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The Eulerian gyrokinetic turbulence code GENE has recently been extended to a full

torus code. Moreover, it now provides Krook-type sources for gradient-driven simu-

lations where the profiles are maintained on average as well as localized heat sources

for a flux-driven type of operation. Careful verification studies and benchmarks are

performed successfully. This setup is applied to address three related transport issues

concerning nonlocal effects. First, it is confirmed that in gradient-driven simulations,

the local limit can be reproduced - provided that finite aspect ratio effects in the

geometry are treated carefully. In this context, it also becomes clear that the profile

widths (not the device width) may constitute a more appropriate measure for finite

size effects. Second, the nature and role of heat flux avalanches are discussed in the

framework of both local and global, flux- and gradient-driven simulations. Third,

simulations dedicated to discharges with electron internal barriers are addressed.
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I. INTRODUCTION

One of the remaining key physics problems on the way to efficient fusion power plants

based on toroidal magnetic confinement is the thorough understanding and reliable pre-

diction of the so-called anomalous transport of heat, momentum, and particles across the

magnetic surfaces (hereafter referred to as the radial direction). It is by now commonly at-

tributed to small-scale (roughly comparable to the ion or electron gyroradius), low-frequency

(much smaller than the ion and electron gyrofrequency) turbulence which is driven by var-

ious plasma microinstabilities where the latter extract free energy from the background

temperature and density gradients. An appropriate theoretical framework for such high-

temperature, low-density and thus weakly collisional plasmas – as they occur in magnetic

confinement fusion – is provided by the gyrokinetic approach1,2 where fast dynamics (e.g.,

the particle gyromotion) are eliminated from the full kinetic description but low-frequency

physics is kept. However, the resulting gyrokinetic Vlasov-Maxwell system of equations in

the five-dimensional phase space is generally way too complicated to be solved analytically.

A number of dedicated numerical tools have thus been developed which can, e.g. be classi-

fied into so-called local and global codes. The former are also called flux-tube3–5 codes since

they consider just a narrow box size perpendicular to a magnetic field line. Consequently,

temperature and density profiles and their gradients are only evaluated at the (radial) center

position of this domain and periodic boundary conditions allowing for the application of fast

and efficient spectral methods are employed. In addition, a so-called δf splitting is applied,

i.e. the fluctuating part f1 of the distribution function is considered to be small compared

to the stationary background part f0. In this case, however, one implicitly assumes a gyro-

Bohm transport scaling, i.e. a Bohm scaling reduced by the gyroradius-to-machine-size ratio

ρ∗ where the latter has to be small. In order to determine the limit of such a-priori scalings

and for applications to small fusion devices or peaked gradient profiles one thus has to rely

on global codes where full radial temperature, density and geometry profiles are consid-

ered. Amongst others, an implementation of both approaches can be found in the software

package Gene6–9 which is a massively parallelized, comprehensive Eulerian δf code. In

this paper, we present comparisons of the recently developed global version with the well-

established local code version and the global gyrokinetic Lagrangian PIC code ORB510,11

and hereby study the role of finite-size effects. One specific presumably nonlocal effect,

2



so-called heat flux avalanches, is picked for a more detailed investigation and discussion.

Furthermore, first results for parameters being extracted from a TCV tokamak discharge

with an electron-Internal Transport Barrier are presented.

II. A BRIEF INTRODUCTION TO GENE

As most results presented in this contribution are based on the software package Gene,

a brief code introduction shall be given in the present section. A more detailed description

of the global version of Gene can be found in Refs. 9,12,and 13.

The employed theoretical framework is the gyrokinetic theory. Here, a gyrocenter dis-

tribution function fσ per species σ with mass mσ and charge qσ is evolved in time using

an accordingly transformed Vlasov equation (or Boltzmann equation if weak collisions are

considered) which reads in advection form (see, for instance, Ref. 1)

∂fσ
∂t

+ Ẋ · ∇fσ + v̇‖
∂fσ
∂v‖

+ µ̇
∂fσ
∂µ

= 0 (1)

where the magnetic moment is an adiabatic invariant fulfilling µ̇ = 0. In the low-β limit –

i.e., the thermal pressure is small compared to the magnetic pressure – the time derivatives

of the gyrocenter coordinate X and the parallel velocity v‖ are given by

Ẋ = v‖b̂0 +
B0

B∗0‖
(vχ̄ + v∇B + vc) and v̇‖ = − Ẋ

mσv‖
·
(
qσ∇φ̄1 +

qσ
c
b̂0

˙̄A1‖ + µ∇B0

)
.

In these equations and in the following, B0 denotes the modulus of the magnetic (back-

ground) field vector B0, b̂0 = B0/B0 the corresponding unit vector, B∗0‖ = b̂0 · B∗0 the

parallel component of B∗0 = ∇× (A0 + mσc
qσ
v‖b̂0), and χ̄1 = φ̄1 − v‖

c
Ā1‖ the gyroaveraged

scalar potential in the gyrocenter moving frame with the fluctuating fractions of the elec-

trostatic potential φ1 and the parallel vector field component A1‖. The total drift veloc-

ity consists of the generalized E × B velocity vχ̄ = c
B0
b̂0 × ∇χ̄1, the gradient-B velocity

v∇B0 = µc
qσB0

b̂0 ×∇B0, and the curvature drift velocity vc = mσc
qσB0

v2
‖b̂0 × ∇B0

B0
. Overbars and

〈. . .〉 brackets denote gyroaverages being defined as φ̄1(X) ≡ G [φ1(X)] ≡ 1
2π

∮
dθ φ1(X+r(θ))

with the gyroradius vector r(θ) being orthogonal to the magnetic field.

Since observables like density and temperature often tend to exhibit fluctuating parts be-

ing much smaller than the quasi-stationary mean values, the aforementioned δf splitting is

furthermore applied, as well. With the latter being chosen here as a local Maxwellian, the
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gyrokinetic Vlasov equation can be rewritten and simplified. Keeping afterwards just first

order terms in the perturbation parameter expansion, the ∇χ ×B nonlinearity is retained

while higher-order terms like the so-called v‖-nonlinearity are neglected. This is in line with

careful studies in Refs. 14–16.

The distribution functions for the different species are coupled in the low-β approximation

through the gyrokinetic Poisson equation and the parallel component of Ampère’s law. The

former reads

−∇2
⊥φ1 = 4π

∑
σ

(
qσn̄1σ + n0σ

q2
σ

T0σ

[
B0

T0σ

∫
〈φ̄1(x− r)〉e−

µB0
T0σ dµ− φ1(x)

])
(2)

where the gyrocenter density is n̄1σ = 2π
mσ

∫∫
B∗0‖〈f1σ(x − r)〉dv‖dµ. If adiabatic electrons

are assumed, the electron contribution on the right hand side of Eq. (2) is replaced by

n1e = en0e

T0e
(φ1−〈φ1〉FS), with 〈. . .〉FS indicating a flux surface average. Note, that derivatives

of equilibrium quantities are here ordered small (as before). The second field equation is

−∇2
⊥A1‖ =

4π2B0

c

∑
σ

qσ

∫∫
〈f1σ(x− r)〉v‖dv‖dµ. (3)

The gyrokinetic Vlasov-Maxwell system of equations, Eqs. (1)-(3), is evaluated in Gene

in the first-order perturbation expansion using a field-aligned coordinate system. The latter

allows to take advantage of the strong anisotropy of plasma turbulent transport and thus use

just a few (on the order of several tens) grid points in the direction along the field line where

turbulent structures hardly vary. This concept is quite similar to a flux tube in local codes

and indeed uses comparable quasi-periodic boundary conditions in the parallel (z) direction

which account for the stretching of the simulation box due to magnetic shear. However, in

contrast to a flux tube which is very narrow in both directions (x, y) perpendicular to the

magnetic field, the simulation domain in the global code can be the full torus or at least a

wedge which encompasses a flux bundle. Periodic boundary conditions are hence inapplicable

since full radial profiles, e.g. of temperatures and densities have to be considered in this case.

Consequently, (pseudo-) spectral methods can only be employed in the binormal (y) direction

which exploits the axisymmetry. One major consequence is that gyroaverage operators, for

instance, cannot be given a simple analytic form as in the (kx, ky) Fourier space. Hence, the

integration over gyroangles has to be performed using interpolation techniques in real space

for the radial direction. In Gene, the latter is realized using finite element interpolation

which effectively amounts to a Hermite polynomial interpolation, for details see Ref. 9.
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Besides delocalized hyperdiffusion terms which are able to compensate for numerical artifacts

when representing derivatives by dissipation-less finite differencing schemes (see Ref. 17), the

following source and sink terms can be activated in Gene. First, a simple Krook operator,

df1σ/dt = −SKrook(x)f1σ, can be applied with vanishing amplitude in the inner part of the

simulation domain in order to create artificial buffer zones where fluctuations are damped

to be consistent with fixed boundary conditions.

For gradient-driven simulations, a Krook-type heat source term similar to the model in

Ref. 11,

SKH(x, |v‖|, µ) = −γh
[
〈f1σ(X, |v‖|, µ)〉FS − 〈f0σ(X, |v‖|, µ)〉FS

〈
∫
dv 〈f1σ(X, |v‖|, µ)〉FS〉FS

〈
∫
dv 〈f0σ(X, v‖, µ)〉FS〉FS

]
,

(4)

with f1σ(X, |v‖|, µ) = (f1σ(X, v‖, µ) + f1σ(X,−v‖, µ))/2, is available which can be added to

the right hand side of the Vlasov equation. Being applied over the whole radial simulation

domain, it is designed to fix the temperature profile on average, while leaving the flux-

surface averaged density and parallel momentum unaffected. If density profiles shall be

approximately maintained as well, the operator

SKP (x, |v‖|, µ) = −γp 〈
∫
dv 〈f1σ(X, |v‖|, µ)〉FS〉FS

〈f0σ(X, |v‖|, µ)〉FS

〈
∫
dv 〈f0σ(X, v‖, µ)〉FS〉FS

(5)

can be used.

If a flux-driven type of operation is desired where the profiles are explicitly allowed to

adjust to a prescribed heat source, an implementation of a localized heat source model

closely following Ref. 18 is at hand. In normalized units, it is added to the right hand side

of the Vlasov equation as df1
dt

= SH = S0SxSE with

SE =
2

3

1

p0σ(x)

(
v2
‖ + µB0

T0σ(x)/T0σ(x0)
− 3

2

)
f0σ, Sx = Sx,in(x) /

∫
d3xSx,in(x)J(x, z), (6)

and the source amplitude S0. Here, J(x, z) denotes the configuration space Jacobian and

Sx,in(x) is a user-defined radial source profile which is, for instance, Gaussian-like.

Detailed verification studies and benchmarks of the global Gene extension as, for in-

stance, Rosenbluth-Hinton test results, intercode comparisons with the linear global gyroki-

netic particle-in-cell (PIC) code Gygles19 and the global gyrokinetic PIC code Orb5 can

be found in Refs. 9 and 20.

5



III. FINITE SIZE EFFECTS AND CONVERGENCE TOWARDS THE

LOCAL LIMIT

A. Linear GENE results

An important and yet not fully answered question arising in plasma microturbulence

studies is the possible influence of finite-size effects on the turbulence itself. For instance, if

the turbulent eddies would tend to be comparable to the machine size, they would obviously

feel the limiting boundaries. Given a more realistic situation, one might consider turbulent

mode structures which cover at least a significant fraction of the radial profiles of temper-

ature, density and the magnetic topology and thus exhibit nonlocal behavior. The most

popular parameter in this context is the gyroradius-to-machine-size ratio ρ∗ which is almost

always set to ρ∗ = ρi/a (with ion gyroradius ρi) as the gradient length scales are roughly

on the same order as the Tokamak minor radius a. Clearly, the limit ρ∗ → 0 describes a

situation where turbulent vortices (being on the order of a gyroradius ρi) are just susceptible

to the gradient drive in an infinitesimal small, i.e. local, domain. Global and local codes

should hence agree in this limit which can be used to, e.g. check the implementation of the

different numerical schemes. The quantity of interest is, however, the degree of convergence

towards the local results for given profiles as ρ∗ is decreased.

First insights can be derived from linear simulations when displaying the growth rate

as function of ρ∗. Corresponding Gene results are presented in the following. Here, the

temperature and density profile shapes for the global simulations are either chosen to exhibit

peaked logarithmic gradient profiles by considering

(Tσ, nσ) =(Tref , nref) exp

[
−κ(Tσ ,nσ)ε∆(T, n) tanh

(
(x− x0)/a

∆(T, n)

)]
, (7)

or flat top gradient profiles by choosing

(Tσ, nσ) =(Tref , nref)

cosh
(

(x−x0)/a+∆(T,n)
δ(T,n)

)
cosh

(
(x−x0)/a−∆(T,n)

δ(T,n)

)
−κ(Tσ,nσ) ε δ(T,n)/2

. (8)

In definitions (7) and (8), Tref and nref denote reference temperatures and densities at the

center position x0 (here, x0 = 0.5a). Furthermore, δ(T, n) and ∆(T, n) are characteristic

gradient profile widths being set to ∆T = ∆n = (A) 0.3, (B) 0.2, (C) 0.1, (D) 0.2, (E)

0.15 and (F) 0.1, see Fig. 1. The remaining parameters are κT = max (R0/LT ) and κn =
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FIG. 1. (Color online) The (a) peaked and (b) flat logarithmic temperature gradient profile for

different settings of ∆T,∆n = (A) 0.3, (B) 0.2, (C) 0.1, (D) 0.2, (E) 0.15 and (F) 0.1.

max (R0/Ln) which denote the maximum temperature and density gradient values and ε the

inverse aspect ratio between minor radius a and major radius R0. Unless stated otherwise,

these values will be chosen as in the Cyclone Base Case (CBC)21 parameter set, i.e. κT =

6.96, κn = 2.23 and ε = 0.36. The shape of the flux surfaces is assumed to be circular

and concentric such that x can be identified with the minor radius r of each flux surface

(see Ref. 22 for details). The safety factor profile is q(x/a) = 0.498(x/a)4 − 0.466(x/a)3 +

2.373(x/a)2 + 0.854 where the center values of q0 = q(x0) = 1.42 and shear ŝ0 = ŝ(x0) =

0.8 match the CBC values. The radial boundary condition for the distribution function

and the fields is chosen to be Dirichlet type, i.e. the values outside the simulation box

are set to zero. In a first step, the linear growth rates at kyρi ≈ 0.28 are investigated

using kinetic ions and electrons with mi/me = 1836 and βe = 0. Obviously, the global

results are approaching the local limit with decreasing ρ∗, see Fig. 2. The exact convergence

behavior does, however, depend on the gradient profile shape with broader profiles exhibiting

less differences compared to the local growth rate. For possible explanations of this effect

(amongst others, based on ballooning representation arguments), the reader is referred to
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FIG. 2. (Color online) The growth rate vs. ρ∗ using the (a) peaked and (b) flat logarithmic

temperature gradient profile for different settings of ∆T and ∆n. The local code result is shown

as thin, black line.

Ref. 26 and references therein. At very large profile widths – e.g. in case (D) – the modes

start to peak at different radial positions thus complicating the analysis and deviating from

the general trend. Ignoring these data points, it is possible to cast all remaining growth

rate values (see Fig. 3) into a single curve per profile shape by using a new parameter

ρ∗eff = ρi/∆(T, n) as has been suggested in Ref. 23. Considering the effective driving region

is thus more appropriate than simply taking into account the machine size. One important

application at hand are transport barriers, where gradient widths indeed tend to be much

smaller than the minor radius.

The convergence towards the local results is not restricted to the aforementioned pa-

rameter set but can be observed for a wide range of physical parameters. In the follow-

ing, further simulation results – namely, an ITG-Kinetic Ballooning (Alfvénic ITG) Mode

transition with gyrokinetically treated electrons (with true proton-electron mass ratio) and

electromagnetic fluctuations – are shown in Fig. 4. For these runs, the peaked logarithmic
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FIG. 3. (Color online) The growth rate vs. ρ∗eff using the (a) peaked and (b) flat logarithmic

temperature gradient profile for different settings of ∆T and ∆n. The broadest flat logarithmic

profile is suppressed due to mode peaking.

gradient profile, Eq. (7), has been employed with fixed ∆T,∆n = 0.3. The left plot still

considers lx/a =const. and contains the linear growth rate for different values of ρ∗ and

βe = 8πpe0/B
2
ref with reference pressure pref and magnetic field Bref . Obviously, the previ-

ously observed convergence behavior seems to hold even for a wide range of βe values since

the global growth rates do agree well with the local ones for ρ∗ . 1/300. A comparison with

a different kind of ρ∗ scan is presented in Fig. 4(b) for a fixed βe value of 2.5%. Here, the

box size is kept fixed with respect to the gyroradius ρi such that the box size in units of the

minor radius is decreasing with ρ∗. In this case, periodic boundary conditions are employed

and a slightly faster convergence towards the local limit can be observed.

With the prediction of heat and particle fluxes being the true motivation for performing

gyrokinetic simulations, it is now most interesting to study the nonlinear physics and the

underlying transport scaling. Although this issue has already been addressed in the past24,25,

no coherent picture has emerged so far. In the following, we present results of nonlinear
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FIG. 4. (Color online) (a) Growth rate at kyρi ≈ 0.284 as function of βe and parametrized by

different values of ρ∗ together with the local code result. (b) Growth rate at the same binormal

wave number but fixed βe = 2.5% as function of the inverse ρ∗ value. Here, the radial simulation

box is kept fixed with respect to (I) the gyroradius and (II) the minor radius. The local code result

using the maximum gradients is again shown as thin, black line. The ideal MHD ballooning mode

threshold approximately evaluates to βe ≈ 1.6%.

gyrokinetic simulations using adiabatic electrons with Te = Ti for different values of ρ∗

gained from Gene and the Lagrangian PIC code ORB5. Here, the Krook-type heat sources

have been applied in order to approximately maintain the average profiles (being similar to

the previously used flat logarithmic gradient profile shape)

R0
d ln (Ti, n)

dx
= κ(Ti,n)

[
1− cosh−2

(
x− x0 − δ/2

a∆

)
− cosh−2

(
x− x0 + δ/2

a∆

)]
(9)

taken for |x− x0| ≤ δ/2 and zero otherwise with δ = 0.8a, ∆ = 0.04, x0 = a/2, and the

maximum logarithmic gradient lengths κn = 2.2 and κTi = 7.1 and 7.5. The latter is indeed

set to these two different initial values in order to allow for a linear interpolation of the time-

averaged heat diffusivities at the CBC value of κTi = 6.96 in the quasi-stationary saturation

phase where the initial temperature profiles are relaxed by some amount but still clearly
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above the nonlinear threshold. Again, the flux surfaces are assumed to be circular concentric

with a safety factor profile of q(x) = 0.85− 0.01x/a+ 2.28(x/a)2− 0.09(x/a)3 + 0.22(x/a)4.

Further details, e.g. on the numerical parameters, can be found in Refs. 20,23,and 26. The

resulting ρ∗ dependencies of the ion heat diffusivity measured in units of χgB = ρ2
i cs/a are

shown in Fig. 5. First of all, both codes show excellent agreement though they are based on

 0

 0.5

 1
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 2
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 0  100  200  300  400  500  600

1/ρ∗

χ
/χ

gB

Orb5
Gene

FIG. 5. (Color online) The ORB5 and Gene results are plotted for a series of ρ∗ values and

compared to the ion heat diffusivity of a local Gene simulation being shown as a black line. The

function f(x) = 2.91(1− 2e−(1/ρ∗)/85) resulting from a fit to the Gene data points has been added

as dashed line.

completely different numerical methods and are thus potentially subject to different types

of discretization errors. Within the error bars, which are discussed in Refs. 20 and 23, both

codes approach the local Gene (flux tube) result at about ρ∗ . 1/500 such that gyro-

Bohm scaling would hold for large devices as ITER. Comparing with earlier results using

similar parameters, the asymptotic value agrees quantitatively with the largest GTC run

of Ref. 24. Qualitatively, these results concur with the conclusion of Ref. 25 that the global

results converge towards the local results in the ρ∗ → 0 limit. The exact value in the latter

publication is interestingly quite close to the Gene result using an ŝ−α magnetic equilibrium

model which differs in the treatment of small inverse aspect ratio terms22. Hence, the current

investigations imply that small but decisive differences in the equilibrium models are very

likely the reason for the earlier disagreement in the ρ∗ scalings. However, when comparing

with experiments, it should be noted that profile shapes, for instance, might have a strong

influence on the finite ρ∗ convergence behavior as has already been observed above in linear

investigations and in Refs. 25 and 23. In Ref. 23, it was shown that the transport level for
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adiabatic electron ITG simulations depends on the effective parameter ρ∗eff , as well. Thus

deviations from gyro-Bohm scaling might occur even in ITER for cases of localized profile

gradients such as internal transport barriers.

IV. AVALANCHES IN LOCAL AND GLOBAL SIMULATIONS

As the anomalous transport scaling appears to be gyro-Bohm-like at small ρ∗ but non-

gyro-Bohm-like at ρ∗ & 1/300, the question as to which mechanisms are responsible for

this transition arises. An often favored candidate are so-called avalanches, i.e. ballistically

propagating structures in various observables as, for instance, in the heat fluxes27–30. The

latter shall be considered in the following. As can be seen in Fig. 6, such structures are

indeed present in nonlocal, collisionless Gene simulations of adiabatic-electron (ae) ITG

turbulence using CBC-like parameters and they appear to be independent on whether a

gradient or flux-driven mode is chosen. With these two simulations and a data base of

further gradient-driven global simulations at hand, we can draw the following conclusions.

Firstly, the avalanches appear to be governed by the underlying zonal flow dynamics since,

e.g. the avalanche direction is linked to the sign of the E × B shearing rate and the radial

extent limited to those regions with the same sign. In numbers, the propagation speed

of the heat flux avalanches is of the order of ρ∗cs and the radial extent exhibits a meso-

scale, i.e. about 20 − 40ρi, length scale. Both findings do not contradict a gyro-Bohm

scaling, i.e. avalanches should also be visible in local simulations. Corresponding simulation

results for CBC-like parameters are shown in Fig. 7. Clearly, avalanche-like structures can

be observed for ITG turbulence on this microscopic (ρ∗ → 0) scale, as well. However,

considering kinetic electrons yields less pronounced structures which could be related to

a weaker zonal flow activity in this case. The avalanches in any case exhibit no overall

preference for the propagation direction averaged over the simulation domain which can be

attributed to the periodic boundary conditions and the constant temperature and density

profiles.

In line with the statements in Ref. 29, the avalanche propagation velocity is again close

to 2ρi/R0cs and corresponding radial correlation lengths being extracted are very similar.

Fig. 7 furthermore displays heat fluxes for different types of modes as (low-k) temperature

gradient driven trapped electron modes (TEMs) and electron temperature gradient driven
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(a)

(b)

FIG. 6. (Color online) Flux surface averaged heat flux in units of QgB = p0csρ
2
i /R

2
0 multiplied

by the normalized flux surface area vs. time and radial coordinate. Plot (a) shows the result of

a gradient driven simulation using the Krook type heat source while (b) contains the result of

a “flux-driven” (by the localized physical heat source) simulation. Both simulations have been

performed at ρ∗ = 1/140.

(ETG) high-k modes. Here, avalanche structure are not visible at all, which is again in line

with a weak zonal flow activity in these cases.

Since, in general, strong variations e.g. in the q-profile may affect particle orbits and

wave-particle decorrelation physics, further (global) investigations are required to determine

the parameters space where the above findings still hold. Additionally, externally triggered

cold or hot pulses might exhibit a different behavior.

V. APPLICATION TO A TCV TRANSPORT BARRIER

Beyond benchmarks and investigations in artificial set-ups like the circular concentric

equilibrium, the global Gene version has been run with realistic parameters and the actual

MHD equilibrium taken from TCV discharge #29866 (see Ref. 31) where an electron internal

transport barrier (eITB) has been fully developed, see Fig. 8. As the initial profiles in Fig. 9
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(a) ITG-ae (b) ITG-ke

(c) ETG-ai (d) TEM

FIG. 7. (Color online) Flux surface averaged electrostatic heat fluxes for local Gene simulations.

While avalanche-like structures can clearly be identified in the ITG driven cases (a) and (b), they

are absent in (c) ETG driven turbulence with adiabatic ions (ai) and (d) temperature-driven TEM.

FIG. 8. (Color online) Cross section in the R-Z plane of the electrostatic potential taken from a

gyrokinetic simulation for TCV discharge #29866.

indicate, it is characterized by very steep electron temperature and density gradients. The
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FIG. 9. (Color online) Initial temperature and density profiles for the simulation of TCV discharge

#29866 being normalized to the electron values at ρV = (V/Vseparatrix)1/2 = 0.45.

ion temperature profile is estimated to be approximately 4.5 times smaller than the electron

temperature in the core but almost equal when approaching the edge. First simulations

using the Krook-type heat and particle sources, electromagnetic effects and collisions but

neglecting impurities, equilibrium E × B shear flow and considering a reduced mass ratio

mi/me = 400 indeed recover a dominant electron heat flux. Given the dominant (electron)

driving terms, most transport contributions can be attributed to TEM as has also been

observed in linear global simulations32 as well as nonlinear local simulations33. The high-k

fraction, however, turns out to be non-negligible as the spectrum does not completely fall

off at the highest currently resolved wave numbers. This – most likely, electron temperature

gradient (ETG) driven – high-k activity in transport barriers had already been suggested

based on local simulations in the past, see e.g. Ref. 34. Considering the equilibrium E × B
shear flow may exhibit a further increase of this fraction as the corresponding turbulence

reduction mechanism tends to be most efficient at large wave lengths. However, at this

point it should be mentioned that strong shear flows have not been observed in these TCV

discharges, anyway, as there has been no additional source of momentum. Furthermore,

the strength of the eITB is related to the ohmic current density which is typically not

associated to E ×B shearing35. Provided that future simulations including, e.g. impurities,

confirm a significant high-k activity, a full understanding of eITBs would require multi-scale

simulations covering ion- and electron scales self-consistently. Naturally, such an approach

would not just challenge the software but also the current hardware being at hand. Hence,

it would represent one of the applications on present and future petascale systems.
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VI. CONCLUSIONS

By considering radial temperature and density profiles as well as variations in the mag-

netic equilibrium, Gene – a grid based gyrokinetic turbulence code – has been significantly

extended. However, the code still uses a field aligned coordinate system which allows for

an efficient distribution of the simulation grid points. Both code versions, the local and the

global one, have been compared and the local limit, i.e. a convergence of the global code

towards the local result with decreasing ρ∗, has been confirmed. Hence, a gyro-Bohm trans-

port scaling could be assumed for large fusion devices as, for instance, ITER. However, linear

investigations as well as nonlinear results being derived from the codes Orb5 and Gene

furthermore exhibit a significant dependence on the profile shape or the effective driving

region, respectively. Significant deviations from the gyro-Bohm scaling are thus suggested

in the presence of steep profiles or peaked gradient profiles as they occur, e.g. in internal

transport barriers, even for small ρ∗ values.

A nonlocal effect possibly breaking the aforementioned scaling are so-called avalanches.

These ballistically propagating structures have been identified and investigated via contours

of the heat flux for a variety of different set-ups. In the absence of external pulses, they seem

to be qualitatively independent on the type of operation, i.e. whether a local or a gradient-

or flux-driven global simulation has been chosen. However, due to a close relation to the

zonal flow shearing rate they are mainly present in ITG driven turbulence and absent in

temperature-driven TEM or ETG driven turbulence as zonal flows are less important in the

latter cases.

Finally, first applications to discharges, here in the tokamak TCV, have been discussed

which recover the dominant electron heat flux in eITBs while giving evidence that high-k

transport contributions might turn out to be non-negligible.
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