothermal limit, temperature fluctuations are annihilated quasi-instantaneously by either
perfect thermal conductivity, or by efficient radiation transport. For a perfectly isothermal fluid, the set
of equations (2.1)-(2.6) reduce to the isothermal MHD equations:

∂ρ

∂t
= −∇ · (ρv), (2.12)

∂(ρv)

∂t
= −∇ ·

(
ρvvT

)
−∇(p+

1

2
B2) +∇ · (BBT ) + f +∇ · σ, (2.13)

∂B

∂t
= ∇× (v×B) + η∇2B, (2.14)

p = c2sρ. (2.15)

The pressure p is a function of the mass density, and cs is the sound speed.
From the set of isothermal MHD equations, the isothermal Navier-Stokes equations that describe the
motions of a neutral isothermal gas are derived by omitting the terms with the magnetic field B:

∂ρ

∂t
= −∇ · (ρv), (2.16)

∂(ρv)

∂t
= −∇ ·

(
ρvvT

)
−∇p+ f +∇ · σ, (2.17)

p = c2sρ. (2.18)

The set of equations describing isothermal MHD and hydrodynamics have been introduced. Before
describing turbulence, some important linear solutions to the given sets of equations are introduced.

2.1.1 Linear solutions

The linearized compressible MHD equations support longitudinal and transverse waves. In this context,
the transverse waves are shear Alfvén waves. For a homogeneous plasma with density ρ0, pressure p0,
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and in a homogeneous magnetic field B0, a small elastic bending of magnetic field lines perpendicular to
the magnetic field propagates along the magnetic field with the Alfvén velocity. The Alfvén velocity vA

in one spatial dimension is given by

vA = B0/
√

4πρ0. (2.19)

Two compressible waves can be distinguished: the fast magnetosonic wave, and the slow magnetosonic
wave. In the fast magnetosonic wave, both magnetic field B2 and the density ρ are compressed, while
the changes of B2 and ρ are in phase. The velocity of the fast magnetosonic wave in one space dimension
(e.g. the x-direction) is given by

vxfms =
1

2

√√√√c2s + B2

ρ
+

√(
c2s + B2

ρ

)2

− 4B2
xc

2
s

ρ
. (2.20)

The fast magnetosonic wave is fastest for propagations perpendicular to the magnetic field. For propa-
gation parallel to the magnetic field B, the fast magnetosonic wave merges with the shear Alfvén wave
when vA > cs.
In the latter case of the two compressible waves, the changes of B2 and ρ are exactly opposite in phase.
Thus, the velocity of the slow magnetosonic wave propagating in the x-direction is:

vxsms =
1

2

√√√√c2s + B2

ρ
−

√(
c2s + B2

ρ

)2

− 4B2
xc

2
s

ρ
. (2.21)

In the absence of magnetic fields, the fast magnetosonic wave collapses into the longitudinal sound wave, a
small density perturbation that propagates isotropically with the speed of sound. The slow wave vanishes.
For an ideal gas, the sound speed is given by

cs =

√
κ
p

ρ
. (2.22)

2.1.2 The incompressible limit

In order to give an introduction to turbulence theory, the incompressible hydrodynamic and MHD equa-
tions will be introduced, first. Most of the theory and phenomenology of turbulent dynamics is based
on the more simple, incompressible case. The compressible turbulence phenomenologies are based on the
findings in the incompressible case.
In the incompressible limit, the mass density of each fluid particle is constant along the fluid particle
trajectory, and the polytropic index γ → ∞. The MHD equations (2.1)-(2.6) reduce to the coupled
equations for momentum and magnetic induction

∂v

∂t
= −(v · ∇)v− 1

ρ0
∇p−B× (∇×B) + f +∇ · σ, (2.23)

∂B

∂t
= ∇× (v×B) + η∇2B, (2.24)

∇ · v = 0, (2.25)

∇ ·B = 0. (2.26)

Both the velocity and the magnetic field are solenoidal. The dissipative term in equation (2.23), that
includes the shear stress tensor σ, can be rewritten as ν∇2v, with the dimensionless kinematic viscosity
ν. Thermal pressure p is no longer a dynamical variable but a passive quantity.
A neutral incompressible fluid can be described by dropping the terms that contain the magnetic field
B. This yields the incompressible Navier-Stokes equation

∂v

∂t
= −(v · ∇)v− 1

ρ0
∇p+ f + ν∇2v, (2.27)

∇ · v = 0. (2.28)

Several quantities are globally conserved in the inviscid and non-resistive case of the incompressible MHD
and Navier-Stokes equations. The ideally conserved quantities, also referred to as quadratic invariants,
are the basis for current turbulence phenomenologies and are therefore described next.
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2.1.3 Global quadratic invariants

The quadratic-conserved quantities constrain the evolution of the turbulent system. In incompressible
ideal MHD with closed or periodic boundary conditions, the total energy is globally conserved in the
absence of external forces:

Etot := Ekin + Emag =

∫
dV

1

2
(v2 + b2). (2.29)

The scalar product of the ideal momentum equation with the velocity v, added to the induction equation
(2.24) multiplied by B, integrating over all space and using Gauss’ Theorem leads to

∂Etot

∂t
=

∂

∂t

∫
dV

1

2
(v2 + b2) = 0, (2.30)

for suitable boundary conditions. Besides the total energy 1
2

〈
v2 + B2

〉
, the magnetic helicity HM :=

〈A ·B〉 (where A is the magnetic vector potential) and the cross helicity HC := 〈v ·B〉 are globally
conserved.
For the incompressible Navier-Stokes case of a neutral fluid, the kinetic energy per unit mass 1

2

〈
v2
〉

is
globally conserved. Also the kinetic helicity Hkin := 〈v · ω〉, a measure for the asymmetry between the
vorticity field ω := ∇× v, and the velocity field v, is conserved.
When viscosity and resistivity are included, the quadratic invariants develop in time. In incompressible
MHD, the total energy then decays with the total rate of energy dissipation ε given by

ε := −dE
dt

=

∫

V

dV (νω2 + η(∇×B)2). (2.31)

The decay rates of both magnetic helicity HM and the cross helicity HC differ from the decay rate of
the total energy. Both ideal invariants are expected to decay more slowly than the total energy (see [5],
page 75). In incompressible Navier-Stokes turbulence, the kinetic energy decays with the total rate of
dissipation

ε := −dE
dt

=

∫

V

dV (νω2). (2.32)

The incompressible quadratic invariants are not globally conserved in ideal compressible hydrodynamics
and MHD. Kinetic and magnetic fluctuations can exchange energy with thermal fluctuations. Compres-
sion and shocks heat the gas or plasma. Kinetic energy is thus lost and dissipated into heat. Solenoidal
and dilatational velocity-fluctuations can exchange energy and can interact with acoustic and thermal
fluctuations. The only quadratic inviscid invariants in compressible hydrodynamics are the mass density〈
(ρ)2

〉
and the momentum density

〈
(ρv)2

〉
[22]. The latter quantity is not positive definite and its role

in governing the dynamics of compressible turbulence is an open question.

2.2 Energy equation in spectral space and the energy spectrum

The evolution of a turbulent incompressible flow is most easily understood in Fourier space. When Fourier
transforming the incompressible Navier-Stokes equation, the terms with differential operators (∇) turn
into algebraic terms. The Fourier components of the transformed quantities can be viewed as excitation
levels of scales belonging to a wave vector k in spectral space. Integrated over all spectral angles and
in case of a statistically isotropic flow, this yields the excitations of structures with a wave number k or
a spatial magnitude of l = 2π/k. The distribution of squared excitations over the whole range of wave
numbers k is referred to as the power spectrum.
The Fourier transform of the incompressible Navier-Stokes equation (2.27) yields (the transform of the
Navier-Stokes equation from real to Fourier space is performed in detail by Lesieur [40])

(
∂

∂t
+ νk2

)
v̂i(k) = − i

2
Pijm(k)

∫

V

∫

V

v̂j(p)v̂m(q)δ(k− p− q)d3p d3q. (2.33)

The partial time derivative of a component of the Fourier-space velocity field is given by the projection
Pijm of the right hand integral. The integral can be interpreted as triads of modes belonging to wave
vectors p, q, and k that interact and exchange energy. The projection tensor Pijm is defined as

Pijm(k) := 2kmδij − 2ki
kjkm
k2

. (2.34)
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The operator Pijm projects a vector onto the plane perpendicular to the wave vector k and thus conserves
the solenoidality constraint of the incompressible velocity-field. The pressure term −∇p provides for this
projection, and pressure p is thus eliminated from the equation in Fourier space.
The energy-evolution equation can be derived from (2.33) by constructing the pair correlation function〈
v̂i(k)v̂i(k

′)
〉
, where k′ := −k, and computing the partial time derivative. The energy-evolution equation

of the incompressible Navier-Stokes equation is
(
∂

∂t
+ νk2

)〈
v̂i(k)v̂i(k

′)
〉

= −1

2
Pijm(k)

∫

V

∫

V

Im [〈v̂i(k)v̂j(p)v̂m(q)〉] d3p d3q. (2.35)

The imaginary part of the triple correlation 〈v̂v̂v̂〉 is proportional to the Dirac delta function δ(k+p+q).
Thus, only triads with k+p+q=0 are involved in non-linear energy transfer. From equation (2.35), the
ideal conservation of kinetic energy can be derived by integrating over all wave vectors k in a shell of
wave number k:

d

dt

∫ ∞

0

E(k)dk + 2ν

∫ ∞

0

k2E(k)dk = 0. (2.36)

Here, E(k) := 1
2

〈
|v(k)|2

〉
is the kinetic energy spectrum. Equation (2.36) shows that the specific kinetic

energy is conserved by the nonlinear terms of the Navier-Stokes equations and dissipated by viscous
interactions.
In the case of incompressible MHD without a mean magnetic field, the Fourier-transformed momentum
and induction equations are (see for example [73]):

(
∂

∂t
+ νk2

)
v̂i(k) = − i

2
Pijm(k)

∫

V

∫

V

[
v̂j(p)v̂m(q)− b̂j(p)b̂m(q)

]
δ(k− p− q)d3p d3q, (2.37)

(
∂

∂t
+ ηk2

)
b̂i(k) = −iP̄ijm(k)

∫

V

∫

V

v̂j(p)b̂m(q)δ(k− p− q)d3p d3q, (2.38)

where Pijm is defined in (2.34), and P̄ijm := kjδim − kmδij . Like the Navier-Stokes case, only triads
of wave vectors lead to a change in the according Fourier components of the fields. In the momentum
equation (2.37), the Fourier components of magnetic field fluctuation b̂j(p)b̂m(q) can exchange energy
with the velocity Fourier component v̂i(k), when the three wave vectors p, q, and k form a triangle.
The temporal changes of the magnetic field components in (2.38) are caused by interactions with modes

v̂j(p)b̂m(q).
The according energy evolution equations are constructed analogously to the neutral fluid case, from the

pair correlation functions
〈
v̂i(k)v̂i(k

′)
〉

and
〈
b̂i(k)b̂i(k

′)
〉

. From the resulting set of energy evolution

equations, it can be shown that the total energy Etot(k) := 1
2

〈
v2(k)

〉
+ 1

2

〈
b2(k)

〉
is conserved by the

nonlinear energy transfer.

2.3 Turbulence phenomenologies

Turbulence phenomenologies are usually closely linked to quadratic invariants. Quadratic invariants set
the constraints for the evolution of the system, such as energy conservation. They provide physical ar-
guments for the explanation of the statistical ensemble behavior of turbulence within a certain range
of spatial scales. In incompressible turbulent flows, kinetic energy at large spatial scales is transfered
to smaller and smaller spatial scales. At sufficiently high Reynolds numbers, large structures become
unstable and energetically less favorable. They break up into smaller structures and thus transfer their
energy subsequently to smaller and smaller structures. This phenomenon is referred to as the Richardson
cascade. At the smallest scales, kinetic energy is dissipated by viscous interaction and transformed into
heat. For scales much larger than dissipative scale lengths, kinetic energy is almost globally conserved.

2.3.1 The Kolmogorov scaling prediction

Based on the Richardson cascade, a phenomenological model for incompressible Navier-stokes turbulence
was suggested by Kolmogorov [33]. The statistical ensemble behavior of turbulent fluctuations within the
range of conserved kinetic energy can be described by the Kolmogorov phenomenology (see e.g. [26]).
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Kolmogorov’s hypotheses includes that turbulent structures of sizes that are larger than those affected by
viscous dissipation, but smaller than scales that are affected by the physical boundary conditions, reveal
a universal statistical form, a function of the size of the turbulent structure. Those spatial scales are
called inertial range. At a given turbulent structure of size l and velocity vl, the rate of change of kinetic
energy is proportional to v2

l divided by the characteristic time scale. The characteristic time scale is the
time it takes the fluctuation at scale l to transfer its energy, and is assumed to be the cascade time scale
τcas := l/vl. This leads to the following dimensional considerations based on the total rate of dissipation
ε

ε ∼ v2
l

τcas
∼ v3

l

l
, (2.39)

→ vl ∼ (εl)1/3. (2.40)

The total rate of dissipation has the dimensions [ε] = [l2]/[t3]. The eddy energy v2
l is related to the energy

spectrum as

v2
l ∼ kE(k),→ vl ∼ l−1/2E1/2(k), (2.41)

where k is the wave number related to the structure of size l by k = 2π/l. The energy spectrum has
dimensions [Ek] = [l3]/[t2]. A combination of the scaling relations (2.40) and (2.41) yields a scaling for
the energy

E1/2(k) ∼ ε1/3l5/6. (2.42)

By taking the square of relation (2.42) and introducing a constant CK, the Kolmogorov constant, the
Kolmogorov scaling relation for the kinetic energy spectrum is obtained

E(k) = CKε
2/3k−5/3. (2.43)

The Kolmogorov energy spectrum (2.43) predicts a universal scaling-law for the excitation levels of kinetic
energy in the inertial range of Navier-Stokes turbulence. The constant CK was experimentally found to
be of the order of 1.6. The universal scaling behavior of the kinetic energy spectrum in the inertial range
has been verified in many experiments on turbulent systems (for an overview, see [68]). For wave numbers
above a certain wave number kd, called the Kolmogorov wave number, viscous dissipation dampens the
turbulent eddies and the energy spectrum drops rapidly. The range of wave numbers above kd is referred
to as the dissipation range because dissipative forces dominate over inertial forces (see e.g. [26], page 91).
The wave number kd is defined as the scale at which the dissipation rate is equal to the non-linear transfer
rate. The Kolmogorov wave number kd is obtained by combining the Kolmogorov energy spectrum (2.43)
and the definition of the total rate of dissipation (2.36):

kd =
( ε

ν3

)1/4

. (2.44)

Besides the prediction for power-law behavior of the energy spectrum, the Kolmogorov theory entails
a prediction for structure functions of velocity-increments. The longitudinal structure function of the
p-th order is defined as the root-mean-square (RMS) of velocity increments as a function of longitudinal
displacement l, to the power of p (see e.g. [26]):

Sp(l) :=
〈
[δv‖]

p
〉
, with δv‖ = [v(x + l)− v(x)] · l/l. (2.45)

The assumption of self-similarity is the assumption that in the infinite Reynolds-number limit all small-
scale statistical properties are uniquely determined by the scale l and the total rate of dissipation ε.
Through dimensional analysis, the scaling properties of longitudinal structure functions with the dis-
placement l are obtained:

Sp(l) ∼ (εl)p/3. (2.46)

For the 3rd order structure function S3(l), an exact scaling prediction can be derived using the Kármán-
Howarth-Monin-relation (see [26]):

S3(l) = −4

5
εl. (2.47)



2.3. Turbulence phenomenologies 9

This exact result is called the 4/5th law. The scaling relation of the velocity structure functions, mea-
sured both experimentally and in numerical simulations, deviates from the scaling relation (2.46). This
deviance becomes marked at higher orders ([1]). This can be explained by the intermittent character of
turbulence. Intermittency describes the spatial (or temporal) inhomogeneity of e.g. energy dissipation
rate, vorticity, or other flow observables. Spatial and temporal inhomogeneity of turbulence contradicts
with the hypothesis of self-similarity. Various models have been suggested to reflect the intermittent
character of turbulence (see [26], pages 127-194).

2.3.2 The Iroshnikov-Kraichnan scaling prediction

For incompressible MHD turbulence, the influence of the magnetic field and the according Alfvén waves
change the scaling properties of the inertial range. Small-scale fluctuations are affected by locally larger-
scale magnetic fields. Small-scale fluctuations can be regarded as shear-Alfvén waves that interact with
shear-Alfvén waves moving in the opposite direction along the larger-scale magnetic field-lines. During
this interaction time, the Alfvén-waves scatter. The non-linear terms represent the coupling of the
interacting Alfvén wave-packages. The coupling strength is determined by the ratio of the strength of
the small-scale fluctuations over the locally mean velocity-field strength and magnetic-field strength,
experienced by the small-scale fluctuations. This ratio is small. The interaction time is the Alfvén time
τA := l/vA, where vA is the Alfvén velocity defined in equation (2.19). The Alfvén time τA is shorter than
the eddy-eddy interaction time τcas that is applied in the non-magnetic case. That is due to the fact that
the interaction time is proportional to the inverse of the propagation speed of interacting Alfvén waves.
Thus the interaction time is proportional to the inverse of kB0, where B0 is the local mean magnetic
field experienced by the smaller scale Alfvén waves. Iroshnikov [31] and Kraichnan [35] introduced the
according energy-transfer time in the magnetic case

τ IK
cas ∼ (τl)

2/τA. (2.48)

The energy flux across the inertial range is assumed to be constant, so that the total rate of dissipation
associated with the spectral energy is

E(k)/τ IK
cas(k) ∼ ε. (2.49)

Combining equations (2.48) and (2.49) yields a prediction for the incompressible MHD energy spectrum

E(k) ∼ CIK(εvA)1/2k−3/2. (2.50)

The Iroshnikov-Kraichnan scaling relation for the total energy is flatter than the Kolmogorov spectral-
scaling due to the factor τl/τA. In contrast to the Kolmogorov energy spectrum, the Iroshnikov-Kraichnan
total-energy spectrum is not a universal function of the total rate of dissipation, but also depends on
the macroscopic magnetic field. The IK scaling prediction for the total-energy spectrum has been found
to apply to 2D-MHD turbulence in direct numerical simulations [6]. However, in three dimensional
MHD turbulence, the IK scaling-law has not been verified unambiguously by experiment or numerical
simulation. One of the weaknesses of this model is the assumption of isotropy, since locally large-scale
magnetic-field structures lead to local anisotropy.

2.3.3 The Goldreich-Sridhar scaling prediction

Shebalin et al. [64] found in 2D numerical simulations of incompressible MHD turbulence that, with or
without a mean magnetic field, an initially isotropic distribution of excitations is rendered anisotropic due
to a difference in energy-transfer processes in directions parallel and perpendicular to a mean magnetic-
field orientation, associated with the fluctuation. The local anisotropy in initially globally isotropic
turbulence, due the difference in the energy-transfer mechanism, gave rise to an alternative way of pre-
dicting an inertial-range scaling-law for the total energy.
Goldreich and Sridhar [29], [69] were the first to distinguish between the parallel and perpendicular extent
(l⊥ and l‖) of an eddy of size l with regard to the orientation of the wave vector associated with the mean
magnetic-field orientation experienced by this eddy. The spatial extent of the eddy perpendicular to the
magnetic wave vector shrinks due to the turbulent energy transfer to smaller perpendicular scales. For
the parallel component, the process of turbulent transport of energy to smaller scales is reduced. This
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effect leads to a stretching of eddies in the course of the cascade process, until a critical balance of stretch-
ing is reached. For the perpendicular component of turbulent MHD fluctuations, the Goldreich-Sridhar
phenomenology predicts the inertial-range scaling-law of the energy spectrum to be

Ek⊥ ∼ ε2/3k
−5/3
⊥ . (2.51)

The energy spectrum for the parallel component is

Ek‖ ∼ εv−1
A k−2

‖ . (2.52)

The energy spectrum for the parallel component follows from the one for the perpendicular component by

the critical balance condition k‖Ek‖ ∼ k⊥Ek⊥ and l‖ ∼ l2/3⊥ . There is today widespread agreement that,
in globally isotropic MHD turbulence, the inertial-range scaling is dominated by the perpendicular part of
the Goldreich-Sridhar scaling-law. The scaling exponent of the Goldreich-Sridhar prediction thus agrees
with the Kolmogorov scaling-law of equation (2.43). The scaling law of total energy for the inertial-range
dynamics of incompressible MHD turbulence, subject to a strong mean magnetic field, remains a point
of contention in the field.

2.3.4 Scaling prediction for the residual energy

The difference between the magnetic energy and the kinetic energy is called residual energy. Although
the residual energy is not ideally conserved in incompressible MHD turbulence, it is observed to follow a
power law in the inertial range [5]. The residual energy is defined as

Eres =

∫

V

dV
1

2
|v2 − b2|. (2.53)

At small scales, the velocity fluctuations and the magnetic fluctuations are expected to reach equipartition,
i.e. comparable levels of excitation of the squared velocity fluctuations and the magnetic fluctuations.
For spatial scales larger than the dissipative scales, the residual spectrum reflects a balance of local to
non-local energy transfer within the MHD turbulence. From dimensional arguments, the balance of local
and non-local energy transfer leads to a power-law prediction for the residual-energy spectrum of the
form ([5], page 106):

Eres(k) ∼ (ε/vA)k−2. (2.54)

However, Müller and Grappin [50] propose a scaling relation of the residual-energy spectrum with the
kinetic-energy spectrum, so that Eres(k) ∼ kE2

kin(k). In isotropic MHD turbulence, this leads to a
prediction of the residual-energy spectrum that is steeper than that of equation (2.54) :

Eres(k) ∼ k−7/3. (2.55)

In high-resolution numerical experiments, Müller and Grappin [50] obtained a scaling exponent for the
residual energy spectrum that agrees with the prediction of 7/3.

2.4 Effects of compressibility

The assumption of incompressibility in turbulent flows of neutral fluids is valid, when the RMS velocity is
significantly smaller than the sound speed. The sonic Mach number Ms is a measure of compressibility,
here defined as the RMS velocity over the sound speed:

Ms :=

〈
v2
〉 1

2

cs
(2.56)

The incompressible limit in neutral turbulence corresponds to Ms � 1. In MHD, the incompressible
limit is valid where both the sonic Mach number and the Alfvén Mach number, defined as

MA :=

〈
v2
〉 1

2

va
, (2.57)
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are considerably smaller than one. For turbulent flows withMs ≥ 1 and/orMA ≥ 1, compressible effects
must be taken into account.
In compressible flows, the velocity field can be split into compressible and solenoidal parts by a Helmholtz
decomposition (v = v⊥+v||) (see e.g. [22]). The compressible part v|| is longitudinal and curl-free (∇×
v|| = 0) and the solenoidal part v⊥ is rotational and divergence-free (∇ · v⊥ = 0). The two components
are coupled and exchange energy. Compressible flows lead to an exchange between kinetic energy and
density fluctuations, and kinetic energy is not conserved in compressible hydrodynamic turbulence.
Compressible velocity fluctuations exchange energy with sound waves. In supersonic flows, sound waves
can steepen into shock waves. Shock waves are finite-amplitude fluctuations that steepen into a jump,
forming a thin transition layer that is moving faster than the according linear group velocity of the
underlying wave. This transition layer can be viewed as a local plane. Upstream and downstream of the
shock plane, the flow quantities u are assumed to be homogeneous. The flow quantities can be regarded
as stationary (thus ∂u

∂t = 0) in the transition layer’s system of reference. The relation of the downstream
to upstream properties, called the jump conditions, can be derived by integrating the conservation laws
(2.7)-(2.9) over a volume that extends both upstream and downstream. For an ideal gas, the jump
conditions are called the Rankine-Hugoniot relations (see for example [67]). The relation of the upstream
to downstream mass-density and velocity expressed by the upstream and downstream pressure is

ρdown

ρup
=

1 + κ+1
κ−1

pdown

pup
κ+1
κ−1 + pdown

pup

=
vup

vdown
. (2.58)

While the pressure ratio can reach infinite values, the compression ratio ρdown/ρup is limited by

ρdown

ρup
<
κ+ 1

κ− 1
. (2.59)

For an ideal gas with a ratio of specific heats of κ = 5/3, the compression ratio is thus limited to 4.
The limitation of the density ratio downstream and upstream of the shock does not apply to shocks in
an isothermal medium. Isothermality applies when the gas in the downstream region is cooled rapidly
to the temperature in the upstream region, that means when the cooling happens on time scales much
smaller than the fluid-dynamic time scales. When the temperature relation Tdown/Tup = 1 is applied,
the isothermal jump condition is

ρdown

ρup
=

(
vup

cs

)2

. (2.60)

Here, cs is the constant isothermal sound speed. The relation (2.60) shows that the density ratio is
determined by the square of the upstream sonic Mach number of the flow. The density contrast for an
isothermal shock can reach arbitrarily high values, determined by the upstream sonic Mach number.
Magnetic fields lead to the more complex de-Hoffmann-Teller jump conditions, which additionally require
that the normal component of the magnetic field with regard to the shock plane is conserved across the
shock (see for example [5]). The according ratio of pressures in the case of an adiabatic equation of state
is

pdown

pup
=

κ+1
κ−1

ρdown

ρup
− 1 + [Bt]

2

2pup

(
ρdown

ρup−1

)

κ+1
κ−1 −

ρdown

ρup

. (2.61)

Here, Bt denotes the tangential vector component of the magnetic field. The brackets [Bt] denote the
difference of the quantity from its downstream value to its upstream value. The ratio of the tangential
vector components of the magnetic field upstream and downstream to the shock are described by:

Bt,down

Bt,up
=

m vn,up −B2
n

m vn,down −B2
n

. (2.62)

Here, m is the momentum density, a constant across the shock, and Bn is the magnetic-field vector-
component normal to the shock plane. This relation allows for two cases for the tangential vector
component of the magnetic field. In the first case, the downstream value of the tangential-component of
the magnetic-field is bigger than its upstream value. This causes the magnetic field in the downstream
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region to be bent away from the normal vector to the plane. In the second case, the downstream value
of Bt is smaller than its upstream value, and the magnetic field is bent towards the normal vector to the
plane. These two cases correspond to the two compressive MHD modes, the fast magnetosonic wave and
the slow magnetosonic wave, described in equations (2.20) and (2.21). The two cases are thus called fast
shocks and slow shocks, respectively.
Shock phenomena are highly dissipative. By conserving momentum density m (upstream to downstream)
and greatly increasing the mass density ρdown, kinetic energy is clearly not conserved. Kinetic energy is
efficiently turned into heat (in the adiabatic case) or lost through radiative dissipation (in the isothermal
case). Shock fronts are two-dimensional structures. Their 2D, plane-like spatial extent covers all spatial
length-scales in a compressible turbulent system. That means that shocks couple to velocity fluctuations
on all spatial scales. This is the fundamental difference to incompressible fluid turbulence, where in the
inertial range, dissipative effects do not play a considerable role. Thus there is a priori no reason to expect
self-similar scaling in any range of the energy spectrum of compressible turbulence. The predictions of
self-similar scaling in the incompressible case are based on global ideal energy conservation, which is
destroyed by compressible effects.

2.5 Scaling laws for compressible turbulence

The simplest system of purely compressional turbulence is Burgers’ turbulence for a one-dimensional
system, governed by Burgers’ equation

∂vx
∂t

+ vx
∂vx
∂x

= ν
∂2vx
∂x2

. (2.63)

Here, vx is the one-dimensional velocity, ν is the finite viscosity. In this system, fluid elements catch up
with preceding ones, evolving into a saw-tooth-like spatial function of uncorrelated shocks. The finite
viscosity leads to dissipation at the shock fronts. An analytical inertial-range spectral scaling-relation
has been obtained for the Burgers’ shock-turbulence by Kida [32]. The self-similar scaling exponent is
−2 for this system. The three-dimensional Burgers’ equations are often regarded as a high sonic Mach
number limit for compressible hydrodynamic turbulence, even though shocks in hydrodynamic turbulence
are expected to be correlated (see e.g. Elmegreen and Scalo [22]). Following this argument, in the high
Mach number limit of compressible hydrodynamic turbulence, the power spectrum of velocity fluctuation
is predicted to be

E(k) ∼ k−2. (2.64)

This scaling prediction only accounts for shocks, not for eddies. It provides little insight into regimes
where both rotational and compressional structures are important. In transonic and mildly-supersonic
hydrodynamic turbulence, with sonic Mach numbers ranging from 1 to 20, both rotational and com-
pressional flows contribute to turbulence. Additionally, in Burgers’ turbulence, density fluctuations are
passively advected, while in hydrodynamic turbulence they are genuinely coupled to velocity modes.

2.5.1 The Fleck model

To incorporate density fluctuations into predictions for self-similar correlated power spectra, Fleck pro-
posed a model for compressible hydrodynamic turbulence [25] in 1996. The phenomenological model is
based on two arguments, proposed much earlier by von Weizsäcker in 1951 [74] and Lighthill in 1955 [44].
Von Weizsäcker describes the observed density fluctuations in neutral interstellar clouds as a hierarchy of
consecutive cloud sizes and cloud densities, analogous to a hierarchy of turbulent eddies in incompressible
fluid turbulence. He assumes that every large cloud consists of a certain number of smaller clouds. The
smaller clouds themselves consist of even smaller clouds until the smallest clouds with velocities smaller
than the sound speed are reached. The according hierarchy of clouds have densities ρν and average
gas velocities vν . Here, ν is an index that takes integral values and increases with cloud size lν . Von
Weizsäcker connects the density of a cloud of size l to the size of this cloud by equation

ρν
ρν+1

=

(
lν
lν+1

)−3αν

= f−1. (2.65)
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Here, the parameter αν describes the degree of compression at the step ν. f is the associated volume
filling factor. Assuming self-similarity, the parameter αν is independent of the scale step ν and equation
(2.65) describes a scaling-law for the density fluctuations of compressible neutral gas turbulence. In the
case of perfect isotropic compression in three dimensions, α takes the value 1, in perfect one-dimensional
compression α = 1/3, and α is zero in the incompressible limit.
The second argument of the Fleck model is based on the assumption of Lighthill that the total viscous
rate of dissipation of energy in a compressible fluid is ρv3/l. This is also the energy transfer rate per unit
volume and is assumed to be constant. Combining the two arguments, Fleck proposes the following set
of scaling relations:

ρ ∼ l−3α, (2.66)

N ∼ l1−3α, (2.67)

M ∼ l3−3α, (2.68)

v ∼ l1/3+α, (2.69)

E(k) ∼ k−5/3−2α. (2.70)

N is the column density, M the mass and E(k) is the power spectrum of the velocity fluctuations. In
the incompressible limit α = 0, the scaling relation for the power spectrum of the velocity fluctuations
reveals a Kolmogorov-like scaling with a scaling exponent of −5/3. With growing compression, i.e. with
growing average sonic Mach numbers (α := α(Ms)), the Fleck model predicts a steepening of the ve-
locity power-spectrum. In the limit of an infinitely compressed density, α takes the value of 1 and the
scaling-exponent of the velocity power-spectrum is −11/3.
On the basis of the Fleck model and the argument of a constant energy-transfer rate per unit volume,
Kritsuk et al. [36] propose a universal scaling of the density-weighted velocity ρ1/3v. The power spec-
trum of the density-weighted velocity is predicted to scale with a Kolmogorov power-law slope of −5/3,
independent of the degree of compression and thus independent of the average sonic Mach number of
the flow. In addition to the agreement of the spectral scaling of the density-weighted velocity, a Kol-
mogorov scaling of the second order structure function was restored for this quantity. Combining the
Fleck-model predictions with an assumed universal scaling of the density-weighted velocity, the following
scaling predictions result:

ρ ∼ l−3α, (2.71)

1

2

〈
v2
〉
∼ k−5/3−2α, (2.72)

1

2

〈
ρ2/3v2

〉
∼ k−5/3, (2.73)

1

2

〈
ρv2
〉
∼ k−5/3+α. (2.74)

Equations (2.72)-(2.74) are scaling relations for the velocity power-spectrum, the power spectrum of the
density-weighted velocity, and the kinetic-energy spectrum. With an increase of degree of compression,
the difference in the scaling exponents of the three quantities should increase. The ratio of the according
spectral exponents is thus predicted to increase by 2α in the case of velocity power-spectrum vs. density-
weighted velocity, and by α in the case of the ratio of the scaling exponent of the density-weighed velocity
vs. the kinetic-energy scaling-exponent. The difference between the scaling exponent of the velocity power-
spectrum and the one of the kinetic-energy spectrum is predicted to increase by 3α.
A larger degree of compression reflects a broadening of the mass-density probability density function
(PDF). In isothermal hydrodynamics, the density PDF is predicted to follow a lognormal distribution
(see e.g. [72]),

P

(
ln
ρ

ρ0

)
=

1

σ
√

2π
exp


−1

2

(
ln ρ
ρ0

σ

)2

 (2.75)

P is the probability for the logarithmic mass-density ln(ρ/ρ0) to occur. Padoan proposes [55] that the
width of the probability distribution of the logarithmic density σlnρ reflects the degree of compression
and can be expressed as a function of the sonic Mach number

σ2
lnρ = ln(1 + b2M2

s ). (2.76)
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Here, b is a parameter, modeling a first-order linear relation between the width of the density PDF of
the linear mass-density ρ and the sonic Mach number in the form σ = bMs. A fit to experimental data
from the interstellar medium yields b ≈ 0.5 [55]. At higher average sonic Mach numbers, broader density
PDFs are predicted. The broader density PDFs should, following the Fleck model, also be reflected in
the difference of the scaling exponents of the velocity power-spectra and the kinetic-energy spectra.

2.5.2 Scaling-law predictions based on the ratio of specific heats

An alternative approach to account for compressibility in hydrodynamic turbulence was suggested by
Shivamoggi [65] in 1992. He parametrizes the rescaling of the isentropic equations governing the motions
of a compressible fluid:

x = x′/λ, t = t′λα/3−1, v = v′/λα/3. (2.77)

Here, x, v, and t are the position vector, velocity vector, and scalar time in the base equations. The
scale index is λ, and α is a free parameter. The set of governing equations are formally invariant under
rescaling (2.77), by the choice of:

ρ = ρ′/λ2α/3(κ−1), p = p′/λ2ακ/3(κ−1), ν = ν′/λ[2α+(κ−1)(α+3)]/3(κ−1). (2.78)

Here, κ denotes the ratio of specific heats, ν is the kinematic viscosity.
Shivamoggi’s prediction for the scaling of the kinetic energy spectrum is based on the invariance of the
total rate of dissipation ε under scale transformations. The main assumption is that the total rate of
dissipation is invariant under scaling transformation (2.77). Using the scale transformation (2.77), the
total rate of dissipation ε changes according to:

ε = ε′λ1−α−2α/3(κ−1). (2.79)

The total rate of dissipation is invariant under rescaling (2.79) by the choice:

α =
3(κ− 1)

3κ− 1
. (2.80)

The scaling relations for the velocity and density increments can be rewritten in the form

v(l) ∼ l
(κ−1)
3κ−1 , (2.81)

ρ(l) ∼ l
2(κ−1)2

3κ−1 . (2.82)

The ratio of specific heats κ of the fluid can be replaced phenomenologically by 1/M2
s . Combining the two

scaling relations and assuming a constant kinetic-energy transfer per unit volume, Shivamoggi predicts
self-similar scaling of the kinetic-energy spectrum as a function of the ratio of specific heats

1

2

〈
ρv2
〉
∼ ρ

κ−1
3κ−1

0 c
− 2

3κ−1
s ε

2κ
3κ−1 k−

5κ−1
3κ−1 . (2.83)

Here, cs is the sound speed. In the isothermal limit κ→ 1, this scaling relation reduces to

1

2

〈
ρv2
〉
∼ c−1

s εk−2 (2.84)

Shivamoggi’s scaling relation for the kinetic energy is steeper than the Kolmogorov scaling and contradicts
with the Fleck prediction, where the kinetic-energy scaling is predicted to be flatter than the Kolmogorov
scaling. The steepening of the spectrum is physically explained by the shocks acting as a sink for turbulent
energy, as they turn energy into heat or efficiently radiate it away in the isothermal case.

2.5.3 Scaling-laws for compressible MHD

The influence of the magnetic field in compressible turbulence and the according changes in self-similar
scaling of power spectra is not well understood. In addition to the sonic Mach number Ms, the Alfvén
Mach number MA is a parameter that determines the properties of scaling. An attempt to predict
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compressible MHD self-similar scaling was brought forward by Shivamoggi in 2008 [66]. His arguments
are based on the Iroshnikov-Kraichnan and Goldreich-Sridhar models for incompressible MHD. In the
MHD case, the compressibility is parameterized by the ratio of specific heats κ. The argument follows
that for compressible hydrodynamic turbulence spectra in Chapter 2.5.2. The main assumption is, as in
the hydrodynamic case, the invariance of the total rate of dissipation under scale transformations (2.77).
The prediction for the total energy spectrum, based on the IK spectrum, is given by

E(k⊥) ∼ ρ
κ−1
2κ−1

0 c
− 2

2κ−1
s ε

κ
2κ−1 k

− 3κ−1
2κ−1

⊥ . (2.85)

Here, cs is the sound speed, and κ is the ratio of specific heats. The compressible extension of the
Goldreich-Sridhar energy spectrum is given by

E(k⊥) ∼ ρ
κ−1
3κ−1

0 c
− 2

3κ−1
s ε

2κ
3κ−1 k

− 5κ−1
3κ−1

⊥ . (2.86)

In the infinite-compressibility limit (κ → 1), the compressible extensions of the IK and GS spectra take
the form

E(k⊥)IK ∼ c−2
s εk−2

⊥ , (2.87)

E(k⊥)GS ∼ c−1
s εk−2

⊥ . (2.88)

The spectral scaling in compressible MHD is predicted to be steeper than in the incompressible limit,
with a spectral scaling exponent of −2 in the infinite-compressibility limit.

2.6 Momentum density, a candidate for self-similar scaling in compressible turbulence

We propose an alternative way of predicting self-similar scaling of power spectra in compressible hydro-
dynamic and MHD turbulence, based on the momentum density ρv. Momentum is an inviscid quadratic
invariant of the compressible hydrodynamic equations. In addition, momentum conservation governs the
upstream and downstream properties of hydrodynamic and magnetohydrodynamic shock waves. In this
section we show that the evolution equation of the Fourier components of the momentum density provides
a reasonable argument for self-similar scaling of the momentum power-spectrum.
The ideal isothermal hydrodynamic equations in component form are given by

∂ρ

∂t
+
∂(ρvi)

∂xi
= 0, (2.89)

∂(ρvi)

∂t
+
∂(ρvivm)

∂xm
+

∂p

∂xi
= 0. (2.90)

Here, vi is the i-th component of the velocity vector in real space, ρ is the mass density, and p is the
scalar thermal pressure. The pressure is connected to the mass density by the isothermal equation of
state, so that

p = c2s · ρ. (2.91)

Applying the divergence operator ∇· to equation (2.90), one obtains:

∂

∂xi

(
∂(ρvi)

∂t

)
+
∂2(ρvivm)

∂xi∂xm
+ ∆p = 0. (2.92)

The partial time and space derivative can be interchanged, the spatial derivative of the momentum density
is inserted from equation (2.89). This yields

−∂
2ρ

∂t2
+
∂2(ρvivm)

∂xi∂xm
+ ∆p = 0. (2.93)

The Fourier transform of equation (2.93) is

− ∂2

∂t2
F(ρ)− kikmF(ρvivm)− k2F(p) = 0, (2.94)
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or

F(p) = − 1

k2

∂2

∂t2
F(ρ)− kikm

k2
F(ρvivm). (2.95)

In equation (2.95) the Fourier transform of the thermal pressure is expressed in terms of the Fourier
transforms of the non-linear term and the mass-density term.
A direct Fourier transformation of the momentum continuity equation (2.90) leads to

∂

∂t
F(ρvi) + ikmF(ρvivm) + ikiF(p) = 0. (2.96)

Combining equation (2.95) and equation (2.96) to eliminate the pressure term yields:

∂

∂t
F(ρvi) = −ikmF(ρvivm)− iki

(
−kjkm

k2
F(ρvjvm)− 1

k2

∂2

∂t2
F(ρ)

)
. (2.97)

Combining the non-linear terms in equation (2.97) leads to

∂

∂t
F(ρvi) = −i

[
kmδij − ki

kjkm
k2

]
F(ρvjvm) + i

ki
k2

∂2

∂t2
F(ρ). (2.98)

The projection operator of the non-linear term in equation (2.98) can be replaced by the projection op-
erator Pijm that was defined for the incompressible case in equation (2.34). Additionally, the momentum
terms ρvi are replaced by mi, denoting the i-th component of the momentum vector. We obtain

∂

∂t
F(mi) = − i

2
PijmF(mjvm) + i

ki
k2

∂2

∂t2
F(ρ). (2.99)

Now, the Fourier transform of the non-linear term is evaluated. Let L be the length of one side of a
periodic box with a volume V = L3. The Fourier series expansion of the individual terms mi and vi yield
[40]

mi(x) =
(2π)3

L3

∑

k

m̂i(k)eik·x, (2.100)

and

vi(x) =
(2π)3

L3

∑

k

v̂i(k)eik·x. (2.101)

The hat denotes the Fourier components of the according quantity. The Fourier transform F(mjum) can
be expressed by

F(mjvm) =
1

2π

∫

V

mj(x)vm(x)e−ik·xd3x (2.102)

=
(2π)3

L6

∫

V

∑

p

∑

q

m̂j(p)eip·xv̂m(q)eiq·xe−ik·xd3x (2.103)

=
(2π)3

L6

∑

p

∑

q

m̂j(p)v̂m(q)

∫

V

eip·xeiq·xe−ik·xd3x (2.104)

=
(2π)3

L6

∑

p

∑

q

m̂j(p)v̂m(q)

∫

V

e−i(k−p−q)·xd3x (2.105)

=
(2π)3

L3

∑

p

∑

q

m̂j(p)v̂m(q)δ(k− p− q) (2.106)

In the limit of an infinitely extended box with V →∞, the Fourier transform of the non-linear term can
be rewritten in the form [40]

F(mjvm) =

∫

R3

∫

R3

m̂j(p)v̂m(q)δ(k− p− q)d3p d3q. (2.107)
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Inserting this formulation of the Fourier transform of the non-linear term into the evolution equation of
the Fourier components of the momentum density (2.99) leads to

∂

∂t
(m̂i)(k) = − i

2
Pijm

∫

R3

∫

R3

m̂j(p)v̂m(q)δ(k− p− q)d3p d3q + i
ki
k2

∂2

∂t2
(ρ̂(k)). (2.108)

In equation (2.108), only two terms contribute to time changes of the Fourier components of momentum
density. One contribution comes from the nonlinear term, where only triads in Fourier space can add to
the integral and thus to the time change of the momentum density. The second contribution comes from
the mass density. The triad interactions of momentum and velocity belonging to wave vectors p and
q can interact and exchange with the momentum belonging to wave vector k. The second partial-time
derivative of the mass-density structure belonging to wave vector k serves as a sink or source for changes
to the momentum density. The spectral distribution of momentum among scales is thus determined by a
triad interaction part, and a wave-vector k-dependent mass-density part. The former influence indicates
self-similarity, while the spectral scaling properties of the latter term must be determined by numerical
experiments. The density contribution to the momentum change is furthermore expected to depend on
the realization of the flow, that means on the RMS Mach number of the turbulence.
The momentum equation in Fourier space for the ideal isothermal MHD equations can be derived by
repeating the above formalism based on the equations

∂ρ

∂t
+
∂(ρvi)

∂xi
= 0, (2.109)

∂(ρvi)

∂t
+
∂(ρvivm)

∂xm
+
∂(p+ 1

2b
2)

∂xi
− ∂(bibm)

∂xm
= 0, (2.110)

∂(bi)

∂t
+
∂(vibm)

∂xm
− ∂(bivm)

∂xm
= 0. (2.111)

The Fourier transform of the total pressure p+ 1/2b2 is obtained by applying the divergence operator ∇·
to the real space momentum equation (2.110):

∂

∂xi

(
∂(ρvi)

∂t

)
+
∂2(ρvivm)

∂xi∂xm
+ ∆(p+

1

2
b2)− ∂2(bibm)

∂xi∂xm
= 0. (2.112)

Exchanging the time and spatial derivative in the first term, inserting the definition of the mass conser-
vation (2.109), and applying the Fourier transform F leads to

− ∂2

∂t2
F(ρ)− kikmF(ρvivm)− k2F(p+

1

2
b2) + kikmF(bibm) = 0, (2.113)

or

F(p+
1

2
b2) = − 1

k2

∂2

∂t2
F(ρ)− kikm

k2
F(ρvivm) +

kikm
k2
F(bibm). (2.114)

The Fourier transformed MHD momentum equation (2.110) is

∂

∂t
F(ρvi) = −ikmF(ρvivm)− ikiF(p+

1

2
b2) + ikmF(bibm). (2.115)

The pressure term in equation (2.115) is replaced by the definition of the Fourier transform of the total
pressure (2.114)

∂

∂t
F(ρvi) = −ikmF(ρvivm)− iki

(
−kjkm

k2
F(ρvjvm) +

kjkm
k2
F(bjbm)− 1

k2

∂2

∂t2
F(ρ)

)
+ ikmF(bibm).

(2.116)

Sorting terms into nonlinear momentum terms and magnetic terms leads to

∂

∂t
F(mi) = − i

2
PijmF(mjvm) +

i

2
PijmF(bjbm) + i

ki
k2

∂2

∂t2
F(ρ). (2.117)
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The Fourier transform of the non-linear terms is carried out according to the non-magnetic case. The
resulting inviscid momentum equation in Fourier space is

∂

∂t
(m̂i)(k) = − i

2
Pijm

∫

R3

∫

R3

[
m̂j(p)v̂m(q)− b̂j(p)b̂m(q)

]
δ(k− p− q)d3p d3q + i

ki
k2

∂2

∂t2
(ρ̂(k)).

(2.118)

The RHS integral in equation (2.118) provides contributions to momentum changes if the wave vectors
k, p, and q form a triangle. In addition to the contributions obtained in the non-magnetic case of
equation (2.108), magnetic-field modes can lead to a change in the momentum field. Again, the second
time-derivative of the mass-density structures that belong to a wave vector k acts as a sink or source for
momentum change. As in the non-magnetic case, the non-linear triads indicate self-similar transport of
momentum, while the k-dependent density-contribution has to be determined numerically.



3. NUMERICAL SCHEME

In the course of this work a simulation code has been developed to solve the equations of compressible
hydrodynamics and compressible MHD. The numerical methods that the code employs are described
in this Chapter. The numerical work performed in this context was to extend a 2D formulation of a
semidiscrete central-difference scheme to three spatial dimensions. In addition, a constrained transport
scheme for the divergence-free update of the magnetic field was incorporated into the base scheme. The
resulting numerical scheme is a forward-in-time central-in-space hybrid scheme. A similar approach was
taken by Grauer et al. and is used in the RACOON code [18].

3.1 Kurganov-Tadmor in three space dimensions

The numerical scheme is based on a one-dimensional semidiscrete formulation of a central-difference
scheme developed by Kurganov and Tadmor [39]. The scheme can be viewed as a higher-order exten-
sion to the Lax-Friedrich method of solving hyperbolic partial differential equations. A two-dimensional
extension of the Kurganov-Tadmor scheme was developed by Balbas and Tadmor [2] and used to solve
the compressible 2D-MHD equations. A simple dimension-by-dimension approach allowed for a straight-
forward extension to three spatial dimensions.
The scheme consists of three steps: (1) spatial reconstruction of point values of the conserved quantities
at the centers of the cell surfaces, (2) computation of fluxes at the cell interfaces, and (3) time integration
of the resulting set of ordinary differential equations. First, the Kurganov-Tadmor (KT) flux definition
is introduced.
The total time derivative of the cell averages of the hydrodynamic quantities ū in three space dimensions
is computed via the Kurganov-Tadmor flux definition,

dūi,j,k
dt

= −
Hx
i+ 1

2 ,j,k
(t)−Hx

i− 1
2 ,j,k

(t)

∆x
−

Hy

i,j+ 1
2 ,k

(t)−Hy

i,j− 1
2 ,k

(t)

∆y
−

Hz
i,j,k+ 1

2
(t)−Hz

i,j,k− 1
2
(t)

∆z
. (3.1)

The numerical flux vectors H in the x-, y-, and z-directions are defined as

Hx
i+ 1

2 ,j,k
(t) =

fx(uWest
i+1,j,k(t)) + fx(uEast

i,j,k(t))

2
−
ax
i+ 1

2 ,j,k

2

[
uWest
i+1,j,k − uEast

i,j,k

]
, (3.2)

Hy

i,j+ 1
2 ,k

(t) =
fy(uSouth

i,j+1,k(t)) + fy(uNorth
i,j,k (t))

2
−
ay
i,j+ 1

2 ,k

2

[
uSouth
i,j+1,k − uNorth

i,j,k

]
, (3.3)

Hz
i,j,k+ 1

2
(t) =

fz(uBottom
i,j,k+1 (t)) + fz(uTop

i,j,k(t))

2
−
az
i,j,k+ 1

2

2

[
uBottom
i,j,k+1 − uTop

i,j,k

]
. (3.4)

where vectors f denote the flux-function vector of the hydrodynamic part of the base equations (2.12)-
(2.14). The flux-function vector in x-direction for the isothermal MHD equations is for example given
by

fx =




ρvx
ρv2
x + p+ 1/2(−b2x + b2y + v2

z)
ρvxvy − bxby
ρvxvz − bxbz


 . (3.5)

The quantities uEast, uWest etc. denote the vector of the reconstructed point values of the conserved
quantities at the cell interfaces. The local maximum speeds of propagation ax, ay, and az at the cell
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interfaces are estimated by

axi+ 1
2 ,j,k

= max

{
ρ

(
∂f

∂u
(uWest
i+1,j,k)

)
, ρ

(
∂f

∂u
(uEast
i,j,k)

)}
(3.6)

where ρ(A) is the maximum of the magnitude of the eigenvalues of the Jacobian matrix A. This semidis-
crete formulation of total time derivatives of the conserved quantities is independent of the choice of the
specific reconstruction method used to obtain point values u at the cell interfaces. The particular choice
of the reconstruction method used in the KT code is described in detail below.

3.1.1 Spatial point value reconstruction

Point values of the conserved quantities are interpolated to the cell interfaces via a 3rd order central
weighted essentially non-oscillatory (CWENO) scheme of Levy et al. [41], extending the 2D formulation
of Balbas [2] to three spatial dimensions. The cell averages of the hydrodynamic quantities of each
cell reside in the cell center. The cell averages are the basis for the point value reconstruction at the
surrounding interfaces in the East, West, North, South, Top, and Bottom directions.
In CWENO, the point value of one conserved quantity u at a position inside the spatial cell interval

Ii,j,k =
[
xi− 1

2 ,j,k
, xi+ 1

2 ,j,k

]
,
[
yi,j− 1

2 ,k
, yi,j+ 1

2 ,k

]
,
[
zi,j,k− 1

2
, zi,j,k+ 1

2

]
,

is computed from cell averages using piecewise quadratic polynomials p(xi, yj , zk). The polynomials are
convex combinations of the two linear polynomials PL(x, y, z) and PR(x, y, z), and the quadratic central
polynomial PC(x, y, z). In the x-direction, holding y and z fixed, the polynomial is given by

pi(x, yj , zk) := wL · PL(x, yi, zk) + wC · PC(x, yi, zk) + wR · PR(x, yi, zk),
∑

i∈{L,C,R}
wi = 1, (3.7)

The linear polynomials conserve the cell averages ūi−1,j,k, ūi,j,k and ūi,j,k, ūi+1,j,k. They are defined by:

PL(x, yi, zk) = ui,j,k +
ui,j,k − ui−1,j,k

∆x
· (x− xi), (3.8)

PR(x, yi, zk) = ui,j,k +
ui+1,j,k − ui,j,k

∆x
· (x− xi). (3.9)

The central quadratic parabola, holding y and z fixed is:

PC(x, yi, zk) = ui,j,k −
1

12
(ui−1,j,k − 2ui,j,k + ui+1,j,k)− 1

12
(ui,j−1,k − 2ui,j,k + ui,j+1,k)

− 1

12
(ui,j,k−1 − 2ui,j,k + ui,j,k+1) +

ui+1,j,k − ui−1,j,k

2∆x
· (x− xi)

+
ui−1,j,k − 2ui,j,k + 2ui+1,j,k

∆x

2

· (x− xi)2 (3.10)

The central parabola is determined so as to satisfy the conservation of the cell averages ūi−1,j,k, ūi,j,k
and ūi+1,j,k. The two additional correction terms in equation (3.10) in the directions transverse to the
reconstruction guarantee third order accuracy when the point value u is computed from the surrounding
cell averages. The non-linear weights wi in equation (3.7) are chosen such as to provide for non-oscillatory
behavior of the reconstruction in the vicinity of steep gradients. They are:

wi =
αi∑
m αm

, with αi =
ci

(ε+ ISi)2
, (3.11)

where ci is any symmetric choice of linear weights (e.g. cL = cR = 1/4, and cC = 1/2). ε is a small pa-
rameter (e.g. 10−6) that prevents the denominator from vanishing. The non-linear smoothness indicators
ISi provide a local measure of the steepness of the polynomial and are given by

ISL = (ūi,j,k − ūi−1,j,k)2, ISR = (ūi+1,j,k − ūi,j,k)2 (3.12)

ISC =
13

3
(ūi+1,j,k − 2ūi,j,k + ūi−1,j,k)2 +

1

4
(ūi+1,j,k − ūi−1,j,k)2. (3.13)
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Fig. 3.1: The location of cell averages in a grid cell. The hydrodynamic quantities ui,j,k are located at the center
of the cell. The cell averages of the magnetic-field components are located at staggered positions − 1

2
.

The line averages of the components of the electric-field flux vector are located at the cell edges.

In the vicinity of strong gradients, the central smoothness indicator and the smoothness indicator in
the direction of the discontinuity become very large. The corresponding non-linear weights become very
small and the reconstruction switches to second-order.
In a system of equations, the choice of the smoothness indicators influences the grid viscosity of the
system. The various conserved quantities can develop steep gradients and discontinuities at different grid
points. Computing the smoothness indicators for each quantity individually forces the scheme to use
different stencils at the same grid points for the conserved quantities. This leads to both an increase in
grid viscosity and to the onset of spurious oscillations. Choosing a single quantity for all the conserved
quantities showed to result in a smaller grid viscosity. In the KT code, the density is chosen as the
leading quantity for the computation of the smoothness indicators because the density field develops the
most pronounced gradients. A detailed discussion of the usage of smoothness indicators in systems of
equations is described by Levy et al. [41].
The point values uEast

i,j,k , uWest
i,j,k at the cell interfaces, required by the Kurganov-Tadmor flux formulation

(3.2) take the explicit form:

uEast
i,j,k(tn) :=pni (xi+ 1

2
, yj , zk) =

1

2
wL (3ūi,j,k − ūi−1,j,k)

+
1

12
wC (5ūi+1,j,k + 12ūi,j,k − ūi−1,j,k − ūi,j−1,k − ūi,j+1,k − ūi,j,k−1 − ūi,j,k+1)

+ wR (ūi+1,j,k + ūi,j,k) (3.14)

uWest
i,j,k (tn) :=pni (xi− 1

2
, yj , zk) =

1

2
wL (ūi,j,k + ūi−1,j,k)

+
1

12
wC (−ūi+1,j,k + 12ūi,j,k + 5ūi−1,j,k − ūi,j−1,k − ūi,j+1,k − ūi,j,k−1 − ūi,j,k+1)

+ wR (−ūi+1,j,k + 3ūi,j,k) (3.15)

The interface point values in the y-direction (and the z-direction) are computed accordingly, holding x
and z (respectively x and y) fixed.

3.1.2 Numerical method for the magnetic field

The KT base scheme has been demonstrated to produce spurious magnetic monopoles in two-dimensional
non-symmetric test simulations [2]. The magnetic-field components must therefore be treated differently.
Generally, three possible ways of computing the magnetic-field update have been developed in the past and
are described and compared by Tóth in [71]. The methods available are projection methods, constrained
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transport, and update of the magnetic field via its vector potential. The KT code uses a constrained
transport method for the magnetic-field update as this numerical method automatically calculates a
divergence-free update of the magnetic field rather than correcting spurious monopoles after they appear.
A possible way of combining a constrained transport method with a central-difference scheme is described
by Ziegler [78]. For this work, it has been adapted to the requirements and settings of the Kurganov-
Tadmor base scheme in 2D and 3D.
In constrained transport, the cell averages of the magnetic-field components reside at the cell interfaces
at staggered positions − 1

2 (see Fig. 3.1). From a finite-volume discretization of the induction equation,
the total time derivative of the magnetic-field components is given by

d

dt
bxi− 1

2 ,j,k
=−

Ēz
i− 1

2 ,j+
1
2 ,k
− Ēz

i− 1
2 ,j− 1

2 ,k

∆y
+
Ēy
i− 1

2 ,j,k+ 1
2

− Ēy
i− 1

2 ,j,k− 1
2

∆z
, (3.16)

d

dt
by
i,j− 1

2 ,k
=
Ēz
i+ 1

2 ,j− 1
2 ,k
− Ēz

i− 1
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− Ēx
i,j− 1

2 ,k− 1
2

∆z
, (3.17)

d

dt
bzi,j,k− 1

2
=−

Ēy
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where Ē are the line-averaged electric-field components defined at the cell edges. It can be shown, that by
calculating the divergence of this definition of the time rate of change of the magnetic-field components,
these terms pairwise cancel out. The time rate of change of the divergence of the magnetic field is zero.
Therefore, when the divergence of the magnetic field is zero initially, it remains zero over time by the
constrained transport update.
The next step is to find approximations to the electric-field components defined at the cell edges. By
transforming the induction equation into divergence form with the antisymmetric flux tensor

∂

∂t
b = −∇×E = ∇ ·




0 Ez −Ey
−Ez 0 Ex
Ey −Ex 0


 , (3.19)

and constructing numerical electric fluxes Ex, Ey, and Ez from the Kurganov-Tadmor flux formulation,
electric-flux approximations at the cell interfaces are obtained. The numerical electric-flux vectors read
as
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The electric-field flux vectors EWest, EEast, etc. are computed by using the definition of the electric field

EWest = −vWest × bWest.
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From the components of the electric-field flux vector defined at the cell interfaces, the edge-centered
electric-field components are reconstructed using a 2nd order interpolation.

Ēxi,j− 1
2 ,k− 1

2
=
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The line-averaged electric-field components defined at the cell edges are then used for the magnetic-field
update equations (3.16)-(3.18).
The magnetic-field components used in the electric-field flux vectors (3.20) are reconstructed point values
at the positions West, East, etc. . These point values have to be reconstructed from cell averages that are
defined at staggered positions − 1

2 . This is done via a diagonal CWENO reconstruction. For example,
the point values bWest

y , defined at (i − 1
2 , j, k) are reconstructed from their surrounding cell averages b̄y,

located at (i, j − 1
2 , k) as
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Here, wDL, wDC, and wDR are the nonlinear weights in diagonal direction. Correspondingly, the x- and
z-components of the magnetic field are reconstructed at the cell interfaces.
The time rates of change of the conserved quantities at a time tn are given by equations (3.1) and
(3.16)-(3.18). The last step in the numerical scheme is the time integration of the update equations.

3.1.3 Time integration

The full set of ordinary differential equations of the conserved quantities is integrated in time using a
3rd order Runge-Kutta scheme. The particular choice that is used in the KT-code is a 3rd order Heun
scheme. The code employs

u(1) = u(0) +
1

3
∆t C

[
u(0)

]
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2

3
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[
u(1)
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un+1 = u(0) +
1

4
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(
C
[
u(0)

]
+ 3 C

[
u(2)

])
, (3.25)

with u(0) := un. The supporting points in time are at + 1
3∆t and + 2

3∆t. Thereby, the time integra-
tion helps to prevent the scheme from producing local under- and overshots, when compared to time-
integration schemes that use supporting points at + 1

2∆t and +1∆t. The time step ∆t is restricted by
the Courant–Friedrichs–Lewy (CFL) criterion. As the base scheme computes maximum speeds of prop-
agation, the global maximum of the local maximum speeds of propagation can be used to compute the
time step as

∆t =
C√

(max(axi,j,k))2 + (max(ayi,j,k))2 + (max(azi,j,k))2
, (3.26)

where C < 1 is the Courant number. The time step is dynamically allocated at each time step. The local
maximum speed of propagation is defined in general form by equation (3.6) for a general set of coupled
hyperbolic partial differential equations. In a given set of equations, it can be computed using physical
information of the simulated system, knowing which physical phenomenon exhibits the highest speed of
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propagation. In the case of isothermal hydrodynamics, the local maximum speed of propagation is the
sound speed plus the absolute value of the local flow velocity in the according space direction:

axs = cs + |vx| , (3.27)

where cs is the sound speed. In the case of MHD, the local maximum speed of propagation can be
computed from the speed of the fast magnetosonic wave plus the absolute value of the local flow velocity
as

axfms =
1

2

√√√√c2s + B2

ρ
+

√(
c2s + B2

ρ

)2

− 4B2
xc

2
s

ρ
+ |vx| . (3.28)

The local maximum speeds of propagation in the other space directions y and z are computed similarly.
The base equations do not account for the viscous term in the momentum equation, nor for the resistive
term in the induction equation. Viscosity and resistivity are introduced on a numerical level and are
determined by the spatial reconstruction method. A detailed measurement of the numerical viscosity for
the 1D and 2D Navier-Stokes equations, solved with 3rd order CWENO is described by Zhang et al. in
[76].

3.2 Forcing

To maintain statistically steady-state turbulence, the constant energy loss due to grid viscosity and
compressional losses has to be compensated for by injecting energy into the system. A random driving
force is applied to the system to add energy at large scales. This random driving force is determined by a
Ornstein-Uhlenbeck process in spectral space and is based on a method described by Schmidt et al. [62].

The coefficients of the Fourier transform of the velocity driving force f̂(x) are computed by approximating
the following stochastic differential equation:

df̂v(k, t) = −f̂v(k, t)
∆t

T
+ F 0

v

∑

j,l,m

(
2σ2(k)

T

)
δ(k− kj,l,m)Pζ(k) · dWt. (3.29)

The parameter F 0
v controls the amplitude of the velocity force, σ(k) controls the spectral range and

profile of the force, and W is the Wiener vector. The projection operator

Pζ(k) = ζδij + (1− 2ζ)
kikj
k2

, (3.30)

controls the ratio of compressible to solenoidal forcing. Here, ζ is the spectral compressible vs. solenoidal
weight. For ζ = 1 the Wiener vector is projected perpendicular to k and the force becomes purely
solenoidal. For ζ < 1, the parallel component of f̂v to k is the compressional part of the force. The
correlation time T is set to L/V, where L is the forcing length scale and V is the mean flow velocity of
this length scale’s fluctuations.
The Fourier coefficients of the magnetic-field force f̂b(k) are computed by

df̂b(k, t) = −f̂b(k, t) + F 0
b

∑

j,l,m

(
2σ2(k)

T

)
δ(k− kj,l,m)Pmag(k) · dWb,t, (3.31)

where the magnetic projection operator Pζ always projects the Wiener vector perpendicular to both f̂v
and k. Thus, the forcing does not add cross-helicity to the turbulence [75], and the external forces satisfy

f̂b(k, t) · f̂v(k, t) = 0. (3.32)

The parameter F 0
b controls the amplitude of the magnetic-field force. The forcing method described

allows for control over magnetic to kinetic energy-injection ratio, the mean total-energy injection, and
the solenoidal versus dilatational force for the kinetic energy.
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In this Chapter the properties of the KT-code are described. Besides the code’s scaling properties, the
shock-capturing capability and the convergence of the code are demonstrated. Finally, the results of
benchmarking studies against current state-of-the-art astrophysical codes are presented. In the bench-
marking, a high sonic Mach number test-problem of decaying hydrodynamic and MHD turbulence is
solved. The results from the chosen test-problem are good indicators for the capabilities of the presented
KT-code to simulate highly compressible turbulence.

4.1 Parallelization and scaling

The resolution of direct numerical simulations of turbulence determines the numerical viscosity and
thereby the separation of scales in the turbulent system. The separation of scales is defined as the
spectral width between scales that are affected by e.g. the forcing or the boundaries on the one hand,
and the dissipation scales on the other hand. Achieving high spatial resolution is therefore not only
important to keep the discretization error small, but also influences the physical behavior of the system.
Parallelization, the distribution of the computational domain over a number of processes, makes the
computation of high-resolution simulations possible.
The KT-code is MPI parallel, using a two-dimensional decomposition of the computational grid. The
2D decomposition is commonly referred to either as the pencil decomposition or column decomposition.
It is used when the number of processes comes close to, or even exceeds, the number of grid cells in
one spatial dimension. In two of the three space dimensions the grid is divided and distributed over the
processes. The third dimension resides entirely within each process. The number of ghost cells, the cells
that are only needed for the local computation of the first real edge grid cells, is two in the case of the
hydrodynamic KT-code and four in the case of the MHD KT-code. The difference in number of ghost
cells stems from the enlarged numerical stencil of the constrained transport scheme of the MHD code
(the ghost-cells are described in detail in Appendix B). The ghost-cell values are determined during each
Runge-Kutta time-step according to the edge grid-values of the neighboring processes’ edge cells. Figure
4.1 depicts how the KT-code’s parallelization is organized.
The scaling describes the function of the speedup in computation time when increasing the number of
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Fig. 4.1: KT-code’s column decomposition of the computational domain. In this example of 16 processes (labeled
P00-P15), the domain is distributed over a 4 × 4 grid of processes in the y- and z-directions. The
x-direction is handled completely by each process.
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Fig. 4.2: Scaling of the Hydro KT and MHD KT-code. The plot to the left shows the speedup when computing
a fixed time interval in a 2563 simulation with an increasing number of processes. The right-hand plot
shows the computation time of a single time-step when the total number of grid cells per process is held
constant.

processes. The number of ghost cells is critical in determining the scaling behavior of the code. Each
process computes the values of the real grid cells as well as the values of the ghost cells. At fixed
resolution, the total number of ghost cells increases with the number of processes, and thus the measured
scaling deviates from the ideal scaling. Additionally, the MPI communication effort increases with the
number of processes used for a given total resolution, as the edge-located real grid-cells are copied to
the neighboring processes’ ghost cells. The scaling behavior of the KT-code is shown in Figure 4.2 for
both the hydrodynamic case and the MHD case. The speedup is measured for a constant grid resolution
of 2563, varying the number of processes from 4 to 256. Ideally, the computation time is reduced by
half when the number of processes is doubled. The initially faster-than-ideal speedup results from an
improved usage of cache when the number of cells computed by one individual process decreases. In
order to avoid this effect, the Figure 4.2 also shows the time used for computing a single time step when
each process computes a constant number of grid cells. The resolution is thus increased according to the
number of processors, going from 643 for one process to 512 × 512 × 256 for 256 processes. For a code
that scales perfectly, the computation time for a single time step would be constant. An increased effort
of communication and ghost cell computation is reflected in the ∼ 20% increase in computation time (see
RHS of Figure 4.2).
Both plots show a sudden change of scaling behaviour between 32 processes and 64 processes. This
change is not an effect of the code but due to the architecture of the parallel computer that was used to
measure the scaling behavior. Up to 32 processes are computed in single thread mode, meaning that one
physical CPU (consisting of two logical CPUs) computes one process. For 64 processes and larger, one
logical CPU computes one process. The code’s scaling behavior is thus best reflected in the measured
scaling ranging from 64 to 256 processes. In this range of processes, the code’s speedup is very close to
the ideal scaling.

4.2 Convergence test

The convergence of the KT-code in three spatial dimensions is tested by simulating a 3D analytically-
known solution to the ideal MHD equations using an adiabatic equation of state. The test problem is a
nonlinear self-similar expansion of a magnetized plasma ball proposed by Lou, Rosner, and Ulmschneider
[45].
The basic MHD equations in the adiabatic case and in Gaussian units are

∂tρ+∇ · (ρv) = 0, (4.1)

∂t(ρv) +∇ ·
[
ρvvT +

(
p+

1

8π
|B|2

)
I − 1

4π
BBT

]
= 0, (4.2)

∂te+∇ ·
[(
e+ p+

1

8π
|B|2

)
v− 1

4π
(v ·B)B

]
= 0, (4.3)

∂tB +∇×E = 0. (4.4)
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Fig. 4.3: The domain of the convergence-test calculations at t = 1, 000 s. Illustrated are the density isosurfaces,
the magnetic field and the momentum.

The set of equations (4.1)-(4.4) is given in standard notation of the magnetic field B, the mass density
ρ, the total energy density e, the velocity v, and the electric field E = −v × B. Thermal pressure p is
computed from an ideal gas equation of state

p = (κ− 1)

(
e− 1

2
ρ |v|2 − 1

8π
|B|2

)
, (4.5)

with the ratio of specific heats κ = 4/3 .
In Cartesian coordinates, the evolution of the magnetized plasma ball is
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, (4.6)
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p = φ−3F
2
0

π

[
(5a2 − 7ζ2)(ζ2 − a2)2ζ2(1− z2

r2
) + a6(a2 − ζ2)

]
, (4.9)

where F0 and a are positive constants, α and η are constants of integration, and r is the radius. ζ is the
radius divided by φ and φ is a function of the time t. Time t can be obtained numerically from

t− t0 =
1

η

√
φ(ηφ− 2α) +

2α

η
√
η

log(
√
ηφ+

√
ηφ− 2α). (4.10)

Test calculation parameters are chosen to be a = 125, 000 cm, F0 = 3 · 10−18 gauss cm−4, α = 2 · 10−5

s−2, and η = 4 · 10−5 s−2. The spatial domain of the calculation is a cube with an edge length of 80, 000
cm. The center of the cube is located at x = 140, 000 cm, y = 140, 000 cm, and z = 160, 000 cm. The
calculation starts at t0 = 1, 000 s and ends at tfinal = 1, 025 s. For the given set of parameters the flow
velocity is estimated as v ∼ 30 cm s−1, the density ρ ∼ 0.01 g cm−3, the magnetic field b ∼ 35 gauss
and the gas pressure p ∼ 100 dyne cm−2. Figure 4.3 illustrates the density, the magnetic field and the
momentum of the plasma ball in the computational domain at t = 1, 000 s. The physical variables at the
boundaries are calculated using the analytic solution. Due to the 3rd order Runge Kutta time integra-
tion, the analytical solution at the boundaries is calculated at each Runge Kutta step. The test setup is
repeated for spatial resolutions ranging from 323 up to 5123. Due to the dynamic time-step allocation
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of the numerical scheme, the number of time-steps needed to reach the final time tfinal doubles with the
resolution. A total number of seven time-steps is needed to compute the time evolution of the flow from
t0 to tfinal at 323 resolution. 137 steps are needed to resolve the same time interval at 5123 resolution.
For each run, the maximum relative deviance of the numerical solution from the analytically obtained
solution is computed at time tfinal. Besides the maximum relative deviance, the mean absolute deviance
normalized to the value of the quantity is calculated. The normalized mean absolute deviance is referred
to as the mean relative deviance. In addition to the deviances for a fixed time-interval run, the errors of
a single time-step are measured.

4.2.1 Results of the convergence test

The mean relative deviance of the KT-code’s scheme converges with the order of approximately 3 for a
single time step and approximately 2.6 for the whole time interval (see LHS of Figures 4.4 and 4.5). This
result matches the expected order of convergence, because the 3rd order CWENO reconstruction of point
values is the limiting factor. The slightly lower order of convergence in the maximum relative deviance
(illustrated on the RHS of Figures 4.4 and 4.5), compared to the mean relative deviance can be ex-
plained by the way the ghost-cell values at the boundaries are set at the intermediate Runge Kutta steps.
The ghost-cell values are set using the analytical solution, while grid cells located near the boundaries
are evolved by the numerical scheme. An artificial, though small, discontinuity is maintained between
the first simulated real grid cells and the neighboring ghost-cells. In the vicinity of discontinuities, the
smoothness indicators of the CWENO scheme reduce the order of the reconstruction from 3rd order to
2nd order, thus an artificial reduction of the order of convergence is maintained at the computational
domain boundaries.
When the constrained transport scheme is used to update the magnetic field, the step of averaging of the
electric-field flux at the edges of the grid introduces an additional source of error, effectively reducing the
order of convergence by approximately 0.2 compared to a pure Kurganov-Tadmor scheme.
At the lowest resolution, the normalized mean relative deviance varies from 10−5 to 10−6. At the highest
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Fig. 4.4: Mean and maximum relative deviation vs. grid cell size dx for a fixed time interval. The order of
convergence is approximately 2.6 for the mean relative deviance and approximately 2.3 for the maximum
relative deviance.

resolution, the mean relative deviance does not exceed 10−8. For a single time-step, the mean relative
deviance does not exceed 10−10 at the highest resolution. The maximum relative error does not show the
same convergence behavior due to the erroneous effect of the analytical boundary values.

In order to evaluate the effect of constrained transport on the convergence behavior of the full hy-
brid scheme, the convergence is also tested using the base Kurganov-Tadmor scheme for the full set of
equations (4.1)-(4.4). Any spurious magnetic monopoles are small compared to the magnitude of the
magnetic field, because the magnetized plasma ball is a smooth solution, showing no discontinuities. The
pure KT algorithm shows slightly lower errors and a slightly higher order of convergence (O(∆x) ≈ 3.2
for a single time-step). At the same time, the erroneous divergence of the magnetic field reaches values
of 10−6. The constrained transport scheme keeps the maximum of the divergence of the magnetic fields
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Fig. 4.5: Mean and maximum relative deviation vs. grid cell size dx for a single time step. The order of convergence
is approximately 3 for the mean relative deviance and approximately 2.1 for the maximum relative
deviance.

as low as 2 · 10−15.

4.3 Shock-capturing in 2D test-problems

One of the main important properties of compressible codes is the ability of the numerical scheme to
capture shock-waves. A jump of e.g. the mass density has to be maintained over time, propagating
through the computational domain. The discretization of a discontinuous function is prone to lead to
numerical artifacts, often leading to spurious oscillations of the shocked quantity in the vicinity of the
shock front. Over time, the distinct jump is also prone to be smeared out spatially by the numerical
scheme. In order to demonstrate the shock capturing ability of the KT-code, the shock evolution in a
standard two-dimensional MHD test problem, the Orszag-Tang vortex [2], is analyzed. The Orszag-Tang
vortex is a supersonic eddy with initially homogeneous mass density, that decays over time. An adiabatic
equation of state is used to allow for mass-density fluctuations to steepen into shocks. The initial state
of the system is set to:




ρ
vx
vy
vz
bx
by
bz
p




=




cO
sin 2πy
sin 2πx

0
− sin 2πy
sin 4πx

0.
1
2c

1/2
O




. (4.11)

The constant cO = 52/(62π), is chosen as proposed by Mignone [48]. The ratio of specific heats is chosen
to be κ = 5/3, for an ideal gas. The initial state is chosen to provide an initial thermal to magnetic
pressure of 10/3. The time t is given in units of the initial average sound-speed. The test problem is
solved on a [0, 1]× [0, 1] grid with periodic boundary conditions. Results are shown for a spatial resolution
of 10242. Orszag-Tang simulations at lower resolution have been carried out to test the influence of the
grid viscosity.
The supersonic flow leads to shocks. Figure 4.6 shows the distribution of the mass density shortly af-
ter the density fluctuations have steepened into shocks. Figure 4.7 displays the 1D-cut for the values
of the mass density, the velocity components, and the magnetic-field components, respectively. A one-
dimensional cut through the results at y = 0.75 and t = 0.4 is used to depict the jumps of the downstream
to upstream values of the flow quantities. Two shock fronts of the density can be seen at x = 0.12, and
at x = 0.67. The mass-density shock at x = 0.67 is a jump from 0.17 to 0.37 within four grid points in
x-direction. The solution left and right to the shock front is smooth, showing no spurious oscillations.
The x-component of the velocity jumps from a value of −0.23 to a value of −1.1 within the same range
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Fig. 4.6: Mass density at t = 0.4 in the Orszag-Tang vortex. The density shocks are thin transition layers where
the mass density jumps from the upstream to the downstream value.
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Fig. 4.7: 1D-cut through the Orszag-Tag vortex at t = 0.4, y = 0.75. The plots show the spacial distribution of
the density field and the components of the velocity field and the magnetic field. At the discontinuity
at x = 0.67, the flow quantities jump from the upstream to downstream value.
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Fig. 4.8: The density field in the MHD star-formation test problem, resolution of 10243, after 0.2 dynamical
times. The average sonic Mach number is approximately 8. The bright yellow regions correspond to a
mass-density above 103, while the transparent parts indicate a mass-density as low as 10−3.

of grid points, while the y-component jumps from −0.4 to −0.77. Also the magnetic-field components
show a discontinuity at x = 0.67. While the x-component change is negative and changes from 0.1 to
-0.15, the y-component change of the magnetic field is positive (from -1.15 to -0.62).
Following the evolution of the flow in time, the shock fronts propagate through the system until turbu-
lence sets in and dissipates the flow energy, eventually. During the propagation of shocks, the steepness
of the gradients of the flow quantities is maintained, and not smeared-out by the numerical scheme.
The Orszag-Tang vortex tests also reveals that the magnetic field is maintained divergence-free, even in
the vicinity of shocks. The measured maximum divergence of the magnetic field is kept as low as 10−12.

4.4 Benchmarking - star formation test problem

The KT-code has been benchmarked against current cutting-edge hydro and MHD codes, simulating
3D decaying turbulence. The initial condition of the test-problem is fully developed Mach 9 turbulence,
studied with and without magnetic field. The turbulence decays over approximately two dynamical times,
i.e. flow-crossing times. The equation of state is isothermal, resolutions of 2563, 5123, and 10243 have
been tested for both the hydro and the MHD case. The boundary conditions are periodic in three spatial
dimensions, the average mass-density is one, and the sound speed is set to one. The time is given in units
of the sound speed. For the initial data snapshot, the time is set to t = 0.
For each run, 10 snapshots in equidistant time-intervals are taken in order to compare the evolution of

the flow among the solvers. Figure 4.8 shows the spatial mass-density distribution after 0.2 flow crossing
times (i.e. t = 0.02 in units of sound speed) of the decaying MHD simulation result of the KT-code. For
data analysis purposes, power spectra, structure functions, density PDFs, and box averages are computed
for each snapshot. The codes that have participated in the benchmarking are:
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• ENZO

• FLASH

• RAMSES

• PPML

• ZEUS

• PHANTOM

• KT

All codes participating in this benchmarking study are grid codes, with the exception of PHANTOM,
which is a Smoothed Particle Hydrodynamics (SPH) code. The codes chosen for this study provide a
cross-section of the numerical schemes currently used in the field. PPML, ENZO, and FLASH are based
on piecewise parabolic methods (PPM). RAMSES is an unsplit Godunov-scheme with adaptive-mesh
refinement (AMR). Zeus is a widely used astrophysical code whose HD and MHD algorithms are based
on the method of finite-differences on a staggered mesh. Further description of the codes can be found
in [53], [27], [70], [51], [60].
By comparing results from the test-problems, advantages and disadvantages of the various numerical
approximation methods are revealed. The comparison also helps to understand which numerical artifacts
are produced and how they affect the evolution of the flow. The physically meaningful part of the
solution can be identified, supporting the reliability into the simulation results of statistically stationary
turbulence in Chapter 6.
The KT-code test-simulations have been carried out on a IBM Power6 575 computer. Table 4.1 shows
the number of processors and the according computational effort of the simulation runs.

Run # of processors computation time

Hydro 2563 64 0 days:4h:34min
Hydro 5123 256 0 days:19h:8min
Hydro 10243 1024 2 days:23h:58min
MHD 2563 64 0 days:5h:21min
MHD 5123 256 0 days:21h:50min
MHD 10243 1024 5 days:10h:29min

Tab. 4.1: Number of processes and computational resources for the benchmarking simulation runs.

4.4.1 Results of the decaying hydrodynamic turbulence

In the absence of magnetic fields, the initial flow at a sonic Mach number of 9 decays to a Mach 2
turbulence within two flow-crossing times. Figure 4.9 shows power spectra at four 10243 snapshots for
the velocity, the mass-density, the density-weighted velocity |ρ1/3v|2 and kinetic-energy |ρ1/2v|2. The
power spectra of the captured quantities are shown in compensated plots, i.e. multiplied by ka with the
compensation exponent a. The compensation exponents are 2, 5/3, and 3/2, respectively. The density
power-spectra are uncompensated.

The spectrum on top of the lines corresponds to the initial data snapshot at t0. As the turbulence
decays over time, the energy is gradually dissipated and the according power-spectra contain less and less
energy. It can be referred from e.g. the kinetic-energy spectra that the dissipative length-scale sets in at
k ≈ 30 or log(k/kmin) ≈ 1.5. In the dissipation range of scales with k > 30, the power spectra fall off
steeply. The functional shape of this fall-off is determined by the grid viscosity of the numerical scheme.
In the range of 2 < k < 30, all spectra display a power-law scaling, an approximately straight line in the
log-log plots. Within the scaling range, the power-spectra follow the functional relation:

E(k) ∼ k−β . (4.12)

Here, E(k) is used as the general term of a 1D power spectrum of a flow quantity.
While the velocity power-spectra become flatter over time (showing a scaling-exponent of β ≈ 2, initially),
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Fig. 4.9: Power spectra of the velocity, the mass-density, the density-weighted velocity, and the kinetic-energy
spectra at 4 snapshots from t0 = 0.0 to tf = 0.2. The density power-spectra are uncompensated,
the velocity spectra are compensated with k2. The power-spectra of the density-weighted velocity are
compensated with k5/3 and the kinetic-energy spectra are compensated with k3/2.

the kinetic energy spectra become steeper. The power-spectra of the density-weighted velocity show no
obvious change of the scaling-exponent over time. The mass-density power-spectra also show a scaling
behavior in the spectral range 2 < k < 30. With decreasing RMS Mach number, the density power-
spectra become steeper. The obtained scaling behavior is present in the results of the other grid codes as
well. However, the scaling of snapshot-spectra does not contain statistical relevant information, since the
spectra are not time averaged. Additionally, the turbulence is decaying and not statistically stationary.

4.4.2 Results of the decaying MHD turbulence

In the case of decaying MHD turbulence, the initially fully-developed Mach 9 turbulence also decays
rapidly to a sonic Mach number of 2, within two flow-crossing times. In addition to the power spectra of
the hydrodynamic quantities described in Chapter 4.4.1, the magnetic-energy spectra are measured. The
spectral shape of the power spectra is shown in Figure 4.10. The compensation factors of the spectra
correspond to those of the hydrodynamic case.

The kinetic energy shows a spectral fall-off for wave-numbers greater than 30 and a self-similar range
for 2 < k < 30. In the near-dissipation range of wave-numbers 10 < k < 30, power spectra show a
bump, a flatter scaling than in the range of wave-numbers 2 < k < 10. This bump is referred to as
bottleneck phenomenon. The power spectra indicate that the bottleneck phenomenon is more prominent
in the MHD case than in the hydro case. This bottleneck phenomenon is present in most of the com-
pressible codes and is attributed to the way that numerical viscosity scales with the wave-number k in
the dissipation range. According to Falkovich [23], the bottleneck phenomenon is more pronounced when
dissipation grows faster than k2. The KT-codes’ dissipation is determined by the numerical viscosity
of the central-difference scheme and grows faster than k2. This can be derived from the comparison of
the velocity power-spectra of all participating codes (see Figure 4.12). The numerical dissipation of the
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Fig. 4.10: Power spectra of the velocity, density, density-weighted velocity and kinetic energy at 4 snapshots from
t0 = 0.0 to tf = 0.2. The mass-density spectra are uncompensated, the velocity power-spectra are
compensated with k2. The power spectra of the density-weighted velocity are compensated with k5/3

and the kinetic-energy spectra are compensated with k3/2.

KT-code is similar to the dissipation of the PPM codes and the Zeus code. That means that numerical
dissipation grows faster than k4, which is the measured scaling of the numerical dissipation of the PPM
schemes [36].
Figure 4.11 shows four snapshots of power spectra of the magnetic field. The power spectra of the mag-
netic field do not display a power-law scaling. The magnetic energy-density is largest for large scales
(1 < k < 4) and drops off more and more steeply towards smaller scales.

A comparison of the velocity power-spectra at one given snapshot among the solvers is a good basis
for comparing the various numerical approximation methods. Figure 4.12 shows the effective velocity-
bandwidth of 2563 results of the codes at snapshot t = 0.01. The velocity power-spectra are divided by
the reference solution. The reference solution is the result at t = 0.01 of the 10243-run of the ENZO
code. The spectra are plotted vs. log(k/kmin). In the range of large scales, with log(k/kmin) < 0.5, most
of the codes produce velocity power-spectra with good agreement to the reference solution. However, the
PHANTOM code shows a marked deviation from the reference solution. Since PHANTOM it is a SPH
code, this effect will not be discussed further. In the range of 0.5 < log(k/kmin) < 0.9, the RAMSES
code and the KT-code reveal a flattening of the spectrum, which can be attributed to the bottleneck phe-
nomenon. Numerical dissipation affects scales where log(k/kmin) > 0.9. For the KT-code, the functional
form of the dissipation-scale spectrum corresponds well to those of the RAMSES and Zeus codes. The
KT-code’s dissipative fall-off is slightly steeper than the fall-off of the spectra of the PPML codes. The
resulting effective bandwidth indicates that the power spectra obtained by the KT-code are comparable
to those obtained by computationally more expensive Riemann solvers such as RAMSES or the ENZO
code.
While single snapshot-data allows a comparison of spectral properties of the schemes, the time evolution

of ensemble averages allow a comparison of time-evolution properties of the codes. A comparison among
solvers of the evolution of the square of total vorticity (or enstrophy) and the square of the total curl



4.4. Benchmarking - star formation test problem 35

Magnetic field power spectra MHD1024

10 100
k

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

b2 (k
)

Ms=2
Ms=4
Ms=6
Ms=9

Fig. 4.11: Uncompensated power spectra of the magnetic field at 4 snapshots, from t0 = 0.0 to tf = 0.2
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Fig. 4.12: Effective velocity bandwidth of the participating codes’ simulation results at t = 0.1 (Courtesy of A.
Kritsuk, yet unpublished KITP07 star-formation benchmarking results).
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Fig. 4.13: Enstrophy and RMS current ∇ × b vs. time (Courtesy of A. Kritsuk, yet unpublished KITP07 star-
formation benchmarking results).

of the magnetic field ∇ × b (or RMS current) are shown in Figure 4.13. The ensemble average of the
enstrophy decays from 0.66 to 0.1 − 0.2 at the final snapshot. While for most of the codes the decay
begins immediately, the PPML code produces an initial increase in enstrophy. The KT-code evolves the
enstrophy comparably to the ZEUS and FLASH codes. In the RMS current evolution on the right hand
side of Figure 4.13, most codes initially increase the RMS current. The KT results show an initial increase
of this quantity, possibly due to initial conversion of small-scale solenoidal velocity modes to small-scale
dilatational velocity modes, caused by the finite-difference scheme.



5. OVERVIEW - RESULTS FROM OBSERVATION AND SIMULATION

Here, a brief overview of the current state of understanding of compressible turbulence that has devel-
oped over the past 20 years is provided. In addition to results of numerical simulations, some significant
observational discoveries of compressible turbulence in the extraterrestrial world are described. The ob-
servational results are mainly based on observation of the interstellar medium. The interstellar medium
can be seen as a laboratory for supersonic turbulence over a wide range of spatial scales. The average
sonic Mach numbers range from transonic (Ms ≈ 1) in the warm phase of the ISM to highly supersonic
(Ms = 5− 20) in molecular clouds [3], indicating the compressible nature of interstellar turbulence.
Velocity power-spectra are obtained experimentally by measuring H 1 emission [17], H 1 absorption
[16], CO emission [4], and Infrared Astronomy Satellite-measured 100µ emission [61]. In 2D maps, the
obtained power-spectra were found to have power-law slopes1 around −2.8 to −3.2. These slopes are
obtained from 2D data, where the expected Kolmogorov power-law slope for the velocity-power spectrum
in 2D spectra is −8/3 or −2.666. One of the major sources of systematic error is the dependence of the
obtained scaling-exponents on the velocity-channel width, which is dependent on the resolution [22]. 1D
power-spectra, obtained on azimuthal profiles of H 1 emission in galaxies, have been reported to show
slopes in the range of −5/3 on large scales to −8/3 on small scales ([21], [20]). The transition in the
scaling exponent is explained by the transition from 3D to 2D geometry according to the line-of-sight
thickness of the H 1 layer.
More recent results indicate a steeper spectral-scaling of velocity power-spectra in the interstellar medium.
Chepurnov et al. [12] report a 3D-velocity spectral-index of −3.87 ± 0.11, based on the analysis of H 1
emission in the Milky Way. The injection scale is reported to be at approximately 180pc, and the steeper
velocity power-spectrum is related to shock-domination in the turbulence.
In the measurement of structure function scaling, the ∆v − R has been established [3]. The ∆v − R
measurements are a good approximation to 2nd order structure functions (see equation (2.45)). Recent
surveys of giant molecular clouds (GMC), a constituent of the ISM, have resulted in structure function
scaling exponents of 0.5− 0.65 [30], and thus larger than the spectral index predicted by the Kolmogorov
structure-function exponent of 1/3. However, higher-order scaling exponents of structure functions are
difficult to obtain from observational data.
The deviation of the obtained structure-function scaling-exponents is often explained by the intermittent
nature of turbulence, which is closely related to the fractal dimension of the most singular dissipative
structures [19]. In incompressible Navier-Stokes turbulence, the most dissipative structures are filaments.
The according fractal dimension of the most dissipative structures is thus D = 1 (D denotes the fractal
dimension). In incompressible MHD, the most dissipative structures were found to be current sheets, and
thus D = 2 [49]. For supersonic turbulence, regardless of whether hydrodynamic or MHD, shocks are
assumed to be the most singular dissipative structures. Since shock fronts are structured like planes, the
dimension of those most dissipative structures is associated with D = 2 [7], [54], like in the incompressible
MHD case.
Direct numerical simulations of ideal, compressible hydrodynamic and MHD turbulence have been carried
out with increasingly larger spatial-resolutions since Passot in 1988 [58]. Numerical simulation allows for
capturing the full dynamics of compressible turbulence over multiple dynamical times. A limitation of
simulations is the unknown influence of the unresolved scales. At resolutions of 5123, Reynolds numbers
of up to Re ≈ 6000 are achieved [13], while the according Reynolds number of interstellar turbulence
in the cool part of the ISM is of the order of Re ≈ 105 − 107 [22]. In the chaotic star-forming clouds,
the Reynolds number exceeds 108 and the magnetic Reynolds number is Rm > 1016. Thus, the results
of direct numerical simulations cannot realistically be interpreted as describing interstellar turbulence
directly. The unresolved scales in simulations may dramatically change the physical picture. This fact
renders the finding of universal scaling properties all the more critical, that means scaling properties that
are not affected by the resolution and thus the Reynolds number of the numerical simulations.

1 By convention, power-law slopes denote the spectral scaling exponent including the minus sign. When spectral scaling
exponents are described, the β in E(k) ∼ k−β is stated without the minus sign.
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In numerical simulations of ideal and isothermal hydrodynamics in the transonic regime, self-similar
scaling of velocity power-spectra was found to agree with the Kolmogorov prediction, and β = 5/3 [59].
However, in numerical simulations of compressible hydrodynamics in the supersonic regime, power-law
scaling of velocity power-spectra was found to be steeper than the Kolmogorov scaling prediction. For
high-resolution simulations (10243) of solenoidally driven compressible and isothermal turbulence, Krit-
suk et al. report a scaling-exponent of the power-spectrum of velocity fluctuations of β = 1.95± 0.02, at
Ms = 6 [36]. This high-resolution simulation suggests a Kolmogorov-like scaling of the density-weighted
velocity (ρ1/3v). The according power-spectrum is reported to scale as β = 1.69±0.02, and the low-order
structure functions of the density-weighted velocity increments scale as predicted by the Kolmogorov
phemonenology.
Magnetic fields have been included in numerical studies of compressible MHD turbulence since 1999.
Some numerical experiments yield a scaling exponent of the velocity power-spectrum that is indepen-
dent of the sonic Mach number. Boldyrev reports β ≈ 1.74, at Ms = 10 and MA = 3, in line with
Boldyrev’s model for compressible MHD turbulence ([8], [7]). Kowal and Lazarian report an influence of
the sonic Mach number on steepening velocity power-spectra in compressible MHD, based on results of
5123-simulations. In sub-Alfvénic MHD turbulence, they obtain a scaling exponent of β = 1.70± 0.05 at
MA = 0.7 andMs = 0.7. AtMA = 0.7 andMs = 7, they obtain β = 2.14± 0.05 [34]. In addition, they
report a Kolmogorov-like scaling of the density-weighted velocity power-spectrum, independent from the
sonic Mach number.
In a recent comparison of velocity-power spectra among three different codes, Padoan et al. [57] re-
port scaling exponents between β = 1.9 (Stagger code) and β = 2.2 (Zeus code) for a supersonic and
super-Alfvénic MHD turbulence at Ms = 10. The obtained scaling-exponents appear to differ strongly,
dependent on the numerical method that was used to simulate isothermal MHD turbulence. The lower-
order finite-difference code, the Zeus code, yields steeper velocity power-spectra than the higher order
Stagger code.
Kritsuk et al. report on the influence of the Alfvén Mach number on the scaling exponent of velocity
power-spectra, based on supersonic (Ms = 10) 5123-simulations with a PPML-solver [37]. In the strongly
super-Alfvénic regime ofMA ≈ 10, the scaling exponent agrees with the non-magnetic case, and β ≈ 1.94.
In the mildly super-Alfvénic regime around MA ≈ 3, a scaling exponents of β ≈ 1.62 is reported. At
MA ≈ 1, they report β ≈ 1.51. The increase of the relative strength of the magnetic-field fluctuations is
reported to lead to a flattening of the velocity power-spectra.
Several numerical studies on the width σ of the mass-density PDFs (see equation (2.76)) have been pub-
lished over the last decade. Both solenoidally and dilatationally driven turbulence have been investigated.
In isothermal hydrodynamic turbulence, Federrath et al. report a strong dependence of the model param-
eter b on the forcing type [24]. They obtain b = 0.36 ± 0.03 in solenoidally driven Ms ≈ 5.3 turbulence
and b = 1.05 ± 0.19 in compressibly driven Ms ≈ 5.6 turbulence. The applied forcing method strongly
influences the observed width of the density PDF. In solenoidally driven MHD turbulence, the obtained
Mach-number dependency parameter ranges from b ≈ 0.5 [55] and b = 0.38 − 0.41 in the super-Afvénic
regime [43], to b ≈ 0.5 in the sub-Alfvénic regime [42]. A systematic influence of the Alfvén Mach number
on the width of the density PDFs within a single numerical study has not yet been reported.
A systematic study of the influence of the sonic Mach number on the scaling of velocity structure-functions
has been carried out by Padoan et al. [54]. In numerical studies of super-Alfvénic MHD turbulence, the
sonic Mach number has been varied from subsonic (Ms = 0.3) to highly supersonic (Ms = 10). They
show that the dimension of most dissipative structures grows continuously from D ≈ 1 in the subsonic
regime to D ≈ 2 in the highly-supersonic regime.
It is difficult to draw a clear conclusion, based on the reported results. Most of the numerical studies
concentrate on a limited area of sonic and Alfvén Mach number space. Thus, a comparison of the reported
scaling-exponents and density-PDFs is impossible. A further source of complication stems from the fact
that not only does the resolution affect the reported turbulence properties, but also the numerical method
of the used solvers. In this work, a systematic approach is used to test the influence of the sonic-Mach
number and the Alfvén Mach number on the low-order statistical properties of hydrodynamic and MHD
turbulence. The next Chapter presents this approach and the results concerning turbulence properties,
subject to the parameters Ms and MA.



6. RESULTS

In this Chapter, the results of numerical simulations of supersonic isothermal turbulence are presented.
First, the scaling properties of supersonic hydrodynamic turbulence are described. Special emphasis is
put on the dependency of spectral scaling of power-spectra and the shape of mass-density PDFs on the
degree of compression, determined by the RMS sonic Mach number Ms. The numerical experiments
test the validity of compressible cascade models such as the Fleck model. This work also presents nu-
merical evidence gathered from the KT code results for a momentum-led cascade. The implications of
a momentum-led cascade include a self-similar scaling of power-spectra within supersonic hydrodynamic
turbulence.
The second part of the Chapter describes numerical results of self-similar scaling of power-spectra in su-
personic and super-Alfvénic MHD turbulence. Here, the influence of the sonic Mach numberMs and the
Alfvénic Mach number MA on the statistical properties are investigated. This part of the work includes
results from high-resolution (10243) simulations of compressible MHD turbulence. Finally, numerical
evidence for universal scaling of flow quantities such as total energy within highly compressible MHD
turbulence is presented.

6.1 Compressible isothermal hydrodynamic turbulence

Compressible effects become important for turbulence in supersonic flows. In the subsonic regime, the
flow can be described well by incompressible Navier-Stokes turbulence (see [5], page 183). Low-order
statistical scaling properties are in-line with the according Kolmogorov turbulence-model. The numerical
experiments of this work cover the range between the mildly-supersonic (or transonic) regime and the
highly-supersonic regime. The amplitude of the Ornstein-Uhlenbeck forcing in equation (3.29) determines
the RMS sonic Mach number. The Fleck model is tested by varying the forcing amplitude in steps that
cover a Mach number range of Ms ≈ 1 to Ms ≈ 5.5. At each Mach number step, the flow evolves
for multiple dynamical times to obtain statistically steady-state information, capturing several hundred
spectral snapshots per Mach number. In compressible turbulence, it is customary to define the dynamical
time as the flow-crossing time. The flow-crossing time reflects the average flow-velocity and is defined as
td = L/Ms, with L being the dimensionless side-length of the computational domain [36].
The Mach-number scan covers approximately 25 flow-crossing times at a spatial resolution of 5123. A
total number of 2500 spectral snapshots are obtained. In order to assess the influence of resolution (and
thus the Reynolds number of the flow), the results from several dynamical times of a 10243 run at a fixed
Mach number are provided and investigated in detail. Both 5123 and 10243 runs are forced solenoidally
at large scales (2 ≤ k ≤ 3). The parameters of the runs are outlined in Table 6.1. Figure 6.1 shows a

run hydro 5123 hydro 10243

dynamical times 25 3
sonic Mach number Ms 1-5.5 2.8
# of snapshots 2500 500
# of processes 256 512
Forcing solenoidal solenoidal
Forcing range 2 ≤ k ≤ 3 2 ≤ k ≤ 3

Tab. 6.1: Overview of the parameters in hydrodynamic turbulence simulation runs.

cut through the density-field and the absolute value of the velocity-field of a Mach 3 turbulence at 10243

resolution. The density-field on the LHS is highly compressed, showing large dilute regions where the
mass-density is considerably smaller than 10−1. The bright yellow regions show the compressed high-
density regions, where the density reaches values higher than 102. On the RHS of Figure 6.1, the absolute
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Fig. 6.1: Cuts through the density field on left side and the velocity-field intensity on the right side in fully
developed hydrodynamic turbulence at Mach 3. The black color indicates small values of the density
and the velocity-field intensity, yellow colors indicate large values. Strong compression is observed where
the velocity-field intensity is almost zero due to compression flows at the edges of counter-rotating eddies.

value of the velocity is shown for the same plane. Regions with low absolute velocity-values are regions
between counter-rotating eddies. These regions roughly correspond to the high-density regions on the
LHS of Figure 6.1.

6.1.1 Diagnostics

The ensemble averages of power spectra of the form
〈
u2
〉

are measured by replacing the ensemble average
〈.〉 by a time average. Replacing the ensemble average by the time average is possible when the flow is
statistically-stationary over time scales larger than the time scales of the fluctuations (see e.g. [10]). The
argument of equality of time and ensemble averages follows from the quasi-ergodicity hypothesis, often
used in turbulence studies. However, this hypothesis has not been proved formally for the Navier-Stokes
and MHD equations [28].
The time averages for statistically-stationary turbulence are obtained by averaging over a number of
spectral snapshots. For example, the time-averaged power spectrum of velocity fluctuations for a fixed
sonic Mach number is obtained as

v2
k|Ms=const =

1

N

∑

Ms≈const

v2
k(t). (6.1)

Here, v2
k(t) is the t-th time-snapshot of the 1D, k-shell integrated and squared Fourier velocity field.

N is the number of time snapshots, for which the sonic Mach number is approximately constant. The
time snapshots are computed at fixed time intervals in units of the sound speed. For the 5123 run, this
interval is 0.005 in units of the sound speed. The power spectra are computed at run time. Thereby, the
simulation runs provide for a large number of power-spectra in time without producing large amounts of
data. 1D power spectra are computed for the following flow quantities:

• Velocity fluctuations |v|2(k)

• Solenoidal (or rotational) part of the velocity |v⊥|2(k)

• Dilatational (or compressional) part of the velocity |v|||2(k)

• Kinetic-energy fluctuations 1
2 |ρ1/2v|2(k)

• Density-weighted velocity fluctuations 1
2 |ρ1/3v|2(k)
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• Momentum fluctuations |ρv|2(k)

• Mass-density fluctuations |ρ|2(k)

After each time interval, a Fast-Fourier-Transform is used to compute the Fourier components from the
according real space fields [14].
In addition to the power spectra, mass-density PDFs are computed at the same time intervals. The
probability density function of the mass density ρ to occur is measured as

f(ρ) =
1

N

nxnynz∑

i=1

W (ρ− ρi), with W (ρ− ρi) =

{
1 if |ρ− ρi| < ∆ρ
0 else

. (6.2)

Here, N is the number of grid cells in the domain and ρi is the mass-density value of the i-th grid cell.
The size of the density bin is chosen as ∆ρ = (ρmax − ρmin)/1000. In addition to the density PDFs and
the power spectra, domain-averages of the kinetic energy and the sonic Mach number are computed at
each snapshot.

6.1.2 Time evolution of the sonic Mach number

The flow is initialized with a constant mass-density ρ0 = 1 and zero flow velocity. The constant sound
speed is set to 1. The solenoidal force at large scales injects energy and the flow becomes turbulent and
statistically stationary after approximately 2 dynamical times. Figure 6.2 shows the time evolution of
the RMS sonic Mach numberMs and the RMS kinetic-energy. The transition to turbulence is not taken
into consideration, the spectral snapshots are taken only after the flow has evolved into fully developed
turbulence. The simulation ends after 25 dynamical times with Ms ≈ 5.
The sonic Mach number evolves from just above unity at t/td = 4 to 5.5 at t/td = 23. The kinetic energy
covers values of 0.5 to 11 in the same time interval. BothMs and Ekin display considerable fluctuations in
time. This behavior is seen in other high resolution simulations of compressible hydrodynamic turbulence
(see e.g. [62] and [36]). It can be explained by the sudden change in the kinetic energy dissipation caused
by isothermal shocks. The effect of strong fluctuations is less pronounced in the mildly-supersonic regime
1 ≤ Ms ≤ 2, where the flow is still more smooth and dominated by eddies. For higher Mach numbers,
the fluctuations in time become more pronounced as shocks become more prominent.
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Fig. 6.2: Time evolution of kinetic energy and RMS Mach number in the 5123 simulation run. After t/td=2, the
flow is fully turbulent. The run covers sonic Mach numbers between 1 and 5.

6.1.3 Spectral scaling

Power spectra of the various flow quantities are averaged within bins of approximately constant Ms.
For each Mach number bin, the time-averaged power-spectra display a power-law scaling-range for wave-



42 6. Results

1 10 100
k

0.1

1.0

10.0

100.0

E
(k

)*
k5/

3
Ms=4.8
Ms=1.3

β=2.00(8)
β=1.71(9)

Fig. 6.3: Power spectra of the velocity fluctuations for the transonic and supersonic regime. The spectra are
compensated by k5/3 and taken from the 5123-run. The spectra show a power-law scaling for wave-
numbers 4 ≤ k ≤ 7. The straight lines represent the best-fit to the scaling range. Larger scales
are dominated by the energy injection of the forcing. Smaller scales are affected by the bottleneck
phenomenon. For k larger than 20, numerical dissipation dominates and the spectra fall off steeply.

numbers greater than the forcing wave-numbers and smaller than the wave numbers affected by the
bottleneck in the near dissipation range. In the 5123 simulations, this range is limited to four wave
numbers. In this range of four wave-numbers (4 ≤ k ≤ 7) the power spectra show power-law scaling. A
fit to the scaling range of the power spectra is used to extract the scaling-exponent β from the results of
the numerical simulations. The power spectra are predicted to scale as

E(k) ∼ k−β . (6.3)

Here, E(k) is used as the general term of a 1D power spectrum of a flow quantity. The statistical errors
of measured scaling exponents β are computed as a combination of the goodness of the power-law fit
and the RMS deviation of scaling-exponents of the individual snapshot spectra to the mean scaling of
the time-averaged spectra. The statistical uncertainty of the sonic Mach number is computed as the
RMS deviation from the average sonic Mach number within the Mach number bin. Both statistical errors
are given in brackets. The digits that are given in brackets stand for the statistical error of the last digits
of the stated results (e.g. β = 1.71(9) stands for β = 1.71± 0.09).
The power spectrum of the velocity fluctuations in the transonic regime of Ms = 1.3(2) is measured to
scale as β = 1.71(9) (see Figure 6.3). The scaling-exponent agrees with the Kolmogorov scaling expo-
nent of 5/3 within statistical errors. The Kolmogorov-like scaling is applicable to the subsonic regime of
eddy-dominated turbulence. The scaling within the transonic regime thus appears to be mainly eddy-
dominated, as well. In the highly-supersonic regime ofMs = 4.8(2), the scaling-exponent is measured as
β = 2.00(8) and is significantly larger than the scaling exponent in the transonic regime. The measured
steepening of the velocity power-spectrum in the scaling-range agrees with the prediction of the Fleck
model (see equation (2.72)) as well as with results of other numerical simulations of compressible hydro-
dynamic turbulence [36].

The obtained kinetic-energy spectra show a power-law scaling-behavior in the same range of wave-
numbers. Figure 6.4 illustrates the time-averaged power-spectra of ρ1/2v at the same flow-velocity regimes
ofMs = 1.3(2) andMs = 4.8(2). The according scaling exponent for the transonic regime is measured as
β = 1.64(7). This scaling exponent agrees within statistical error with the Kolmogorov scaling exponent
and with the exponent of the velocity power-spectrum. The resulting scaling indicates as expected, that
the density fluctuations do not contribute significantly to the kinetic-energy spectrum in the transonic
regime. At Ms = 4.8, the scaling-exponent is measured to be β = 1.54(7), significantly smaller than in
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Fig. 6.4: Compensated kinetic-energy spectra for the transonic and supersonic regime. Power-law scaling is ob-
tained for wave-numbers 4 ≤ k ≤ 7. The spectral scaling exponents are measured as β = 1.64(7) and
β = 1.54(7).

the transonic regime. An increase in the sonic Mach number leads to a flattening of the kinetic-energy
spectrum in the self-similar scaling-range. This result also corresponds to the prediction of the Fleck
model. The obtained scaling exponent also agrees with β = 1.52(1), obtained in a Mach 6 high-resolution
simulation by Kritsuk et al. in [36].
The power spectra of the density-weighted velocity ρ1/3v, predicted to scale with a Kolmogorov-scaling
exponents of 5/3 [36], are shown in Figure 6.5. The range of wave numbers with power-law behavior
of the spectra is the same as for the velocity power-spectra and the kinetic-energy spectra. The scaling
exponents obtained are β = 1.70(6) and β = 1.72(7). Both exponents correspond to Kolmogorov-scaling
within error bars. The limited resolution and statistics prevent the measurement of a significant de-
viance from a Mach-number independent scaling, described by equation 2.73. Any influence of Ms on
the scaling-exponent of the density-weighted velocity, if such a dependence exists, cannot be resolved by
5123 simulations and the obtained statistics.

Within the range of sonic Mach numbers between one and five, the spectral-scaling exponents of the
velocity fluctuations change from 5/3 to 2. The functional dependence of the scaling exponent on Ms

can be shown by plotting the measured exponent of the fit to individual spectral snapshots vs. the sonic
Mach number at the snapshot. Figure 6.6 shows this functional relation. The error bars represent the
RMS fluctuations of the fit-exponents and the Mach number. At Ms just above one, a mean scaling
exponent of 1.69(17) is obtained. The value of the measured scaling exponent increases quickly in the
transonic range until it saturates atMs = 3 with an average scaling exponent of 1.99(12). FromMs = 3
toMs = 5, the average scaling of the velocity power-spectrum does not increase significantly within sta-
tistical error. This functional behavior might reflect, that the transition of an eddy-dominated turbulence
to a shock-dominated turbulence occurs within the mildly-supersonic regime.
The scaling-exponents of the velocity power-spectra and the kinetic-energy spectra, obtained from the

5123-run, allow for a calculation of the degree of compression α, as proposed in the Fleck model equa-
tions (2.72)-(2.74). The degree of compression can be expressed by the velocity power-spectrum and the
kinetic-energy spectrum in the self-similar range (see equations (2.72) and (2.74)) as

|ρ1/2v|2k
|v|2k

∼ k3α. (6.4)

This scaling relation, evaluated atMs = 1.3, reveals a scaling of the fraction of equation (6.4) of ∼ k0.07.
Thus, 3α = 0.07 or α = 0.023. At Ms = 4.8, the fraction in (6.4) scales as k0.46, and thus α = 0.153.
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Fig. 6.5: Compensated power-spectra of the density-weighted velocity ρ1/3v for the transonic and supersonic
regime. Power-law scaling is obtained for wave-numbers 4 ≤ k ≤ 7. The spectral scaling exponents are
measured as β = 1.70(6) and β = 1.72(7).

When the scaling of the density-weighted velocity is assumed to be independent of α, the degree of
compression should also be reflected in the fraction of the power spectra of the density-weighted velocity
and the velocity fluctuations (see equations (2.72) and (2.73)):

|ρ1/3v|2k
|v|2k

∼ k2α. (6.5)

Furthermore, the degree of compression can be derived from the ratio of the power spectra of the kinetic
energy to the density-weighted velocity, which is predicted to scale as (see equations (2.74) and (2.73))

|ρ1/2v|2k
|ρ1/3v|2k

∼ kα. (6.6)

These fractions can be evaluated at each sonic Mach-number bin. The comparison of the functional
behavior of the obtained α, 2α, and 3α, respectively, allows for a consistency check of the Fleck model
of compressible turbulence. In Table 6.2, the calculated values for α, 2α, and 3α are shown for five
consecutive Mach numbers. In addition, the ratio of the calculated 2α over α is presented.
The calculation of the degree of compression reveals a fundamental flaw in the combined Fleck-model

Ms 3α 2α α 2α/α

1.2 0.078(62) 0.04(4) 0.038(21) 1.085
1.5 0.18(6) 0.10(4) 0.085(22) 1.204
1.8 0.22(6) 0.12(4) 0.10(2) 1.198
2.3 0.33(10) 0.19(7) 0.14(3) 1.293
3.6 0.47(13) 0.27(9) 0.20(4) 1.338
4.6 0.47(11) 0.27(8) 0.20(4) 1.363

Tab. 6.2: Degree of compression, calculated from the ratio of kinetic-energy spectra and velocity power-spectra
(3α), the ratio of density-weighted velocity power-spectra and velocity power-spectra (2α), and the ratio
of kinetic-energy spectra and density-weighted velocity power-spectra (α). The results are based on the
analysis of the 5123 simulation run.

and Kolmogorov-like density-weighted velocity predictions. The ratio of the measured 2α/α is consid-
erably smaller than the predicted ratio of 2. The obtained ratio is not a constant, but increases from
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Fig. 6.6: Scaling exponents β of individual snapshots of the velocity power-spectrum vs. the average sonic Mach
number of the flow. The value of the measured scaling-exponent increases from β ≈ 5/3 at Ms = 1.2
to β ≈ 2 at Ms = 5. The increase occurs mainly within the mildly-supersonic regime of 1 <Ms < 3.
Error bars represent the RMS deviations of β and Ms.

approximately 1.1 at Ms = 1.2 to approximately 1.36 at Ms = 4.6.
In order to evaluate the limited resolution as a potential source of error, the same analysis is carried
out for the 10243 results. Here, the 380 spectra of the three dynamical times of a Mach 3 simulation
of hydrodynamic turbulence are time-averaged. The according power spectra yield scaling exponents of
1.84(4) for the velocity, 1.54(3) for the kinetic energy, and 1.68(3) for the density-weighted velocity. The
scaling-range of the according power spectra is larger than in the 5123 case and covers wave numbers
4 ≤ k ≤ 12. Table 6.3 shows the according degree of compression. The obtained ratio of 2α/α ≈ 1.3,
significantly lower than the predicted value of 2. The quantitative analysis of the results of both 5123 and

Ms 3α 2α α 2α/α

2.8 0.30(5) 0.17(4) 0.13(2) 1.308

Tab. 6.3: Resulting degree of compression for the 10243 data, at a sonic Mach number of Ms = 2.8.

10243 simulations runs do not match the predictions of the Fleck-model scaling-behavior and the accord-
ing degree of compression. Nevertheless, the qualitative prediction of a steepening velocity-fluctuation
power-spectrum with increasing compression is reflected by the results of the KT code simulation runs.

6.1.4 Compressible and solenoidal parts of the velocity-fluctuations

The velocity in supersonic hydrodynamic turbulence, discussed in the previous section, consists of both
compression and vortex motions. In order to distinguish between those two components, the velocity
vector-field v is split into a rotational and a compressional part by a Helmholtz decomposition (see i.e.
[22], page 227).

v = v⊥ + v||. (6.7)

The rotational part v⊥ is divergence-free (∇·v⊥ = 0), and the compressional part is curl-free (∇×v|| = 0).
In supersonic turbulence, the two components v⊥ and v|| lead to physically different effects. While the
compressional part v|| leads to shocks, and thus to compression and rarefaction of the gas, the solenoidal
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Fig. 6.7: Time-averaged solenoidal velocity power-spectrum and compressible velocity power-spectrum (LHS).
The average sonic Mach number is approximately 3. The RHS shows the ratio of EC/ES for different
average sonic Mach numbers Ms.

component v⊥ is associated with vortex structures. Power-spectra of the flow-quantities v⊥ and v|| are
the solenoidal velocity power-spectrum and the compressional velocity power-spectrum:

ES(k) = |v⊥|2k, EC(k) = |v|||2k. (6.8)

The ratio of compressional squared velocity-fluctuations to rotational squared velocity-fluctuations is
referred to as χ-function:

χ(k) =
EC(k)

ES(k)
. (6.9)

Integrated over all wave numbers k, this ratio χ is a measure of the relative importance of shock-related
motions over vortex motions [5]:

χ =
EC

ES
. (6.10)

In compressible hydrodynamic turbulence, the relative importance of shock related motions over vortex
motions is likely to depend on the RMS Mach number of the turbulence. In the subsonic and incompress-
ible limit, the flow is mainly solenoidal and χ→ 0. In the transonic regime, compressible motions begin
to contribute to the turbulent velocity-fluctuations. Power-spectra of the solenoidal velocity-fluctuations
and the compressible velocity-fluctuations, time-averaged onto the sonic Mach number binMs = 2.8, are
shown on the LHS of Figure 6.7. The amplitude of the compressible velocity-fluctuations is smaller than
the amplitude of the solenoidal velocity-fluctuations over all wave numbers k. In the forcing range, the
ratio of EC/ES(k) is artificially small, as the applied forcing is purely solenoidal. As spectral scales with
wave numbers k = {2, 3} yield the highest contribution to the total value of the velocity fluctuations, a
computation of χ that includes the forcing range would lead to an artificially biased representation of the
relative importance of compressible velocity-contributions. Here, the ratio χ is thus computed for scales
of wave number k > 3.
On the RHS of Figure 6.7, the ratio χ is plotted as a function of the sonic Mach number, based on
the data of the 5123-run. In the transonic regime of Ms = 1.2, the ratio χ is obtained as 0.15(2). At
higher sonic Mach numbers, χ increases. For Ms > 2, the ratio χ appears to saturate to a value of
0.30(3). This implies that the relative importance of compressible velocity-fluctuations over incompress-
ible velocity-fluctuations within supersonic turbulence is much smaller than assumed by the model view
of a 3D Burgers’ turbulence of uncorrelated shocks. Solenoidal modes dominate in solenoidally driven
supersonic turbulence.

6.1.5 Mass-density probability distribution

An increase in the sonic Mach number is reflected in the growing compression of the neutral gas. The
compression is reflected in the width σ of the log-normal density PDFs. The density contrast, i.e. the
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Fig. 6.8: Probability density function for the gas density of the 5123-run, time-averaged onto six Mach number
bins. The distributions follow a log-normal function.

difference of the fluid element with the lowest mass-density to the fluid element with the highest mass-
density, spans several orders of magnitude. Figure 6.8 illustrates the mass-density PDFs, time-averaged
onto Mach number bins. In the transonic regime, the density contrast is of the order of 104. An increase
of the average Mach number is reflected by broader probability distributions. At the highest Mach
number Ms = 4.75, the density contrast spans 6 orders of magnitude. Each of the time-averaged PDFs
can be fitted by the log-normal distribution function (2.75). The departure of the PDFs from the log-
normal distribution in the low-density tail results from strong head-on collisions is the gas. The head-on
collisions are followed by strong rarefactions that lead to oscillations in the low-density tail. The most
drastic change of the width of the PDFs withMs takes place in the mildly-supersonic regime 1 <Ms < 3.
AboveMs = 3, the increase in the width with the Mach number is less dramatic but still noticable. The
broadening corresponds well with the steepening of the velocity power spectrum, where the steepening is
also more pronounced in the mildly-supersonic regime.
The standard deviation σ was suggested by Padoan et al. [55] to be expressed as a function of the sonic

Mach number

σρ = bMs. (6.11)

Equation (6.11) denotes the function of the width of the linear mass-density PDF. For the logarithmic
mass density, the width can be expressed as [55]

σ2
ln ρ = ln (1 + b2M2

s ). (6.12)

The obtained width σln ρ increases from a value of 0.425(4) at Ms = 1.2 to 1.209(7) at Ms = 4.8. The
width of the lognormal fit to the logarithmic mass-density PDF can be plotted vs. the average sonic Mach
number for each snapshot in time. The best-fit to the data (see Figure 6.9), following the model function
(6.12) yields a value of b = 0.416(2) for the 5123 run. The model function reflects the obtained depen-
dence of the PDF-width on the RMS Mach number remarkably well over the range of Ms = 1.2 − 5.2.
The value of b deviates from the value of b = 0.260(1), reported by Kritsuk et al. [36]. The results of
this work are much closer to the results reported by Padoan et al. [55], where they obtain a value of
approximately 0.5 for b in compressible MHD turbulence.

The same analysis of the width of mass-density PDFs on the 10243 data yields b = 0.432(2), which
is slightly bigger than the b obtained on the 5123 data. Resolution thus seems to have an effect on the
density PDFs. Limited resolution keeps the density probability distribution artificially narrow. This ef-
fect has been reported by Federrath et al. [24] regarding results from simulations with the FLASH3 code.
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Fig. 6.9: Width σ of the logarithmic density PDF as a function of the RMS sonic Mach numberMs, based on the
5123-run. The individual points are the width of the lognormal fit to the 2500 individual PDF snapshots.
The red line shows the best-fit of the data to the model function σ2
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s ). The fit results

in an obtained parameter b = 0.416(2).

For solenoidally forced isothermal hydrodynamic turbulence on a 10243 grid, they report a fit-parameter
b = 0.36(3), a value that is close to the results presented in this work.

6.1.6 Scaling of mass-density and momentum power-spectra

A self-similar scaling of the mass density is an assumption of the Fleck-model of compressible turbulence.
The power spectrum of the mass-density fluctuations ρ should also exhibit a scaling range. The power-
spectrum of the mass density is given by

|ρ|2 ∼ k−β . (6.13)

Time-averaged density power-spectra, binned to average sonic Mach numbers, are shown in Figure 6.10.
The density power-spectra scale with the spectral wave-number in the wave-number range of 4 ≤ k ≤ 12.
The obtained β depends onMs. In the mildly-supersonic regime with an average sonic Mach number just
above unity, the scaling exponent is measured as β = 1.20(6). With an increasing average flow-velocity,
the density power-spectra become flatter. At Ms = 4.8, the measured scaling-exponent takes a value of
β = 0.77(4). The spectra at sonic Mach numbers in between these extremes become consecutively flatter.
The flattening of density power-spectra indicates that the increase in the average flow-velocity favors
compressible modes that couple to density fluctuations. This leads to a higher net energy-transfer from
velocity fluctuations to density fluctuations at smaller scales. The self-similarity of density-fluctuations,
assumed by von-Weizsäcker’s argument of equation (2.65), is numerically reproduced by this work’s
results. The influence of Ms on the value of the scaling exponent of density power-spectra is stronger
than for velocity power-spectra, since density becomes a constant in the subsonic limitMs < 1. In Table
6.4, the obtained scaling exponents of the mass-density power-spectra are outlined. Like in the case
of velocity power-spectra, the rate of change of the obtained scaling-exponents is more pronounced in
the mildly-supersonic range of 1 ≤ Ms ≤ 3. In this regime, the spectra flatten more quickly. In the
supersonic regime, the range of Ms > 3, the flattening saturates, and a self-similar scaling-exponent of
0.77(4) is obtained.
The power spectra of the momentum density ρv also display self-similar scaling. The range of wave
numbers where power-law scaling is observed is 4 ≤ k ≤ 7, just as for the velocity power-spectra. In
the subsonic regime, the momentum power-spectrum is supposed to converge with the power spectrum
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Fig. 6.10: Power spectra of the mass-density at sonic Mach numbers 1-5, based on the 5123-run, and compensated
by k. The spectra follow a power-law for wave numbers 4 ≤ k ≤ 12. The scaling-exponents β decrease
with an increase of the average sonic Mach number of the flow.

Ms 1.22 1.75 2.23 3.25 4.07 4.75

β|ρv|2k 1.45(6) 1.28(6) 1.16(8) 1.05(6) 0.96(8) 1.00(8)

β|ρ|2k 1.20(6) 1.14(4) 1.01(6) 0.82(5) 0.76(5) 0.77(4)

Tab. 6.4: Time-averaged spectral scaling-exponents β of the momentum-density power-spectra and the mass-
density power-spectra at six Mach number bins, at 5123-resolution

of the velocity fluctuations. Both power spectra should agree with the Kolmogorov scaling prediction of
β = 5/3. In the mildly-supersonic regime, the power spectra of the momentum become flatter as the
density contribution to the momentum becomes more pronounced. Figure 6.11 shows the time-averaged
momentum power-spectra for the six Mach number bins, that where used before for the density power-
spectra. The scaling exponent in the transonic regime is measured as β = 1.45(6). At Ms = 4.75, the
momentum power-spectrum scales with a scaling exponent of β = 1.00(8). The decrease of the scaling
exponent reflects the growing contribution of the density, which outweighs the increase of the scaling-
exponent of the velocity contribution to the momentum.
In addition to the time-averaged spectra of the 5123 run, the time-averaged momentum power-spectrum
of the 10243 run is shown in Figure 6.12. The average sonic Mach number is 3, the obtained momentum
power-spectrum shows a range of spectral scaling for wave numbers 4 ≤ k ≤ 12. The scaling exponent of
the 10243 momentum power-spectrum is measured as β = 1.17(3). The corresponding scaling-exponent
of the 5123 power-spectrum is 1.16(6). These scaling exponents agree within statistical errors. The
comparison of scaling exponents of the velocity power-spectra and the kinetic-energy spectra between
5123 and 10243 yields a similar agreement. This shows that the resolution is unlikely to introduce a
systematic source of error to this analysis.

6.1.7 Spectral shape of non-linear energy transfer

The partial time-derivative of the Fourier components of vector components of the momentum density m̂i

is described by equation (2.108). For the numerical assessment of the individual terms of this equation,
discrete changes in time are computed to approximate the infinitesimal derivatives. The first term in
equation (2.108) is the partial time-derivative of the momentum Fourier-components and it is approxi-



50 6. Results

1 10 100
k

0.1

1.0

10.0

100.0
E

(k
)*

k
Ms=1.22
Ms=1.72
Ms=2.23
Ms=3.25
Ms=4.07
Ms=4.75

Fig. 6.11: Power spectra of the momentum-density, compensated by k, at sonic Mach numbers 1-5. The data is
taken from the 5123-resolution run. Self-similar scaling is exhibited for wave numbers 4 ≤ k ≤ 7. The
scaling-exponents β decrease with an increase of the average sonic Mach number of the flow.
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Fig. 6.12: Power spectra of the mass-density at a sonic Mach number of 3, compensated by k1.17. Time averaged
spectra of 10243 and 5123 are shown to analyze the influence of the resolution. The wave numbers k are
normalized to match k/kmin. A scaling-range is exhibited for wave numbers 4 ≤ k ≤ 12 in the 10243

case. The 5123 spectrum shows a similar scaling for 8 ≤ k ≤ 12.
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Fig. 6.13: Snapshot of the time-rate of change of the Fourier-components of the momentum-density on the LHS
and the mass-density term on the RHS. Both real part and imaginary part oscillate around the time-
average value of zero. The amplitude of the oscillation is larger for medium wave-numbers 10 ≤ k ≤ 40.
In the dissipation range, the amplitude of the oscillation is smaller.

mated by a first-order forward difference in time

∂

∂t
(m̂i)(|k|) =

m̂i(|k|)(t+ ∆t)− m̂i(|k|)(t)
∆t

+O(∆t)2 (6.14)

The time step ∆t is kept considerably smaller than the time scale on which the momentum-density
Fourier-components change in time, in order to capture the turbulent dynamics. Due to spatial isotropy
of the turbulence, no statistical differences among Fourier space-directions (kx, ky, and kz) of the vector
components are present. Thus the vector components are integrated over all spectral angles within a
k-shell, indicated by |k|.
The density term in equation (2.108), a projection of the second partial time derivative of the mass-density
Fourier-components, is numerically computed as a central difference in time:

i
ki
k2

∂2

∂t2
(ρ̂(k)) =

i kik2 ρ̂(k)(t+ ∆t)− 2i kik2 ρ̂(k)(t) + i kik2 ρ̂(k)(t−∆t)

(∆t)2
+O(∆t)2,with i = {1, 3} (6.15)

The terms in equations (6.15) are computed for all wave-vectors k. After the projection iki/k
2 of the

individual components i = {1, 3}, the result is integrated over all spectral angles within a wave-number
shell k + ∆k:

ρ̂∂2,i(k) =
∑

q

i
qi
q2

∂2

∂t2
ρ̂(q)W (k − q), with W (k − q) =

{
1 if |k − q| < ∆k
0 else

. (6.16)

The finite time-step ∆t in the approximations (6.14) and (6.16) is again kept small compared to the
time scale on which the Fourier components change. As a result of equations (6.14) and (6.16), the real
part and the imaginary part of three vector components of the Fourier-transformed momentum-density
term and the components of the gradient of the mass-density term of equation (2.108) are numerically
measured, integrated over k-shells in Fourier-space. Figure 6.13 shows a snapshot of the obtained k-shell
integrated time-rate of change of the Fourier-components of the momentum-density term and the mass-
density term. Both real part and imaginary part exhibit positive and negative values. The magnitude
of momentum change is larger for wave numbers in the range 4 ≤ k ≤ 60. Small scale changes (for
k ≥ 60) are dampened due to numerical viscosity. On large scales, that means in the forcing range k ≤ 3,
the obtained changes are smaller than within medium scales. The time-averages of both the imaginary
part and the real part of the Fourier components go to zero for all k, since the turbulence is statistically
stationary.

Due to isotropy, the time-rate of change of the momentum components statistically does not differ
among the vector components in x-, y-, and z-directions. The absolute value of the vectors,

∣∣ ∂
∂t (m̂)(|k|)

∣∣



52 6. Results

1 10 100
k

1

10

100

1000

10000

δ t
m ^
 (k

),δ
t2 ρ ^

 (k
)

δt
2ρ ^ (k)

δtm
 ^ (k)

Fig. 6.14: Spectral shape of non-linear transfer to the momentum change and the second time-derivative of the
mass density. The transfer terms are time-averaged and component-averaged. The sonic Mach number
is approximately 4. The fitted lines are the best-fit to power-law scaling within the wave-number range
4 ≤ k ≤ 8.

and |ρ̂∂2(|k|)|, are computed to be:

∣∣∣∣
∂

∂t
(m̂)(|k|)

∣∣∣∣ =


∑

i=1,3

∣∣∣∣
∂

∂t
(m̂i)

∣∣∣∣
2



1/2

, (6.17)

|ρ̂∂2(|k|)| =


∑

i=1,3

∣∣ρ̂∂2,i

∣∣2



1/2

. (6.18)

The absolute value of the vector of the momentum-density change in Fourier space can now be time-
averaged over statistically-stationary turbulent flows to obtain information about the statistical-ensemble
behavior of the non-linear energy transfer. Time-averaged data (over 2 dynamical times) for both the
momentum-change and the density-change terms are shown in Figure 6.14. The average sonic Mach
number Ms is 4, the data is taken from the 5123-resolution run. The time-averaged density term shows
an increase within the range of obtained power-law scaling of the density power-spectra 4 ≤ k ≤ 10. The
increase of the density-term follows a power-law, scaling like k0.85(9). Within this range of wave numbers,
the momentum-change term exhibits a rather flat spectral shape, followed by a range of higher average
values for k > 10.
To obtain a total value of non-linear energy transfer to the momentum-fluctuations and the mass-density

fluctuations, the time-averaged data is integrated over all k for both momentum and density terms:
∣∣∣∣
∂

∂t
m̂

∣∣∣∣ =
∑

k

∂

∂t
(m̂i)(|k|), (6.19)

|ρ̂∂2 | =
∑

k

ρ̂∂2(|k|). (6.20)

A ratio of non-linear energy transfer to the momentum and the mass density is computed. The values
for the mass-density term are larger than those for the momentum term on all spectral scales (see Figure
6.14). The ratio of ∂2

t ρ̂/∂tm̂ atMs = 4 is approximately 30. Most of the non-linear energy transfer goes
to the density-field fluctuations, compared to non-linear energy transfer to momentum fluctuations.

Because of the resolution limitations to the spectral characteristics of this data, the same statistical
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Fig. 6.15: Spectral shape of non-linear transfer to the momentum change and the second time-derivative of the
mass-density, based on data from the 10243-resolution run. The transfer terms are time-averaged over
approximately 0.5 dynamical time, and component-averaged. The sonic Mach number is approximately
3. The straight lines represent the best-fit to power-law scaling for 4 ≤ k ≤ 12.

analysis is carried out using data from the 10243-run (see Figure 6.15). Similar to the Mach 4 data of the
5123-run, the Mach 3 data of the 10243-run exhibits a flat range of momentum change for 4 ≤ k ≤ 12.
This implies the conclusion, that the non-linear energy transfer via triads of momentum and velocity
Fourier components, leads to a self-similar scaling of momentum-density. At higher Mach numbers, the
non-linear term of equation (2.108) transfers more and more energy to density fluctuations, while the
spectral scaling of this transfer to the density-fluctuations becomes steeper. This can be interpreted as
energy being preferentially transfered to density fluctuation at higher wave-numbers k within the range
of power-law scaling. The observation of preferential transfer to higher-k density-fluctuations is reflected
in the flattening of the density power-spectrum. The spectral shape of the non-linear transfer to the
density fluctuations follows a power-law, and so the power-law shape of the density power-spectra is
retained while the spectral scaling flattens for higher sonic Mach numbers. In addition, the ratio of
∂2
t ρ̂/∂tm̂ at Ms = 3 is approximately 10. This ratio is considerably smaller than the according ratio of

30 in the Ms = 4 analysis. At Ms = 3, most of the non-linear energy transfer goes to the density-field
fluctuations, rather than to momentum-transfer. But the proportion of non-linear energy transfer to the
density-fluctuations is smaller at lower RMS sonic Mach numbers. At Ms = 1.5, time-averaged over
approximately 1.5 dynamical times, a ratio of ∂2

t ρ̂/∂tm̂ ≈ 7.5 is obtained. The higher the mean turbulent
flow-velocity is, the more energy is non-linearly transfered to mass-density fluctuations, relative to the
energy transfered to momentum-fluctuations.
The results of the non-linear energy-transfer indicate that the role of the non-linear advection term in the
momentum equation (2.17) is similar to the role of the non-linear advection term in the incompressible
Navier Stokes momentum equation (2.27). The non-linear advection term is responsible for energy distri-
bution among spectral scales. In the incompressible case, the distributed energy goes only into velocity
fluctuations. Thereby, in the absence of viscous forces, the self-similarity of the velocity power-spectrum
in statistically-stationary Navier-Stokes turbulence is provided for. In compressible hydrodynamic turbu-
lence, the non-linear advection term distributes energy among scales to both momentum-fluctuations and
mass-density fluctuations. The non-linear energy transfer among momentum fluctuations appears to be
scale-independent in the absence of viscous forces. The non-linear energy transfer to density-fluctuations
is not independent of the spectral scale. Non-linear energy transfer to density-fluctuations is stronger
at smaller scales. As a result, while momentum-transfer is flat and mass-density transfer is stronger at
smaller scales, the transfer among velocity fluctuations is dampened, leading to steeper velocity power-
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spectra in compressible turbulence.
Additionally, the ratio of energy that is transferred by non-linear interactions to density-fluctuations
increases, the more the density-field is compressed. This observation might explain why power-spectra
in compressible hydrodynamic turbulence are not universal, but subject to the degree of compression of
the density-field, induced by the non-linear term in supersonic turbulence.
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6.2 Compressible MHD turbulence

Magnetic fields alter the flow conditions of the turbulence. In addition to the sonic Mach number Ms,
the Alfvén Mach number MA is likely to influence to the statistical-ensemble behavior of the turbulent
system. The Alfvén Mach number, the ratio of the average flow velocity to the average Alfvén velocity,
reflects the influence of the magnetic fields on the turbulence. Super-Alfvénic turbulence (MA > 1) can
be globally isotropic (see [5], page 200). In this case, the magnetic-field fluctuations are moved along with
the plasma. In the sub-Alfvénic case, the velocity fluctuations are subject to a strong locally-homogeneous
magnetic field, and the perpendicular motions become essentially incompressible. The focus of this work is
the statistical-ensemble behavior of isotropic MHD turbulence (thus super-Alfvénic turbulence), reflected
by time-averaged power-spectra and density PDFs, and the influence that both Ms and MA exert on
the statistical properties of the turbulence. Thus, the results of two simulation runs are presented. The
first run covers approximately 18 dynamical times of supersonic and super-Alfvénic MHD turbulence,
computed on a regular grid at 5123 resolution. The parameter Ms is varied from the mildly-supersonic
regime to the highly-supersonic regime, covering 1.5 ≤ Ms ≤ 5.5. MA is held fixed at approximately
1.6. Both the magnetic field and the velocity field are forced at wave numbers 2 ≤ k ≤ 3, in a non-helical
way. That means that the cross-helicity vf · bf of the forcing is zero. The ratio of forcing amplitudes
Fv/Fb is kept constant at a value of 20. The choice of the forcing ratio yields an Alfvén-Mach number of
MA ≈ 1.66 independent of the sonic Mach number Ms of the turbulent flow.
The second run, computed on a regular grid with a resolution of 10243, reflects the influence of increasing
magnetic-fields, while the sonic Mach number is held fixed at Ms ≈ 3. In its saturated state, the ratio
of magnetic energy to kinetic energy is approximately 1/3 and the average Alfvén Mach number reaches
approximately 1.6. The parameters of the two runs are outlined in Table 6.5. Figures 6.16 and 6.17 show
cuts through the computational domain at z = 1/2 of a statistically steady-state MHD turbulence with
Ms = 3 andMA = 1.66. The spatial structure of e.g. the velocity fluctuations of the MHD turbulence in
Firgure 6.16 can be compared to the velocity fluctuations of a hydrodynamic turbulence at the same sonic
Mach number (see Figure 6.1). This comparison shows the stretching of eddies in the MHD case. The
structures of the velocity field in hydrodynamic turbulence (see Figure 6.1) are spatially homogeneous
while the structures of the MHD velocity-fluctuations are spatially stretched. The cut through the
absolute value of the magnetic field shows both the strong alignment of the density fluctuations with
the magnetic-field fluctuations and the non-space filling characteristics of both magnetic-field and the
density field. Absolute values of both the magnetic fields and the mass-density are concentrated in a
small fraction of the overall computational domain, while large fractions of space are almost field-free
(see [5], page 200).

run MHD 5123 MHD 10243

dynamical times 18.5 3.8
sonic Mach number Ms 1.5-5.5 2.8
Alfvén Mach number MA 1.6± 0.6 ∞− 1.6
# of snapshots 1180 680
# of processes 512 512
Forcing solenoidal solenoidal
F v0 /F

b
0 20 20

Forcing range 2 ≤ k ≤ 3 2 ≤ k ≤ 3

Tab. 6.5: Overview of the parameters in the forced MHD turbulence simulation-runs

All diagnostics applied to the hydrodynamic simulation runs are also studied for the MHD-simulation
runs. In addition, power-spectra of the magnetic field are captured at each snapshot in time. Hence,
total-energy spectra and residual-energy spectra are captured. The spectral quantities described above
in the hydrodynamic diagnostics Chapter 6.1.1 are completed by:

• magnetic-field fluctuations b2(k)

• total energy 1/2
∣∣ρv2 + b2

∣∣ (k)

• residual energy 1/2
∣∣ρv2 − b2

∣∣ (k)
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Fig. 6.16: Cuts through the density field (LHS) and the velocity-field intensity (RHS) in a fully developedMs = 3
andMA = 1.66 MHD turbulence. High values of the according intensities are marked by bright yellow
colors, small values are black. Strong compression is observed where the velocity is almost 0 due to
compression flows at the edges of counter-rotating eddies.

Fig. 6.17: Cuts through the density field (LHS) and the magnetic-field intensity (RHS) in a fully developed
Ms = 3 and MA = 1.66 MHD turbulence. The color scheme is identical to that of Figure 6.16. The
magnetic-field strength and the density field are spatially aligned.
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6.2.1 Time evolution of the characteristic flow quantities

In the 5123-run, the flow is initialized with a constant mass-density ρ0 = 1 and zero flow velocity. The
magnetic field is also initially set to 0. The combined kinetic and magnetic forcing at large scales injects
energy into the system and the flow becomes turbulent and statistically stationary after approximately
one dynamical time. Figure 6.18 shows the time evolution of both the kinetic and magnetic energies,
averaged over the computational domain. As described in the hydrodynamic case, the strong fluctuations
of the kinetic energy in time are again more pronounced at higher average flow-velocities. The magnetic
energy does not reflect strong time changes around its mean value.
Figure 6.19 shows the time evolution of the sonic Mach number and the Alfvén Mach number in the same
run. While Ms covers the range between 1.5 and 5.5, MA is held constant in an interval around 1.6(6).
Towards the end of the simulation, for t/td > 15, MA increases slightly to values around 2.2.
The time evolution of the kinetic and magnetic energies of the 10243 run are shown in Figure 6.20. The
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Fig. 6.18: Time evolution of kinetic energy and magnetic energy in the 5123 simulation run. After t/td=2, the
flow is fully turbulent. The run covers sonic Mach numbers between 1 and 5.
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Fig. 6.19: Time evolution of the sonic Mach number and the Alfvén Mach number in the 5123 simulation run.
While MA is kept within an interval between 1.2 and 2.2, Ms increases from 1.5 to 5.5.

starting point of this simulation is a fully-developed Mach 3, 10243 hydrodynamic turbulence, described
in Chapter 6.1. The magnetic field is initially zero and increases within three dynamical times to its
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saturation value of 1/3 of the kinetic energy of the turbulence. From the log-log plot of the magnetic
energy evolution three phases of evolution can be distinguished. The first phase is characterized by a
steep power-law increase of the magnetic energy, due to coupling of magnetic fluctuations to velocity
fluctuations on small scales. In this first phase until t/td = 0.4, magnetic energy grows with time as
t3.8(2). When small-scale fluctuations reach equipartition, i.e. a comparable amount of kinetic energy
and magnetic energy at small scales, the magnetic-energy increase slows down. A second phase of slower
growth of the magnetic energy (with t1.75(8)) follows until the system saturates at t/td = 2.8.
The kinetic energy increases from an initial value of 2.9 to 3.7 in three dynamical times. During this
increase, the RMS sonic Mach number of the flow is kept constant at approximately 2.8. During the
initial flow-crossing times, the Alfvén Mach number decreases from an initially infinite value (due to
MA ∼ 1/|B|) to 1.66 (see Figure 6.21).
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Fig. 6.20: Time evolution of kinetic energy and magnetic energy in the 10243 simulation run. The magnetic
energy shows two phases of growth, then saturates after t/td = 3.
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Fig. 6.21: Time evolution of the sonic Mach numberMs and the Alfvén Mach numberMA in the 10243 simulation
run. MA saturates after t/td = 2.8 to a value of 1.66.
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6.2.2 Spectral-scaling in MHD turbulence

The influence of the RMS sonic Mach number of the flow on spectral scaling properties of MHD flow
quantities are computed via time-averages of spectral snapshots within bins of approximately constant
Ms. The power-spectra of velocity-fluctuations are shown in Figure 6.22. Like in the hydrodynamic case,
the time-averaged spectra yield a wave-number range with power-law scaling of the spectra for 4 ≤ k ≤ 7.
The best-fit scaling exponent β for mildly-supersonic turbulence (Ms = 1.6) takes a value of 1.98(8). The
MHD-velocity power-spectrum of the mildly-supersonic and super-Alfvénic regime is considerably steeper
than the comparable hydrodynamic velocity power-spectrum. In the supersonic regime ofMs = 4.8, the
velocity power-spectrum yields an even steeper scaling. The best-fit scaling exponent is measured to be
β = 2.29(7). The bottleneck phenomenon in the wave-number range 8 ≤ k ≤ 30 is more pronounced
for the MHD power-spectra than for the hydro power-spectra (see Figure 6.3 for comparison). For wave
numbers k greater than 30, dissipation becomes dominant and the power-spectra fall off steeply. The
sonic Mach number Ms appears to have an effect on the scaling-exponent of velocity power-spectra,
which is comparable to the hydrodynamic case. Higher sonic Mach numbers lead to steeper velocity
power-spectra. Even the quantitative effect, an increase of β by approximately 0.3 (2.29(7)-1.98(8)) from
transonic to supersonic is of similar magnitude to the increase of β by approximately 0.29 in the hydro
case.
The kinetic energy spectra, subject to the two sonic Mach number regimes, are illustrated in figure 6.23.
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Fig. 6.22: Compensated and time-averaged velocity power-spectra within two sonic Mach number regimes (Ms =
4.8 and Ms = 1.6) at 5123-resolution. Power spectra yield power-law scaling for wave numbers 4 ≤
k ≤ 7, the best-fit scaling exponents are obtained as β = 1.98(8) in the mildly-supersonic regime and
β = 2.29(7) in the highly-supersonic regime. The straight lines represent the best-fit to the scaling
range.

In the mildly-supersonic regime, the kinetic-energy spectrum scales with k−1.78(7). The scaling is thus
significantly steeper than under comparable hydrodynamic conditions. At high sonic Mach numbers, the
kinetic-energy spectrum flattens. AtMs = 4.8, the scaling exponent is measured to be β = 1.64(7). Like
in the hydrodynamic case, an increase of the average flow-velocity leads to a flattening of the kinetic-
energy spectrum. The difference from kinetic energy-spectra in the MHD case to kinetic energy-spectra
in the hydrodynamic case is the magnitude of the scaling exponents. Over all Ms the kinetic energy
spectra in MHD turbulence are steeper than in hydrodynamic turbulence.
The power spectra of the density-weighted velocity ρ1/3v were proposed to scale with a Kolmogorov scaling
exponent of β = 5/3 by Kowal and Lazarian, based on their results of 5123 simulations of subsonic and
supersonic MHD [34]. The results of the 5123 simulations for the supersonic, super-Alfvénic regime of
this work yield steeper scaling for the power spectra of the density-weighted velocity. Figure 6.24 shows
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Fig. 6.23: Time-averaged kinetic-energy spectra within two sonic Mach number regimes (Ms = 4.8 andMs = 1.6),
compensated by k5/3, at 5123-resolution. The energy spectra yield a scaling range for 4 ≤ k ≤ 7, the
best-fit scaling exponents are obtained as β = 1.78(8) in the mildly-supersonic regime and β = 1.64(7)
in the highly-supersonic regime.

the power spectra for the mildly-supersonic and highly-supersonic regime. The best-fit scaling-exponent
is measured to be β = 1.88(7) for Ms = 1.6 and β = 1.91(6) for Ms = 4.8. In both regimes, the
scaling is significantly steeper than the Kowal and Lazarian spectra. A clear influence of the sonic Mach
number on the scaling of the density-weighted velocity cannot be extracted from the obtained results.
The scaling exponents atMs = 1.6 andMs = 4.8 agree within statistical errors. The sonic Mach number
of the flow does not have a significant impact on the scaling exponents of the density-weighted velocity
power-spectra, either in MHD or hydrodynamic results.

The scaling properties of the velocity power-spectrum, the kinetic-energy spectrum, and the density-
weighted velocity spectrum exhibit an influence of the sonic Mach number on the scaling exponents. This
appears to happen in a comparable way the hydrodynamic scaling-exponents are influenced by the sonic
Mach number. The difference of the scaling exponents of the MHD velocity fluctuations to the kinetic-
energy fluctuations can be plotted vs. Ms (see Figure 6.25). The difference of the scaling exponents can
be parametrized with 3α, as in the hydrodynamic case, using:

|ρ1/2v|2k
|v|2k

∼ k3α. (6.21)

Figure 6.25 shows the obtained 3α, computed at each spectral snapshot. Like in the hydrodynamic
case, higher average flow-velocity lead to an increase in the parameter 3α. The parameter 3α can be
associated with the degree of compression. For the highest sonic Mach number binMs = 4.9(4), a value
of 3α = 0.65(11) is obtained. The steepening of the velocity power spectra with regard to the flattening of
the kinetic energy spectrum corresponds to α = 0.22(4) at Ms = 4.9(4). This value agrees well with the
value of α given by Kowal and Lazarian [34], stated as α ≈ 0.23. Kowal and Lazarian’s value for the degree
of compression results from numerical simulations of strongly magnetized MHD turbulence at resolution
of 5123, Ms = 7, and MA = 0.7. Their value of α does not differ significantly from ours, even though
Kowal and Lazarian simulated MHD turbulence subject to a strong mean magnetic-field. The agreement
gives rise to the question, whether the Alfvén Mach number significantly influences the difference in the
power spectrum of the velocity and the kinetic energy spectrum. Data of the KT code’s 10243 run is used
to illuminate the influence of the Alfvén Mach number on the degree of compression. In the high MA

limit, the turbulence behaves like a compressible hydrodynamic turbulence with little magnetic effect on
the dynamics (see figure 6.26). The scaling-exponent of the velocity power-spectrum is measured to be
β = 1.87(4). The kinetic-energy spectrum scales with a measured exponent of β = 1.54(3). The difference
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Fig. 6.24: Power-spectra of the density-weighted velocity ρ1/3v, at 5123-resolution. The spectra are time-averaged
on two sonic Mach number regimes (Ms = 4.8 and Ms = 1.6), and compensated by k5/3. The power-
spectra yield a scaling range for 4 ≤ k ≤ 7, the best-fit scaling exponents are obtained as β = 1.88(8)
in the mildly-supersonic regime and β = 1.91(6) in the highly-supersonic regime.
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Fig. 6.25: Difference of the scaling exponents of the kinetic-energy spectrum and the velocity power-spectrum,
denoted by 3α vs. Ms, from the 5123-run. The parameter 3α grows approximately linearly with Ms

for 1.2 ≤Ms ≤ 5.5.
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Fig. 6.26: Power-spectra of the kinetic-energy fluctuations and the velocity fluctuations, both at Ms = 3 and
10243-resolution. The LHS shows the time-averaged spectra at high Alfvén Mach numbers MA � 10,
the RHS shows the according time-averaged spectra at MA ≈ 1.7.

of the scaling exponents of the velocity power-spectrum and the kinetic-energy spectrum averaged over
half a dynamical time is 3α = 0.33(3). In the saturated state ofMA ≈ 1.66, the velocity power-spectrum
is steeper than in the high MA-limit. The best-fit to the spectrum for wave numbers 4 ≤ k ≤ 12 yields
β = 2.09(2). The kinetic-energy spectrum also steepens and the scaling exponent is β = 1.75(3). The
degree of compression, calculated by the scaling difference, is measured to be 3α = 0.34(4). This indicates
that even though the scaling exponents for the individual spectra steepen drastically with a decrease in
MA, the difference of the scaling is not significantly influenced by the relative magnetic-field strength.
In the bottleneck range of wave numbers 12 < k < 40, the power-spectrum of the velocity-fluctuations
becomes shallower at MA = 1.7, compared to MA > 10. This might explain the large difference of
the KT code’s results and those obtained by Kritsuk et al. [37]. They report scaling exponents for the
velocity power-spectra at Ms = 10 for three Alfvén Mach number regimes MA ≈ 10,≈ 3,≈ 1. The
reported scaling-exponents are β = 1.94 at MA ≈ 10, β = 1.62 at MA ≈ 3, and β = 1.51 at MA ≈ 1,
obtained on time-averages of 5123 simulations. It appears that the spectral range of power-law fitting
was chosen for larger k than in this work, possibly including fitting the bottleneck.

6.2.3 Power-spectrum of the magnetic-field fluctuations

In decaying compressible MHD turbulence, the magnetic-energy spectrum does not show a clear range
of power-law scaling (see Figure 4.11). For forced MHD turbulence, the magnetic-energy spectrum is
shown in figure 6.27, for Ms ≈ 3 and MA ≈ 1.66. For comparison, the spectrum of the kinetic energy is
plotted with the magnetic-energy spectrum. The obtained best-fit scaling exponent for the time-averaged
magnetic-energy spectrum is β = 0.52(10). The magnetic energy is smaller than the kinetic energy for all
wave numbers k. In the dissipation range, k > 60, the magnetic-energy spectrum falls off with a steepness
comparable to the kinetic energy fall-off. In the driving range of k = 2 and 3, the forcing determines the
ratio Ekin/Emag. In the KT code simulations, the ratio of forcing magnitudes F v0 /F

b
0 = 20, and thus the

amplitude of the large-scale magnetic-field fluctuations is small relative to the amplitude of the kinetic
energy.

6.2.4 Compressible and solenoidal part of velocity-fluctuations

In compressible MHD turbulence, the ratio of compressible to rotational part of the velocity power-
spectrum, denoted by χ(k), is defined as in the hydrodynamic case (see equation (6.9)). Integrated over
all wave numbers k, the ratio χ measures the importance of compressible and shock-related motions
over rotational motions within the MHD turbulence. In figure 6.28, time-averaged power-spectra of the
compressible velocity-fluctuations and the rotational velocity-fluctuations are shown. Solenoidal forcing
of the velocity field is used for both MHD simulation runs. This forcing causes the ratio χ(k) to be
artificially large in the spectral wave-number range of k = 2, 3. The spectra are computed using data
from the 10243 run at Ms ≈ 3 and MA ≈ 1.66. The amplitude of the solenoidal velocity-fluctuations is
larger than the amplitude of the compressible velocity-fluctuations for all wave numbers k < 250. In the
far dissipation-range, i.e. for wave numbers k > 250, numerical dissipation dampens solenoidal fluctua-
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Fig. 6.27: Time-averaged magnetic-energy spectrum and kinetic-energy spectrum at Ms ≈ 3 and MA ≈ 1.66.
The resolution is 10243, and the plots are uncompensated. The amplitude of the magnetic energy is
smaller than the amplitude of the kinetic energy over all wave numbers k.
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fluctuations at Ms = 3 and MA = 1.66, at 10243-resolution. On the RHS, the ratio χ is plotted for
several sonic Mach number bins, based on the 5123-run. In MHD, the ratio χ grows less steeply with
Ms than in the hydrodynamic turbulence.
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tions stronger than dilatational fluctuations. The stronger dampening of solenoidal modes might explain
the fact that only the solenoidal velocity power-spectrum exhibits the bottleneck phenomenon, while the
compressible velocity power-spectrum does not show a bump in the near-dissipation range (see LHS of
Figure 6.28). According to Falkovich [23], the amplitude of bottleneck depends on the spectral-scaling of
power-spectra in the dissipation range, with wave number k. The bottleneck is stronger when dissipation
grows faster than k2 (see e.g. [36]). A power-law fit to the obtained power-spectra in the dissipation
range shows that the solenoidal part is clearly dissipated faster than k2, while the dilatational part is
dissipated only slightly faster than k2 (see LHS of Figure 6.28, for k > 200).
The ratio χ is computed as the ratio of k-integrated compressible over solenoidal velocity power-spectra
(see equation (6.10)). For the statistically-stationary MHD turbulence at Ms = 3 and MA = 1.66, the
ratio of compressible over solenoidal strength is χ = 0.21(2). This ratio is significantly smaller than in
solenoidally-forced hydrodynamic turbulence at Ms = 3, where χ = 0.30(3). Magnetic-field fluctuations
thus increase the importance of the solenoidal velocity motions over compressible motions in the turbu-
lence. This result can be explained by the fact that compressible velocity motions in MHD compress the
plasma against the combined magnetic and thermal pressure. Since both magnetic pressure and thermal
pressure are highly aligned in compressible MHD, the compressible velocity motions are more strongly
dampened than in the pure hydrodynamic case.

6.2.5 Total energy and residual energy in MHD turbulence

For the total-energy spectrum of compressible MHD, 1/2(ρv2 + b2)(k), scaling-predictions based on
the models for incompressible MHD exist. The total-energy spectrum of incompressible MHD turbu-
lence is predicted to scale with k−β , with β = 3/2 in the IK-phenomenology and β = 5/3 in the
GS-phenomenology. Shivamoggi’s prediction, based on the two models, includes a steepening of the
total-energy spectrum with an increase of the sonic Mach number and the according compression of the
mass-density (see equation (2.87)). In addition to the sonic Mach number, the Alfvén-Mach number
might influence the scaling properties of the total-energy spectrum. In Figure 6.29, the total-energy
spectra, time-averaged onto sonic Mach number bins Ms = {2.4, 3.6, 4.2, 5.2}, are illustrated. Like for
the flow quantities described above, the total-energy spectra yield a wave-number range of scaling for
4 ≤ k ≤ 7. The spectra are compensated by k3/2. The obtained scaling exponents take values around
3/2, with no obvious influence of the average flow velocity on the scaling exponents. Table 6.6 outlines
the values of β and their statistical errors. The obtained values lead to the conclusion, that the scaling
exponent of the total-energy spectrum is more likely to be 3/2 as predicted by Iroshnikov-Kraichnan in
equation (2.50), rather than 5/3 predicted by Goldreich-Shridar in equation (2.51). The prediction of
steeper total-energy spectra for higher compression, proposed by Shivamoggi in equation (2.87), is not
supported by the results of this work’s numerical simulations.
The residual-energy spectra, subject to different sonic Mach number regimes, are shown in Figure 6.30.

Ms 2.4(2) 3.6(2) 4.2(2) 5.2(2)

β 1.48(4) 1.54(6) 1.52(6) 1.53(7)

Tab. 6.6: Resulting scaling exponents β of total-energy spectra for several sonic Mach number regimes of the
5123-run. MA is held approximately constant at 1.6± 0.6.

The four time-averaged spectra scale with the wave number k in the range of scales 4 ≤ k ≤ 8. The
scaling exponent appears to depend strongly onMs. The residual-energy spectrum becomes significantly
flatter at higher sonic Mach numbers. The scaling exponent decreases from a value of β = 2.63(12) at
Ms = 2.4 to β = 1.70(9) at Ms = 5.2. The reason for this large change in β may not be determined
by the sonic Mach number of the turbulence, but by the change of the ratio Ekin/Emag. This ratio be-
comes larger for higher Mach numbers (see Figure 6.18). An increase in the ratio Ekin/Emag means that
the residual-energy spectrum is dominated by the kinetic energy while the magnetic energy contribution
becomes less important. In the limit of MA → ∞, thus Ekin/Emag → ∞, the residual-energy spectrum
corresponds to the kinetic-energy spectrum, Eres(k) → Ekin(k). In Table 6.7, the scaling exponents of
residual-energy spectra are outlined together with the sonic Mach number and the ratio Ekin/Emag.

The scaling prediction of the residual energy with Eres(k) ∼ k−2 for incompressible MHD turbulence
is not observed in the results of the KT code’s simulation of compressible MHD turbulence. In incom-
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Fig. 6.29: Time-averaged total-energy spectra of the 5123-run, compensated by k3/2. The power-spectra yield
a power-law scaling-range for 4 ≤ k ≤ 7. The spectra scale as k−3/2 within the statistical error,
independent from the sonic Mach number of the turbulence. The obtained scaling exponents are
outlined in Table 6.6. The straight lines represent the best-fit to the scaling-range.

Ms 2.4(2) 3.6(2) 4.2(2) 5.2(2)

β 2.63(8) 2.12(9) 1.98(8) 1.70(5)
Ekin/Emag 1.4(2) 2.1(2) 2.7(7) 4.8(4)

Tab. 6.7: Resulting scaling exponents β of residual-energy spectra for several sonic Mach number regimesMs. In
addition, the ratio of Ekin/Emag is given to highlight the relative contribution of the magnetic energy
to the residual energy.

pressible MHD turbulence, the absolute equilibrium argument includes that the magnitude of magnetic
energy at all wave numbers is bigger than the magnitude of the kinetic energy. For small scales, this
difference becomes infinitely small. In compressible MHD turbulence, due to the weighting of velocity
fluctuations with the density, the ratio of kinetic energy to magnetic energy at larger scales can take
any value. This ratio is reflected by the Alfvén Mach number MA. But even in incompressible MHD
the Eres(k) ∼ k−2 prediction has not been unambiguously verified. Müller and Grappin [50] propose
that the residual-energy spectrum scales with the kinetic-energy spectrum, so that Eres(k) ∼ kE2

kin(k).
They accordingly obtain a steeper than k−2 residual-energy spectrum, with β ≈ 7/3, in direct numerical
simulations at a resolution of 10243.

6.2.6 Mass-density probability distribution

The mass-density PDFs in isothermal MHD turbulence can also be described by a lognormal distribution
[55]. Mass-density PDFs, time-averaged onto sonic-Mach number bins for the 5123-run, are shown in
Figure 6.31. Like in the hydrodynamic case, the width σlnρ of the lognormal fit to the PDFs increases
with the sonic Mach number. The obtained best-fit to the model equation (6.12) yields a parameter
b = 0.36(3), which is slightly lower than the b obtained in hydrodynamic case. A smaller parameter b
indicates, that the magnetic-field fluctuations and the according magnetic pressure lessen the compression
of the density-field, which is induced by the turbulent compression-flows. This might be related to the
strong correlation of the density-fluctuations with the fluctuations of the magnetic pressure, that occur
in the presence of compressional Alfvén waves.
In addition to the sonic Mach number, the Alfvén Mach number of the turbulence influences the width
of the mass-density PDF. A such influence has not been systematically studied before. Figure 6.32 shows
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Fig. 6.30: Time-averaged residual-energy spectra, compensated by k2, from the 5123-run. The power-spectra
yield a power-law scaling-range for 4 ≤ k ≤ 8. The spectral scaling-exponent depends strongly on the
ratio Ekin/Emag, which increases during the run as the sonic Mach number increases. The straight lines
represent the best-fit to the scaling range.

the width of the logarithmic-density lognormal fit as a function of the inverse RMS Alfvén Mach number
1/MA. In the high MA limit, the width of the lognormal fit to the logarithmic density pdf yields
σlnρ = 0.976(7). In the saturated state of the RMS magnetic-field strength at MA = 1.66, the width of
the best-fit is σlnρ = 0.890(8). The density PDF narrows as the relative strength of the magnetic-field
fluctuations increases. This observation can also be explained by the nature of compressional Alfvén
waves. MHD compression flows are balanced by the combined magnetic and thermal pressure. With an
increase in the Alfvén Mach number MA, the magnetic pressure increases. Thus, velocity fluctuations
lead to a smaller amount of density-compression. The functional form of the 10243 data (see RHS of
Figure 6.32) implies a linear Ansatz to model the width of the density PDF as a function of MA:

σlnρ(MA) = σhydro
lnρ

(
d

1

MA

)
, (6.22)

where d is a parameter. The model parameter d characterizes the dependence of σlnρ on 1/MA analogous
to b, the model parameter that charactarizes the influence of Ms on σlnρ. A fit of the 680 snapshots of
the 10243-run to this model function (6.22) yields d = −0.16(1), atMs = 2.8. The model parameter d =
−0.16(1) differs significantly from zero. The width of the density PDF in compressible MHD turbulence
is thus shown to depend on both Ms and MA by the results of the KT-code’s MHD simulations.

6.2.7 Scaling of mass-density and momentum power-spectra

The power-spectrum of momentum-density ρv is likely to yield power-law behavior, due to the mathemat-
ical structure of the time-rate of change of the Fourier-space components of the momentum-density (see
equation (2.118)). The obtained power-spectra of momentum-density are shown in Figure 6.33, time-
averaged on four sonic Mach number bins. At 5123-resolution, the time-averaged momentum spectra
follow a power-law within the spectral range of wave numbers 4 ≤ k ≤ 8. The magnitude of the scaling
exponent β depends strongly on the average sonic Mach number. In the mildly-supersonic regime, the
best-fit to the spectrum within the scaling-range yields β = 1.45(7). An increase in the RMS velocity
is reflected in flatter momentum power-spectra. At the highest average sonic Mach number of Ms ≈ 5,
the momentum power-spectrum scales with k−β , where β = 0.92(7). Table 6.8 summarizes the scaling
exponents for each Mach number bin. The strongly pronounced bottleneck of the spectrum in the
mildly-supersonic regime becomes smaller for higher sonic Mach numbers. At Ms ≈ 5, no bottleneck is
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The individual points are the width of the lognormal fit to the 1180 individual PDF snapshots of the
5123-run. The red line shows the best-fit of the data to the model function σ2
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fit results in an obtained parameter b = 0.36(3). The RHS shows the width σln ρ plotted vs. the inverse
Alfvén Mach number at fixed Ms = 2.8, based on all 680 snapshots of the 10243 run. The red line
shows the fit of the data to the model function of equation (6.22).

Ms 1.6(2) 2.8(4) 4.0(3) 5.0(3)

β|ρv|2k 1.45(7) 1.30(8) 1.05(7) 0.92(7)

β|ρ|2k 0.94(7) 1.01(5) 0.84(6) 0.71(6)

Tab. 6.8: Resulting scaling-exponents β of momentum-density power-spectra and mass-density power-spectra for
several sonic Mach number regimes Ms of the 5123-run.
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Fig. 6.33: Momentum-density power-spectra, time-averaged onto sonic Mach number bins. The spectra, from the
5123-run, are compensated by k. The four spectra show a power-law behavior in the wave-number
range 4 ≤ k ≤ 8. At higher sonic Mach numbers, the power-spectrum becomes flatter.

present and the self-similar scaling-range spans a wave-number range of 4 ≤ k ≤ 14. At k ≈ 30, dissi-
pation dominates the spectral shape and the power-spectrum falls off. In the mildly-supersonic regime,
the spectral-scaling exponent of the momentum-density power-spectrum agrees with those obtained from
transonic hydrodynamic turbulence (see Table 6.4). At higher sonic Mach numbers, the flattening of
the momentum power-spectra is more pronounced in MHD turbulence than in hydrodynamic turbulence
(β = 0.92(7) in MHD vs. β = 1.00(8) in hydro).
The power spectrum of the mass-density ρ is shown in Figure 6.34. Higher sonic Mach numbers lead to
stronger compression and to a flattening of the mass-density power-spectrum. The time-averaged power-
spectra at Ms = 1.6 and Ms = 2.8 yield spectral scaling in the range of wave numbers 4 ≤ k ≤ 10, both
scaling with an exponent of β ≈ 1.0. At higher RMS sonic Mach numbers, the density power-spectra
flatten and a scaling exponent of β = 0.71(6) is obtained. Table 6.8 summarizes the scaling exponents of
the best-fit to the time-averaged density power-spectra. Further evidence for a cascade led by momentum-
density in compressible MHD turbulence is found from the scaling properties of the momentum-density
power-spectrum measured at 10243 resolution. Power-spectra from the 5123-resolution simulations reveal
a limited ’separation of scales’, a measurement of the spectral distance of energy-injection scales and
dissipation scales. The near-dissipation range bottleneck in the power-spectra affects the wave-number
range for k > 8, while the energy-injection affects the wave-number range of k ≤ 3. The time-averaged
momentum power-spectrum of the 10243 simulation results in a self-similar scaling range that covers
the wave-number range of 4 ≤ k ≤ 14. Within this range of wave-numbers, the momentum-density
power-spectrum follows a power-law behavior and the statistical deviations of excitations levels from
this power-law scaling are remarkably small. Figure 6.35 shows the according time-averaged momentum
power-spectrum of the 10243-simulation run. The scale-separation is well developed, and the injection
scales can be clearly distinguished from power-law scales and the bottleneck scales. The scaling-exponent
of the power-law range is β = 1.30(3), in agreement with the scaling exponent of the momentum-density
power-spectrum of the corresponding 5123-results (β = 1.30(8)).

6.2.8 Nonlinear-transfer of momentum in compressible MHD turbulence

The non-linear terms in the compressible MHD equations provide for the distribution of energy among all
spectral scales. The non-linear transfer to momentum-density and mass-density is induced by the non-
linear terms in Fourier space in equation (2.118). Both the time-rate of change of the momentum-density
and the projected second time-derivative of the mass density exchange energy with the non-linear terms.
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Fig. 6.34: Mass-density power-spectra in MHD turbulence, time-averaged onto sonic Mach number bins. The
spectra are calculated during the 5123-run and are compensated by k. The straight lines represent the
best-fit to the scaling range.
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Fig. 6.35: Momentum-density power-spectrum, time-averaged over one flow-crossing time. At 10243-resolution,
the injection range, the scaling range, and the near-dissipation bottleneck-range are clearly distin-
guished.
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Fig. 6.36: Spectral shape of non-linear transfer to the momentum change and the second time-derivative of the
mass-density in compressible supersonic and super-Alfvénic MHD-turbulence. The transfer terms are
time-averaged and component-averaged. The sonic Mach number isMs ≈ 4.5, the Alfvén Mach number
is MA ≈ 1.5. The straight lines represent power-law fits to the wave-number range 4 ≤ k ≤ 8.

The analysis of the non-linear energy transfer in MHD turbulence is based on the k-shell integrated,
absolute values of the Fourier-components described in equations (6.17) and (6.18). The snapshots of
these wave-number dependent absolute values of the Fourier-components are time-averaged over several
dynamical times of a statistically-stationary Ms = 4.5 and MA = 1.5 MHD turbulence. In Figure 6.36,
the resulting spectral distributions of the time-averaged transfer-terms are illustrated. The transfer to
the mass-density term shows a higher amplitude over all spectral scales. In the range of power-law power-
spectra 4 ≤ k ≤ 8, the mass-density term exhibits an power-law increase in amplitude. The spectral shape
of the obtained momentum term is flat in the according range of scales 4 ≤ k ≤ 8. The results do not differ
significantly from theMs = 4 results of hydrodynamic turbulence. However, the ratio of the k-integrated
total energy-transfer to mass-density over momentum-density (following equations (6.19) and (6.20)) is
much smaller than in the hydrodynamic case. The ratio ∂2

t ρ̂/∂tm̂ in MHD turbulence is approximately
15, while a value of approximately 30 is obtained in the hydrodynamic case of a comparable sonic Mach
number of Ms = 4 (see Chapter 6.1.7). This smaller value of the ratio of non-linear energy transfer to
mass-density fluctuations over momentum-density fluctuations may be related to the alignment of mass-
density and magnetic pressure within compressible MHD waves. More energy is thus needed to excite
mass-density fluctuations in MHD compared to hydrodynamics.
The flat shape of the non-linear energy-transfer to the momentum fluctuations indicates, that also in
compressible MHD turbulence, the self-similar scaling of spectra results from a scale-independent non-
linear energy transfer, governed by momentum-conservation.



7. CONCLUSION AND OUTLOOK

In this work, numerical studies of isotropic compressible turbulence in both magnetic and non-magnetic
cases are presented. These numerical studies have been carried out using the KT-code, a solver for com-
pressible hydrodynamics and MHD that has been developed in the course of this work. The numerical
tools that the code employs are shock-capturing schemes for solving the ideal Euler gas equations and
the compressible MHD equations. In high-resolution simulations, the KT-code has shown to efficiently
compute the time evolution of compressible turbulence. At resolutions up to 10243, the time dynamics of
the turbulent flows have been observed for multiple flow-crossing times. The numerical scheme has proved
to yield power spectra with adequate scale separation, i.e. the separation of energy-injection scales from
the bottleneck-affected near-dissipation scales. For scales between the injection and bottleneck scales,
the large number of spectral snapshots that are taken lead to high statistics and thereby to low statistical
uncertainty in the measurement of spectral scaling-exponents. The high-statistics property is enabled
by computing power spectra at run time, which is a clear competitive advantage of the KT-code over
established solvers presented in Chapter 4. One possible direction for future work is enlarging the spec-
tral extent of power-law scaling ranges by replacing the Kurganov-Tadmor (KT) flux formulation by the
Kurganov-Noelle-Petrova (KNP) flux formulation [38]. The KNP fluxes distinguish between right-hand
and left-hand maximum speeds of propagation, unlike the KT fluxes that use the maximum of right-hand
and left-hand speeds of propagation. This separation of left and right-hand speeds of propagation is
already part of the KT-code, changing the flux formulation does not increase computational effort. The
KNP flux formulation has proved to provide for lower numerical viscosity. Thereby, larger extents of
self-similar scaling ranges of power spectra could be reached [77]. The time efficiency of the KT-code
could be further improved, when 3D Fast-Fourier transformations (FFT) that are parallel in two spatial
dimensions become available. Currently, a 1D-parallel 3D FFT is used. The 1D-parallel FFT limits the
number of processes to the number of grid cells in one spatial dimension, and thus at maximum 1024
processes at 10243 resolution. A 2D-parallel 3D FFT would allow the number of processes to be increased
further, thereby speeding-up the code, accordingly.
The results on isotropic hydrodynamic turbulence are largely in agreement with results of previous numer-
ical studies of other groups. The velocity power-spectrum steepens with higher sonic Mach numbers, while
the kinetic-energy spectrum flattens. The scaling-exponent of the power spectrum of the density-weighted
velocity is not significantly influenced by the sonic Mach number of the turbulent flow. The resulting
scaling-exponents were used to test the quantitative validity of the combined-Fleck model-predictions
with a universal scaling-exponent for the density-weighted velocity. Although the results qualitatively
exhibit the predicted steepening and flattening, the quantitative prediction by the parameter α, the de-
gree of compression, is not supported by the results of this work.
Complementing numerical work of other groups, this work showed the systematic influence of the sonic
Mach number on the scaling exponents of power spectra in the transonic to supersonic regime. The spec-
tral scaling-exponents are shown to mainly change in the mildly-supersonic regime of 1 <Ms < 3. From
Mach numbers of 3 on, the scaling exponent for the velocity power-spectrum saturates to a value around
β = 2. The velocity-power spectrum is dominated by rotational velocity. The ratio of the compressible
part over the rotational part of the velocity fluctuations reaches a maximum value of χ ≈ 0.3 for the
range of sonic Mach number 1 <Ms < 5.5. The model view of a pure shock-turbulence, as suggested by
the Burgers’ turbulence, does thus not apply to solenoidally-driven supersonic turbulence.
This work also presents a new approach towards investigating the mechanisms that govern self-similar
scaling in compressible hydrodynamic turbulence, based on momentum-density. The power spectra of
momentum-density exhibit spectral scaling-ranges, and flatten considerably for higher sonic Mach num-
bers. This behavior is also observed for the power spectra of the mass-density. An analysis of the energy-
transfer, induced by the non-linear term of the momentum equation, results in a scale independent, flat
energy-transfer to momentum in the spectral range of self-similar power-spectra. A higher amount of en-
ergy is non-linearly transfered to density-fluctuations, showing a self-similar increase of transfered energy
for smaller scales. In addition, the ratio of non-linearly transfered energy to mass-density fluctuations
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over momentum-fluctuations increases with the sonic Mach number. This analysis provides insight into
the reason for the flattening of density power-spectra at higher sonic Mach numbers.
Padoan’s prediction of broadening mass-density PDFs at higher Mach numbers is supported by the nu-
merical results obtained in this work. The obtained model parameter b was measured to be approximately
0.4, in agreement with results of other numerical studies of solenoidally-driven hydrodynamic turbulence.
For future work, the systematic increase of the width of mass-density PDFs with the sonic Mach numbers
might be investigated in compressibly-driven turbulence.
In statistically-stationary MHD turbulence, the influence of both the RMS sonic Mach number and the
Alfvén Mach number on scaling exponents of power spectra have been investigated. All runs have been
driven solenoidally. The numerical studies have been limited to isotropic, super-Alfvénic MHD turbulence.
The MHD velocity power-spectra show a steeper spectral-scaling than in the non-magnetic case. Spectral
scaling exponents are β = 1.98(8) in the transonic regime, and β = 2.29(7) in the supersonic regime at
Ms ≈ 5. We have shown that like in the non-magnetic case, an increase of the sonic Mach number of the
flow leads to a steepening of velocity power-spectra within the power-law scaling-range. Another similarity
to the non-magnetic case is the flattening of kinetic-energy spectra with increasing sonic Mach numbers.
The obtained scaling exponents of the kinetic-energy spectra change from β = 1.78(7) at Ms ≈ 1.6 to
β = 1.64(7) at Ms ≈ 4.8. The scaling exponent of the density-weighted velocity power-spectrum is not
significantly influenced by the sonic Mach number. It is β ≈ 1.89(8), significantly steeper than the scaling
exponent of β ≈ 1.66, reported by Kowal and Lazarian in [34]. These scaling exponents show properties
similar to those in the non-magnetic case, but steeper. The total energy scales with a scaling exponent of
β ≈ 1.5, independently of the sonic Mach number and the Alfvén Mach number. The scaling exponent of
the total energy shows an interesting agreement with the prediction of the Iroshnikov-Kraichnan theory
for incompressible MHD turbulence.
The scaling of the residual energy is strongly influenced by the parametersMs andMA and the according
ratio of kinetic energy over magnetic energy of the turbulent fluctuations. In the non-magnetic limit, the
residual energy is determined only by the kinetic energy. The scaling exponent of the residual energy
increases with a higher contribution of the magnetic energy to the total energy. Unlike in incompressible
MHD turbulence, compressible MHD turbulence does not yield a universal power-law for the residual
energy. The residual-energy scaling in compressible MHD is strongly influenced by the parameters Ms

and MA.
The systematic measurement of the mass-density PDFs in compressible MHD turbulence, subject to vary-
ing Ms and MA, has resulted in mainly two findings: (1.) The width of the logarithmic density PDF
increases with the sonic Mach number of the turbulence. The model parameter b = 0.36(3) of equation
(6.12) is slightly smaller than in non-magnetic turbulence. The compression induced by MHD turbulence
is smaller than the compression in pure hydrodynamic turbulence. (2.) The width of the logarithmic
density PDF also depends on the relative strength of the magnetic-field fluctuations, parametrized by
MA. It was shown that the width of the density PDF decreases linearly with the inverse of the Alfvén
Mach number 1/MA, in a first-order model approximation.
In compressible MHD turbulence, both the density power-spectrum and the momentum power-spectrum
exhibit power-law scaling. The scaling exponents of the density power-spectra decrease at higher sonic
Mach numbers. A flattening of power spectra with higher sonic Mach numbers is also observed for
momentum-density. The power spectra of momentum-density in the 10243-run at Ms ≈ 3.0 and
MA ≈ 1.6 reveal a low statistical deviation from power-law scaling within the range of spectral wave-
numbers 4 ≤ k ≤ 14. In addition, a clear separation of the injection scales from the near-dissipations
range bottleneck-scales is observed in power spectra from the 10243-run.
In both the hydrodynamic and MHD cases, the non-linear energy transfer to momentum-density and
mass-density has been measured in statistically-stationary turbulence. In MHD, the non-linear energy-
transfer to momentum density, induced by both the non-linear momentum term and the non-linear
magnetic-field term of equation (2.118), shows a flat, scale-independent spectral-shape in the range of
power-law scaling. However, the non-linear energy-transfer to density-fluctuation shows a power-law in-
crease with the wave-number k, until dissipation dampens the transfer. The obtained energy transfers in
MHD turbulence correspond to those obtained in hydrodynamic turbulence. The main difference is the
ratio of non-linearly transfered energy to the density fluctuations over the momentum fluctuations. In
MHD, this ratio is considerably smaller than in the pure hydrodynamic case.
The results of power-law behavior of the momentum power-spectra, combined with a flat and scale-
independent non-linear energy transfer to momentum-fluctuations suggest that the cascade in compress-
ible turbulence is governed by non-linear momentum conservation. This result reflects the main difference
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to incompressible turbulence, where energy conservation governs the turbulent cascade. The momentum-
based cascade in compressible turbulence might be key to understand, why power-law behavior is observed
in compressible turbulence, even though the argument of detailed conservation of kinetic energy, or total
energy, is lost by compression.
The next logical step to gain more insight into compressible-turbulence properties would be a variation
in the forcing method. All results presented in this work are based on solenoidally-driven turbulence. In
recently published work, compressional driving of the velocity has shown to change the degree of compres-
sion in turbulent hydrodynamic flows tremendously (see [24]). It would be interesting to see whether this
higher degree of compression, manifested in much broader density PDFs, affects the scaling properties
of power spectra. The KT simulation-code is already equipped with the possibility of compressible forc-
ing. The presented campaigns that measure the systematic influence of the sonic Mach number and the
Alfvén Mach number on scaling properties can thus be repeated using compressional forcing of velocity
fluctuations.
For future work, the restriction to the isothermal case, which has been chosen for this work, should be
abolished. This restriction to isothermality inhibits several physical effects that are likely to change
the statistical-ensemble behavior of compressible turbulence. These effects include e.g. coupling of
momentum-fluctuations to thermal fluctuations and baroclinic vorticity generation [22]. The necessary
extensions to the KT simulation-code are small, versions with an adiabatic equation of state have already
been implemented and tested. To keep the turbulence in a statistical stationary state, the simulation
codes will have to be supplemented by an adequate cooling function. In addition, the simulation codes
can be used to simulate compressible convective turbulence.
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A. SIMULATION CODE, FLOW-CHARTS AND ROUTINE DESCRIPTION

This Appendix gives a brief overview of the implementation of the compressible MHD simulation code.
The code itself is relatively short. The whole implementation entails only 5000 lines of Fortran90 code.
The main Kurganov-Tadmor algorithm spans over approximately 1000 lines of source code. Here, flow
charts of the main program and the main numerical algorithms are presented. In addition, the organiza-
tion of the data dumps and the location and meaning of free parameters are described. This appendix is
thus primarily addressing scientists, who will work with the KT-MHD code. The main program and the
subroutines are spread over two source-code files:

• MHD3P.f90: Main program and power-spectra computation

• P_KT_3D.f90: Time-evolution by Runge-Kutta and evaluation of numerical fluxes (Kurganov-
Tadmor), plus IO routines and forcing

The main program and the subroutines, with a short description, as follows:

• Program MHD_3DP: Main program, 3D and MPI parallel

• subroutine MHD3D_KT_3rd:computes the time evolution of the conserved quantities using the third
order Runge Kutta scheme

• subroutine du_dt: approximates the total time derivative of the conserved quantities by approxi-
mating point values from cell averages in the three space dimensions

• subroutine comp_flux_x: computes the fluxes for the MHD equations in x-direction as well as the
maximum speed of propagation in x

• subroutine comp_flux_y: computes the fluxes for the MHD equations in y-direction as well as the
maximum speed of propagation in y

• subroutine comp_flux_z: computes the fluxes for the MHD equations in z-direction as well as the
maximum speed of propagation in z

• subroutine comp_weights: computes the non-linear weights of the CWENO point value recon-
struction

• subroutine set_boundary: sets the 3D periodic boundary conditions

• subroutine file_put: dumps the full data cube in raw format and the meta file, formatted

• subroutine file_meta_read: reads the meta file when restart from dump

• subroutine file_data_read: reads the raw data cube of a frame

• subroutine file_put_single: dumps the projection of the maximum of a scalar field along the
x-axis to a file, raw data; for visualization purposes

• subroutine file_put_spectrum: dumps formatted 1D power spectrum as a text file

• subroutine get_force_field: computes the random force-field via an Ornstein-Uhlenbeck process

• subroutine read_force_field: reads the force field from frame dump, text file

• subroutine write_force_field: force-field frame-dump, text file

• subroutine compute_energy: computes the mean total energy, kinetic energy, magnetic energy,
rms Mach number, rms Alfvén Mach number
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• subroutine file_put_energy: write the above computed mean energy and Mach number values
to a formatted text file

• subroutine compute_fftw: computes the Fourier transform of fields and computes the 1D power-
spectrum

The top-level flow-chart, shown in Figure A.1, depicts the execution of the KT-code from a higher
level perspective. It consists of two nested time-loops. After every step of the outer loop, full data dumps
are written. After each step of the inner loop, spectral diagnostics, density PDFs, and average values
(of e.g. Mach number, kinetic energy, magnetic energy) are written. Within the inner loop, the main
numerical algorithm is invoked. This main numerical algorithm is the Runge-Kutta time evolution of the
fields (subroutine MHD3D_KT_3rd). In the Runge-Kutta subroutine, the fields are evolved in time. The
time evolution in one time step calls the evaluation routine of the right-hand side of equations (3.1) and
(3.16), named subroutine du_dt. Subroutine du_dt is called three times within one discrete time step,
since the Runge Kutta scheme is of the 3rd order.
At each time step, the forcing fields for kinetic-energy and magnetic-energy injection are computed.
The force field, following the Ornstein-Uhlenbeck process described in Chapter 3.2, are computed in the
subroutine Subroutine get_force_field.

A.1 Main parameters

The main parameters in the KT-code are defined in the module file module K_T_parameters. This
module is used in most of the subroutines. The following parameters can be set in the module file:

• nx, ny, nz: Spatial resolution, that means number of grid points in x-, y-, and z-direction. Any
combination of {nx, ny, nz}=2n, with n={4,5,6,7,8,9,10} works.

• mn: Number of conserved quantities. In isothermal MHD, it is 7 (density, momentum in x, mo-
mentum in y, momentum in z, x-component of magnetic field, y-component of magnetic field,
z-component of magnetic field).

• md: Number of ghost cells. In isothermal MHD, minimum is 4. In hydro, minimum is 2.

• IO: Switch for restart on data dump / restart with initial conditions.

• procs: Number of MPI processes.

• proc_y: Number of processes in y-direction.

• proc_z: Number of processes in z-direction. Make sure proc_y · proc_z = procs.

• factor: Parameter for restart on smaller resolution data dumps. When doubling the resolution on
an existing data dump, set this switch to 2. When data dump resolution is equal to the computation
resolution, set this switch to 1.

• fac_proc_y: Parameter for restart with more processes. When doubling the number of processes
in y-direction on an existing data dump, set this switch to 2. When the number of processes of the
computation is the same as the data dump, set it to 1.

• fac_proc_z: Parameter for restart with more processes. When doubling the number of processes
in z-direction on an existing data dump, set this switch to 2. When the number of processes of the
computation is the same as the data dump, set it to 1.

In addition to the parameters of the module file, some parameters are defined in the main program and
in subroutines. The important parameters in the main program are:

• time_steps: Number of inner loops per outer loop. Is determined by intervall_2/ invervall.

• intervall_2: Time-interval of full data dumps, in units of the constant sound speed.

• intervall: Time-interval of spectral diagnostics, in units of the constant sound speed.

• soundspeed: Constant, isothermal sound speed
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Other important parameters are spread across the subroutines, where they are required. The most
important parameters are:

• cfl: located in subroutine du_dt, Courant number for dynamic time-step allocation

• w_epsilon, c_left, c_right,c_central: located in subroutine comp_weights, weights of the
CWENO scheme, see equation (3.7)

• F_0, F_0_mag, spectral_weight: located in subroutine get_force_field, amplitudes of the
kinetic-energy force, the magnetic-energy force, and the solenoidal over compressible weight of the
kinetic-energy force.

A.2 Files

Finally, the files written in full data dumps are described. For each full data dump, a meta file and the
full real-space fields of the conserved quantities are dumped. The meta file contains header information
such as the current time, the resolution and the number of processes. Only process 0 writes the meta
file. The real-space fields are dumped by each process, individually. The distribution of the fields over
the processes is described in Chapter 4.1. In isothermal MHD, seven times the number of processes files
are dumped at each snapshot. The naming convention is:

• ’meta’+time(F7.2)+’.dat’: meta file

• ’rho ’+process number(I4)+’ ’+time(F7.2)+’.dat’: mass-density

• ’xmt ’+process number(I4)+’ ’+time(F7.2)+’.dat’: momentum, x-component

• ’ymt ’+process number(I4)+’ ’+time(F7.2)+’.dat’: momentum, y-component

• ’zmt ’+process number(I4)+’ ’+time(F7.2)+’.dat’: momentum, z-component

• ’bx ’+process number(I4)+’ ’+time(F7.2)+’.dat’: magnetic-field, x-component

• ’by ’+process number(I4)+’ ’+time(F7.2)+’.dat’: magnetic-field, y-component

• ’bz ’+process number(I4)+’ ’+time(F7.2)+’.dat’: magnetic-field, z-component

In addition to the full data dumps, density PDFs and power spectra are written to text files.
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Fig. A.1: Flow chart top-level view.



B. GHOST-CELL COMPUTATION

The usage of ghost-cells differs between the hydro KT code and the MHD-KT code. The reason for the
difference and a detailed explanation of the ghost-cell computation is provided in this Appendix.
In central-difference schemes, the update of the edge-located grid cells requires information of their
surrounding neighbor cells. In parallel codes, the computational domain is distributed over a number
of processes. Within one process, a certain number of ghost-cells are locally added to the grid in order
to provide this neighboring grid-cell information for the central difference of the first real grid cell. The
required number of ghost-cells depends on the length of the numerical stencil, that means the local reach
of the numerical scheme from the perspective of an updated grid-cell. In Figure B.1 a floor-plan of real
grid cells and their surrounding ghost-cells is depicted for a 2D grid. In the hydro case, the first real
grid cell (0,0) is updated in the x-direction via the finite difference of the edge-located numerical fluxes
H−1/2,0 and H+1/2,0. The numerical flux vector H−1/2,0 is computed from point values uEast

−1,0 and uWest
0,0 .

For the reconstruction of the most ’West’-located point value, uEast
−1,0, the cell averages ū−2,0, ū−1,0, and

ū0,0 are used (see computation of uEast
−1,0 of equation (3.14)). For the update of cell average at (0,0), the

local reach of the numerical scheme extends to the grid cell (-2,0), to the left hand side. As the scheme
is central-in-space, this reach, and thus the length of the numerical stencil, is 2 grid cells in all spatial
directions, in the hydrodynamic case. This length of 2 of the numerical stencil determines the number of
ghost-cells, that added around the real computational grid for each process.

In the MHD-KT code, the constrained transport method enlarges the numerical stencil. The source

0,1 0,2 0,3

2,0 2,1 2,2 2,3

1,0 1,1 1,2 1,3

0,0

Real grid cells

Ghost cells

Fig. B.1: 2D floor-plan of the grid cells within one process. The real computation grid cells are surrounded by
ghost cells. The numerical stencil, the black marked vector that starts at grid cell 0,0, reaches over two
cells. The values of the grid cells are the copied values of the neighboring processes real-grid cells.

of this is the 2nd order interpolation of the edge-centered electric-field components (3.21)-(3.23) from
interface-located electric-field flux vectors. A lower-order interpolation method reduces the size of the
numerical stencil, but has shown to decrease the order of convergence of the complete hybrid scheme. The
2nd order interpolation is a compromise between the order of convergence, a meadure of the accuracy of
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the scheme, and the numerical viscosity, slightly enlarged by the increased length of the numerical stencil.
The values of the ghost cells are set before each Runge-Kutta step. The values of the first real grid cells
of the neighboring process are copied to the ghost-cells. In Figure B.2, the copying process is depicted.

P04P00

0,1 0,2

2,0 2,1 2,2

1,0 1,1 1,2

0,00,nz-3 0,nz-2 0,nz-1

2,nz-3 2,nz-2 2,nz-1

1,nz-3 1,nz-2 1,nz-1

Fig. B.2: Two neighboring processes exchange edge-located grid cell information before each Runge-Kutta step.
In this example, P00 and P04 are neighbors in z-direction. The copying process is exemplified by the
arrows for two ghost cells in each process.
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