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Abstract

Determination of neutral particle distributions , is of great interest for the design
of a fusion reactor. Unfortunately in a fusion reactor the neutral particle densi-
ties present, give rise to a collisionionalty where collisions can not be neglected but
�uid descriptions fail as well. Therefore massive computational e�ort is required
for solving the Boltzmann equation with a nonlinear collision integral. The Monte
Carlo linear transport solver EIRENE represents a possibility to solve the Boltz-
mann equation in the BGK approximation, while being inherently parallelizable. In
this thesis, the calculation of particle distributions has been validated and bench-
marked by comparing conductances calculated by EIRENE with well documented
cases in the literature. Conductances were calculated for rectangular ori�ces, tubes
of di�erent length, as well as at di�erent pressure ratios. The agreement was found
to be very good for Kn > 0.1 and for some cases even Kn > 0.01. In addition the
existing code was extended to include a more realistic approximation of the collision
integral and a �rst qualitative validation was performed.
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Chapter 1

Introduction

Finding a safe, economical and ecologically sustainable source of energy is crucial in
meeting the challenges of the 21st century. Increasing population and the scarcity of
conventional energy resources, as well as environmental and political issues, call for
the investigation and development of alternative energy concepts. Among others,
energy from nuclear fusion has been identi�ed as a promising candidate to meet
most criteria for a potential future energy source. As an international e�ort, the
�rst experiment, expected to answer the question of feasibility of nuclear fusion as
an energy source, is ITER, which is currently being built in Cadarache, France. The
following chapter will give a rough overview over the principles of nuclear fusion, the
tokamak as well as ASDEX Upgrade and the divertor concept and �nally motivate
the topic of this thesis.

1.1 Nuclear Fusion

Fusion is the process of two or more nuclei approximating within reach of the strong
force (≈ 10−15m) and consequently sticking together. If the binding energy of the
product is larger then the sum of binding energy of the reactants, the process is
exo-thermal and releases energy. Notice in Fig 1.1 the large gap in binding energy
for helium, resulting from the Pauli spin-exclusion principle, with the helium spin-
con�guration being particularly favorable.
Unfortunately, bringing two nuclei as close together as to reach coupling with the

strong force is not trivial. Having the lowest charge, hydrogen H and the hydrogen
isotopes deuteriumD and tritium T are least a�ected by Coulomb repulsion, so most
fusion reactions considered for energy production involve fusion from hydrogen nuclei
to helium. The most important is:

2
1D +3

1 T =4
2 He+1

0 n+ 17.6MeV (1.1)

For temperatures around 10-20keV, and considering quantum tunneling e�ects,
the ratio of fast particles overcoming the Coulomb barrier is large enough as to
allow for signi�cant reaction cross-sections 〈σ〉. At these temperatures almost all
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Figure 1.1: Binding energy pro nucleon. Iron, having the maximum binding energy and
therefore the most stable nucleus, is marked.

hydrogen-atoms are ionized and form a plasma state. In order to allow for reac-
tion rates nDnT 〈σv〉 of a con�ned plasma where the energy produced is su�cient
to overcome losses, densities have to be exceeded while maintaining high tempera-
tures. With the energy con�nement time τE a measure for thermal insulation, this
relationship is expressed by the Lawson criteron, stating the ignition threshold in
terms of the triple product (density × temperature × energy confinement time)
[1]:

neTτE ≥ 2.8 · 1021keV cm−1 (1.2)

To reach these conditions, di�erent methods of con�nement have been investi-
gated. One is magnetic con�nement and so far, two promising con�gurations, the
stellarator and the tokamak, have been found. At IPP, research is performed on
both concepts, namely the stellarator W-7X at IPP Greifswald and the tokamak
ASDEX Upgrade at IPP Garching.

1.2 The Tokamak principle

Plasmas, being ionized and therefore reacting to electromagnetic forces, can be con-
�ned by magnetic �elds. For linear con�gurations, con�nement at the ends, is very
weak and the losses of particles and energy are too large, so toroidal systems have
been developed. Unfortunately because of the toroidal shape, the magnetic �eld is
inhomogeneous, giving rise to opposed drifts (∇B-drift and ∇×B-drift) in electrons
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and ions and therefore charge separation. The resulting electric �eld induces an ad-
ditional E×B-drift that ultimately drives all charged-particles outward, causing fast
radial losses (see Fig. 1.2). These losses can be eliminated by the superposition of
a poloidal magnetic �eld, compensating the e�ects of the ∇B-drift and ∇×B-drift
by a rotation around the poloidal axis [2]. This con�guration is called the tokamak
(acronym for "toroidalnaya kamera aksial'nym magnitnym polem", translated from
Russian: "toroidal chamber with axial magnetic �eld") and was invented by the
Russian physicists Tamm and Sakharov in 1952[1].

Figure 1.2: Toroidal plasma con�guration with drifts, causing charge separation and there-
fore radial losses

In a tokamak, the toroidal component of the magnetic �eld is generated by mag-
netic coils, while the poloidal component is generated by inducing a toroidal plasma
current, which also serves to heat and ionize the plasma fuel. Although this is the
basic concept of a tokamak already, many more subtleties of the complex behavior
of the con�ned plasma, like MHD-instabilities or collisional and turbulent transport,
have to be considered, as well, in order to produce a stable plasma for a fusion power
plant.

1.3 ASDEX Upgrade and Divertor concept

The goal of the ASDEX ("`Axialsymmetric Divertor Experiment"') Upgrade in
Garching is to investigate crucial problems in fusion research under reactor-like
conditions. The major contributions, among many others, resulting from ASDEX
Upgrade and its predecessor ASDEX involve the development of a high con�ne-
ment scenario, the so called "H-mode", the exploration of plasma-wall interactions,
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Figure 1.3: Inside view of the ASDEX Upgrade vacuum vessel

particularly using the concept of a Divertor, and only recently, the use of resonant
magnetic perturbation coils to suppress energy loss from edge localized mode (ELM)
instabilities. Because this thesis is in particular concerned with distributions of neu-
tral particles, I will �rst give a brief overview of the Divertor concept and the role
neutral particles play in the vessel:

Maintaining a su�cient density of the reactants is critical to ful�ll the Lawson
criterion (Eq. 1.2). For that purpose, fuel in the form of neutral particles has to be
injected to increase the ion-density in the plasma core ni. Furthermore the fusion
"exhaust", i.e. the helium-"ash" and other impurities, which otherwise dilute the
concentration of the fuel reactants and reduce the temperature due to enhanced
radiation loss, have to be removed. To leave the magnetic con�nement, the helium
ash needs to become neutralized by interaction with the walls. Plasma-wall interac-
tions can only take place at the plasma edge where temperatures are low enough for
the wall-material to endure. The neutral helium can then be extracted by pumps.
In turn, high pumping e�ciencies require high neutral pressures in the region in
front of the pumping duct. A low temperature, high density region at the plasma
boundary can be achieved in a tokamak in the so called Divertor [3].

In a Divertor con�guration the magnetic �ux surfaces are formed to create an
X-point where the poloidal �eld vanishes. The magnetic �ux surface crossing this X-
point is called the Separatrix, which is also the Last Closed Flux Surface (LCFS) and
any surface outside the Separatrix is part of the so called Scrape O� Layer (SOL)
(see Fig 1.4) where magnetic �ux surfaces are not closed anymore. All particle,
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Figure 1.4: Schematic view of the plasma vessel. The Separatrix separates the plasma from
the SOL and leads the LCFS to the Divertor, which is designed as an intentional point of
plasma-wall interaction. Through the recycling high concentrations of neutral particles are
generated and the pumping e�ciency is increased to remove helium and other impurities

momentum and energy emission from the LCFS is guided towards the points where
the Separatrix and the other SOL �eld lines strike the wall below the X-point. The
Divertor is therefore a natural sink for the plasma and charged particles reaching
the walls will most likely recombine and be re-released as neutrals ("recycling")
[4]. The occurring high neutral densities are bene�cial to the pumping e�ciency
and as a result, the SOL in the main chamber of the plasma vessel remains at low
impurity-densities.
Being the intentional point of plasma-wall contact, the Divertor is subjected to

extreme heat and particle �uxes. The main problem is erosion and therefore release
of impurities into the plasma, as well as material damage. At ASDEX Upgrade, the
Divertor is made of tungsten, because it has a high melting point. On the other
hand, tungsten is also an element of high atomic number(Z) and contamination of
the plasma center, causes high energy losses by recombination-radiation. In order
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to minimize the the Divertor load, special design considerations, to create a larger
plasma-wetted area and thus �at angles of particle incidence, are taken into account.
Also, neutral particle seeding (for example N2) close to the Divertor, has shown to
be e�cient in inducing greater recombination radiation and scattering and thus
decreasing temperature and net momentum �ux onto the Divertor.
So, even though the plasma in a fusion device is in an ionized state and therefore

mainly contained by the magnetic �eld, neutral particles are always present in the
vessel, either from recycling processes or injected as fuel, although, of course, at
very low densities. Understanding and controlling these densities in a fusion device
is essential for successful operation. It is necessary to gain knowledge about the
vacuum environment in the vessel and to be able to make predictions about the
behavior of the neutral particle distribution, taking into account the real geometry.
This understanding can also be helpful in designing a Divertor geometry, which
allows e�cient pumping of the vessel close to the Divertor.

1.4 Motivation of this Thesis

For small vessels and low vacuum densities, �ows and distributions can be calculated
on the basis of free-molecular �ow, where nonlinear e�ects, such as collisions between
particles, have no in�uence and the �ow is entirely determined by the geometry and
particle wall interactions. However, for higher densities or larger fusion devices,
like ITER, vacuum conditions in the Divertor region shift towards a more �uid-
like regime, the so called the transition regime, where collisions can no longer be
neglected and nonlinear e�ects become relevant.
In principle, transition regime �ows can by calculated numerically or analytically

by kinetic theory, but for complex geometries like a vacuum vessel of a fusion device
and the additional complexity brought about by the recombination and ionization
of particles in the Divertor, calculating and predicting the behavior of neutral par-
ticle �ows becomes virtually impossible by conventional methods. For these reasons
computer-simulations are applied for the calculation of neutral particle distribu-
tions, for example Direct Simulation Monte Carlo (DSMC) or the Monte-Carlo code
EIRENE developed by D.Reiter. et al. [5] (see Fig. 1.5). Because DSMC is usually
a very computationally expensive method, calculations of conductances can take
months, even with modern day computer power. Finding a reliable and e�cient
tool to calculate conductances for complex 3 dimensional structures is therefore
highly desirable. EIRENE is a Monte Carlo code that relies on the BGK approx-
imation of the Boltzmann equation and is therefore in principle suited to perform
very e�ciently, even for nonlinear problems.
So far the nonlinear scheme of EIRENE has only, although successfully, been

tested on 2D Couette-�ow. In this thesis EIRENE was benchmarked against well
documented 3D-cases. A comparison has been made between vacuum conductances
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calculated by EIRENE and results obtained from experiments and DSMC in the
literature [6], [7], [8], [9] for validation and the agreement was found to be good.
At this point EIRENE is running based on the BGK approximation of the Boltz-

mann equation, which is known to be a good approximation for particle distributions
but rather weak in determining temperature distributions [10]. For this thesis an
extension of the code has been made to allow a more accurate calculation of tem-
perature pro�les. The extension was validated against the current version and the
temperature pro�les showed to be more realistic.
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Figure 1.5: An example density distribution of neutral D2 at ASDEX Upgrade, calculated
by EIRENE
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Chapter 2

Basic Concepts in Vacuum Physics

Vacuum physics is (usually) an applied science, at the boundary between fundamen-
tal statistical physics on the one side and vacuum engineering on the other. Since
speci�c and at times di�ering experimental and theoretical de�nitions are found in
the literature, it is important to state the basic concepts, this thesis relies on, for
consistency reasons.

2.1 Conductance

         P
1

         T
0

P
1
 >> P

2          P
2

         T
0

L

                                Z

   R     

Figure 2.1: Two volumes with pressure P1 and P2, connected by tube of length L

To become familiar with the conventions regarding rare�ed gas �ows, a few basic
concepts need to be introduced �rst. In Fig 2.1 a schematic depiction is given of two
semi-�nite, connected volumes, where far from the inlet and the outlet, equilibrium
conditions at di�erent pressures P1 = n1kBT , P2 = n2kBT and the same temperature
T0 are maintained to create a density-gradient driven �ow. The conductance C is
calculated as the particle �ux (∂N

∂t
) between the volumes over the particle-density
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di�erence between the two volumes, as stated by Eq. 2.1 [11]

C =
∂N
∂t

n1 − n2

(2.1)

or by the volumetric �ow rate, over the pressure di�erence

C =
Q̇

P1 − P2

(2.2)

where Q̇ is the volumetric �ow rate due to a pump with pumping speed S [11]:

Q̇ = P
dV

dt
= PS (2.3)

2.2 Knudsen Number

The other fundamental concept is that of the Knudsen-number. It has the meaning
of the ratio between the mean free-path λ over the typical dimension D of the
conducting structure [12] and is a measure of the in�uence of boundaries for the
development of the �ow.

Kn =
λ

D
(2.4)

For low densities, and therefore longer mean free path or small typical dimensions
D, the Knudsen number will become large and the in�uence on the �ow by particle-
wall interactions will be greater then the in�uence by particle-particle interactions
and vice versa. The mean free path λ, although being a microscopic quantity that
can not be directly measured, can be expressed via a macroscopic quantity such as
the viscosity µ. Because there is somewhat of a disagreement between de�nitions of
the Knudsen number from di�erent sources ([13] vs. [6] vs. [8]), for consistency in
this thesis the Knudsen-number Kn will be de�ned as:

Kn =

√
π

2

v0µ

kBT0n1

/D =

√
π

2
δ−1 (2.5)

with the rarefaction parameter δ and v0 =
√

kBT
2m

, the most probable velocity,

following the convention of [13]. The viscosity is calculated to be µ = 1.7881 · 10−7 ·
(T [K])0.75 for D2 self collisions [14]. The dimension D was taken as the radius R
for circular apertures [15] and as the minor side-length(or height) h for rectangular
apertures [16].
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2.3 Flow-Regimes

The description of laminar �ows, can generally be dealt with by hydrodynamic
equations like the Navier-Stokes equations or Euler equations [17]. These are only
valid as long as the continuum hypothesis holds, which means that the e�ects of
interactions between the constituents are short-range compared to the characteristic
dimension D of the system [17], like it is the case in a �uid, where collisionality is
high and therefore the mean-free path is short λ << D or Kn < 0.1. This case is
called the "continuum" or "�uid regime".

For cases with low or zero collisionality, like high vacuum systems, the mean-free
path well-exceeds the size of the characteristic dimension λ >> D or Kn > 10 and
particle interactions can be neglected. The assumption of a continuum becomes
invalid and �ows can only be described by statistical equations originating from
kinetic theory [18]. For negligible particle-particle interactions, the collision term
in the Boltzmann Equation (Eq. 3.1) can be assumed to equal zero, rendering the
kinetic equation linear and therefore analytical or numerical solutions more man-
ageable. This case is also called the "Knudsen regime" or "free-molecular regime"'.

For cases where 0.1 << Kn << 10, collisions can not be neglected and the
continuum hypothesis is invalid as well [18]. In this so-called "transition regime",
description of �ows in general is di�cult, except for highly idealized cases or with
massive numerical e�ort. They are therefore usually treated by computer simulations
like DSMC (Direct Simulation Monte Carlo) or EIRENE [19], [20].

Fig. 2.2 gives an overview of the �ow regimes and corresponding current methods
used to calculate solutions.

Range of Kn Flow Regime Governing equations Numerical approach
Kn 0
∞

Continuum (inviscid) Euler Typical Computational Fluid 
Dynamic (CFD) schemes

Kn10−1 Continuum (viscous) Navier Stokes

10−1Kn10 Transition Boltzmann (BE)
Kinetic models

Analytical methods (1D)
Veriational methods
discrete velocity methods
Integro-moment method
DSMC

10Kn
0

Free molecular BE and kinetic models 
without collisions

Method of characteristics
Test Particle Monte Carlo

Figure 2.2: Overview of �ow regimes and methods of solution
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2.4 Calculation of conductance in the

free-molecular or Knudsen regime and the

concept of transmission probability

For collision-less �ows into vacuum, the conductance through an aperture will be
merely determined by the �ux of the particles hitting the area A of the aperture so
it can be simply calculated as

CFM0 =
A

4
·
√

8kT

πm
=
A

4
· v̄0 (2.6)

where v̄0 is the mean speed [11]. For �nite length ducts, a transmission probability
can be calculated via the Clausing equation, a rather lengthy probabilistic integral
equation, that will not be discussed here in detail [21]. The transmission probability,
also called the Clausing-factor, gives the probability that a particle which has entered
the aperture, would leave the duct and never return:

W =
C

CFM0

(2.7)

In order to create a scale-free measure for conductance, for comparisons, any calcu-
lated or measured conductance can be normalized by CFM0 , de�ning a normalized
conductance W (also known as the "reduced �ow rate") relative to the free molec-
ular �ux through the aperture, in the same way. This convention is commonly used
throughout the vacuum community and will therefore be also applied in this thesis
for all �ow regimes.
In the free molecular �ow regime, the �rst equation describing the conductance

for long ducts was deduced by Knudsen from experimental and theoretical consid-
erations:

CKnudsen =
4

3
v̄0

[∫
B

A2
dl

]−1

(2.8)

where B is the perimeter. For ducts of �nite length or arbitrary cross-section,
Eq. 2.8 was commonly used in context of the Knudsen-Dushman relation, which
related the "resistance" (inverse conductance) of the ori�ce and the pipe to electrical
resistors and is an electrical circuit analogy, for a handy approximation:

1

Ceffective
=

1

CFM0

+
1

CKnudsen
(2.9)

This formula was widely used throughout the 20th century to calculate conduc-
tances of free-molecular �ows, although it's theoretical �aws were pointed out early
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by Smoluchowski in 1910 [22]. Smoluchowski's corrections lead to a formula for
in�nitely long ducts of arbitrary cross-section

CSmoluchowski =
v̄0

8l

∫
s

∫ +π/2

−π/2

1

2
ρ2cosθdθds (2.10)

where ρ is a chord making an angle θ with the normal of the perimeter s.

Figure 2.3: Cross-section of general shape. The chord, length ρ, is shown at the angle
(90◦-θ) to a �xed line [23] and s for the calculation of Eq. 2.10

Indeed, Steckelmacher unveiled the discrepancies between those two approaches
in 1978 [24], showing that for long rectangular ducts with high aspect ratios the
Knudsen-formula underestimated the real conductance up to 56%.
Clausing, also disagreeing with the assumptions made by the Knudsen-Dushman

formula, had presented a probabilistic integral equation as early as 1932 for �nite-
length ducts of circular and rectangular cross-sections [21] that can be solved nu-
merically.
The Clausing equation is still valid today and the resulting Clausing-factors have

been recalculated to a higher accuracy and extended to include more radius-to-length
ratios by Cole (found in [11] in tabulated form) and Berman (Eq. 2.11) found in
[11]) for �nite-length circular tubes and by Santeler and Boeckmann, Cole (all found
in [11] in tabulated form for di�erent side-length- and length-ratios) and Berman
(Eq. 2.12 found in [11]) for �nite length rectangular ducts. Berman presented an
equation for the transmission probability (Eq. 2.7) for �nite length circular ducts
of radius R and length l:

W = 1 + y2 − y
√
y2 + 1−

[
(2− y2)

√
y2 + 1 + y3 − 2

]
4.5y

√
y2 + 1− 4.5ln

[
y +

√
y2 + 1

] ,with y =
l

2R

(2.11)
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which agrees to the data of Cole within 0.13%. For rectangular ducts, Berman
derrived another formula for short, narrow and rectangular ducts (b >> a and
b >> l, with a, b the sidelength and l the length)

W = 0.5
[
1 +
√

1 + x2 − x
]
−

1.5
[
x− ln

(
x+
√

1 + x2
)]2

x3 + 3x2 + 4− (x2 + 4)
√

1 + x2
(2.12)

Both formulas were found in [11]. There exists a number of tabulated data for
speci�c types of shapes and geometries, all calculated numerically or by Monte
Carlo methods.

2.5 Calculation of conductance in the

transition-�ow-regime

Investigation of �ows in the transition regime is still an active �eld of research as
the great number of recent publications might prove [25], [9], [26], [27], [28], [29],
[30]. There are several codes and empirical data dealing with this issue and for the
validation performed in this thesis four articles stood out.
For short tubes and ori�ces it was the work performed by Tetsuo Fujimoto and

Masaru Usami, who provided experimental data over a wide range of problems
[6]. As their de�nition of the Knudsen number di�ers from the de�nition used in
this thesis (Eq. 2.5) and their empirical formula is given in terms of the Reynolds
number, let's �rst consider the transformation from Knudsen number to Reynolds
number:
The Reynolds number Re in [6] is de�ned as

Re = 0.501Kn−1
FU ∗W ≈ Kn−1 ∗W (2.13)

Note that the de�nition for the Knudsen number given in [6] varies from the de�ni-
tion given in Eq. 2.5, because it considers the diameter as the dominating dimension,
not the radius (KnFU = 1

2
Kn). The formula given for short tubes in the transition

regime, valid in the range of Re < 2800 (or Kn > 5 · 10−4 for circular ori�ces) for
low pressure ratios (P2

P1
< 0.01) is stated as:

W =
0.4733 + I

√
1/(aRe)c

1 + J/(aRe)c +K/(aRe)2c
b+

CFM
CFM0

(2.14)

with I = 1.31(CFM/CFM0)
16, J = 8.537, K = 3.599 and a,b,c being parameters

depending on the length to radius ratio R
l
, tabulated for speci�c values (see apendix:

7.1). As a value for CFM

CFM0
the Berman-approximation (Eq. 2.11) was used. Please

not that Eq. 2.14 is a nonlinear implicit function. It was solved numerically by a
root-�nding algorithm, solving 0 = W −W (W ), for the range of W in question.
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For �ows through rectangular ori�ces at low pressure ratios (P2

P1
< 0.01) an pub-

lication by F.Sharipov and D.Kozak [7] provided a formula for �ow into vacuum
(P2

P1
= 0), derived from a DSMC solution with less then 0.5% numerical uncertainty.

W = 1 +
0.1736

(
π

2Kn

)
+ 0.0035

(
π

2Kn

)2

1 + 0.2754
(

π
2Kn

)
+ 0.006477

(
π

2Kn

)2 (2.15)

For �ows at �nite pressure ratio 0 < P2

P1
< 1 an semi-empirical formula has been

derrived by A.K. Sreekanth [8] for tubes of �nite length. With the convention for the
Knudsen number and normalized conductance in this thesis the equation is stated
as

W =
1

1 + L/(2R)

[
1 + P2/P1

10Kn
+ 1.038

]
(2.16)

Also in the article [9], the values for W (1 − P2

P1
were given in tabulated form for

�nite pressure di�erences, P2

P1
= 0.1, 0.5, 0.7 at rarefaction numbers between 0.1 and

1000.

2.6 Calculation of conductance in the

continuum-�ow-regime

For viscous laminar �ows, where the Mach-number is small (Ma < 0.3), the Hagen-
Poisseuille equation is stated as [11]:

Q̇ =
πR4 |∆P |

8µl
P̄ (2.17)

When used with the de�nition of conductance in Eq. 2.2, it leads to an equation for
conductance for long circular pipes [11]:

C =
πR4

8µl
P̄ (2.18)

where P̄ = P1+P2

2
is the average pressure over both volumes. A similar equation can

be approximated for rectangular ducts [11]

C =
1

12µl

a3b3

(a2 + b2 + 0.371ab)
P̄ (2.19)

which corresponds to the solution of the Navier-Stokes equation for laminar �ows
[25].
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The maximum conductance in the continuum �ow regime is stated by the Euler
limit, where for a critical value of the pressure ratio [31]

P2/P1 = [2/ (γ + 1)]γ/(γ−1) (2.20)

with γ the adiabatic coe�cient, the conductance can be described by

C

CFM0

= W = γ1/2

(
2

γ + 1

)(γ+1)/[2(γ−1)]√
2π ∗ A(γ) (2.21)

with A(γ) = 1 for an ideal nozzle [32] and A(γ) = 0.85 for �ow of a mono-atomic
gas(γ = 5/3) through an aperture [11]. It gives a maximum normalized conductance
of Wmax = 1.53 for an aperture and Wmax = 1.82 for an ideal nozzle and serves as
an asymptotic limit for all tubes and ori�ces, as long as the �ow remains laminar.
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are labeled. The Free-molecular W and the Euler limit W are indicated by dotted lines.
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Chapter 3

Kinetic Equations and Monte

Carlo Simulations

In the following chapter an overview is presented over the most basic properties of
the Boltzmann equation and the Monte-Carlo approach of solution. It includes an
introduction to the BGK approximation, which is deployed in EIRENE, as well as
the elliptical BGK approximation that was implemented as an extension of the code
as part of this thesis.

3.1 The single species Boltzmann Equation

Originally developed to describe transport processes in rare�ed gas, the Boltzmann
equation became one of the most fundamental equations in non-equilibrium statisti-
cal mechanics and is now applied in a broad range of �elds, from quantum mechanics
over solid state physics to galactic dynamics. It is based on the "Stosszahlansatz",
taking into account only two-body collisions of particles that are uncorrelated prior
to the collision [33]. A common form is written as:

[
∂

∂t
+ v · ∇r +

F(r,v, t)

m
· ∇v

]
f(r,v, t) =

∫ ∫ ∫
σ(v′,V′,v,V) |v′ −V′| f(v′)fb(V

′)dv′dVdV′

−
∫ ∫ ∫

σ(v,V,v′,V′) |v−V| f(v)fb(V)dv′dVdV′

+Q(r,v, t)

(3.1)

with f(r,v, t) or f(x) being the one particle distribution function for a state x in
6N-phase-space characterized by a position vector r and a velocity vector v and fb
being the corresponding distribution function for the collision partner, from now on
called "background distribution" (which for single species is of course fb = f). v′

andV′ are the velocities prior to collision and σ(v,V,v′,V′) is the impact parameter
acting on the particle.

16



Furthermore F(r,v, t) is the volume force �eld, m is the particle mass andQ(r, v, t)
is a source-term. The left-hand side of the equation corresponds to the description of
free-�ight, while the right-hand side is the Boltzmann-collision integral (= (∂f

∂t
)coll),

describing the evolution of the system due to collisions (gain and loss from velocity
space interval [v,v+ dv]), boundary conditions as well as any sources [5].
Although the equation is algebraically very complex it has a simple physical con-

tent: conservation in phase space. All macroscopic quantities, that is particle density
n(t, r), drift velocity u(t, r), pressure P (t, r), the pressure tensor Pij(t, r) and the
temperature T (t, r) can be calculated as moments of f(r,v, t) [34].

n(t, r) =

∫
f(t, r,v)dv (3.2)

u(t, r) =
1

n(t, r)

∫
vf(t, r,v)dv (3.3)

P (t, r) =
m

3

∫
(v− u)2f(t, r,v)dv (3.4)

Pij(t, r) = m

∫
(vi − ui)(vj − uj)f(t, r,v)dv (3.5)

T (t, r) =
m

3n(t, r)kB

∫
(v− u)2f(t, r,v)dv (3.6)

where kB is the Boltzmann constant and m is the atomic mass.
For neutral particle transport there are no external forces acting on the particle

(except for momentum exchange in collisions) so the equation simpli�es further
(F = 0) and we end up with a more readable notation [35]:

∂f(r,v, t)

∂t
+ v · ~∇rf(r,v, t) = (

∂f

∂t
)coll (3.7)

The following important properties are highlighted[35]:

1. Equilibrium: In states of thermodynamic local equilibrium ∂f(r,v,t)
∂t

= 0 and v ·
∇rf(r,v, t) = 0, and therefore the collision integral vanishes as well (∂f

∂t
)coll = 0. In

this case the solution of Eq. 3.1 f(r, v,t) is a Maxwellian distribution fM .

2. H-Theorem: If for any distribution function f(r, v,t)

H(f(r,v, t)) =

∫
R3

f(r,v, t)lnf(r,v, t)dv (3.8)
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is de�ned, for any f(r, v,t) that evolves according to the Boltzmann equation, the
function

H =

∫
D

H(f(r,v, t))dr (3.9)

with δD ∈ R3 a nonporous, nonconducting wall around a homogeneous region D,
the relation

dH
dt
≤ 0 (3.10)

holds. So the Boltzmann equation describes a "relaxation" towards a state of mini-
mum H, the �nal state being a steady state and thus a Maxwellian fM having the
maximum entropy.

3. Euler Equations: For f(r,v, t) = fM(r,v, t), a local Maxwellian, the moments
derived by Eq. 3.2-3.6 n(t, r), u(t, r), P (t, r) and T (t, r) satisfy the Euler equations
of motion:

m
∂n(t, r)

∂t
= m~∇ · (n(t, r)u(t, r)) = 0 (3.11)

m
∂(n(t, r)u(t, r))

∂t
+m~∇ · (n(t, r)u(t, r)⊗ u(t, r)) + ~∇ · P (t, r) = 0 (3.12)

m
∂(n(t, r)E(t, r))

∂t
+ ~∇ · (u(t, r)(mn(t, r)E(t, r)− P (t, r))) = 0 (3.13)

while for the last equation the total energy E(t, r) = 1
2
mn(t, r) |u(t, r)|2+3

2
n(t, r)kBT (t, r)

was used for convenience.

3.2 Treatment of the Boltzmann Collision Integral

For linear transport problems "the background" distribution fb(V) is given, so the
function f(v) can be taken out of the second integral in Eq. 3.1, to arrive at the
following equation [14]:

∂f(r,v, t)

∂t
+ v∇rf(r,v, t) + νt(r,v)f(r,v, t) =

∫
dv′C(r;v′ → v) |v′ −V′| f(r,v, t)

+Q(r,v, t)

(3.14)
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Here νt(r,v) is the total collision frequency and C(r,v′ → v) is the kernel of the
collision operator.
The collision frequency is the sum over all collision frequencies νk from every

collision process k and also includes surface collisions [14]:

νt(r,v) =
∑
k

νk(r,v)

νk(r,v) =

∫ ∫ ∫
σk(v,V,v

′,V′) |v−V| fb(V)dvdVdV′
(3.15)

The collision kernel gives the number of particles with velocity (v') which emerge
from collision processes k (particle-particle as well as particle-surface collisions) with
velocity (v) [14]:

C(r;v′ → v) =
∑
k

νk(r,v
′)ck(r,v

′ → v)

ck(r;v
′ → v) =

∫ ∫
σ(v′,V′;v,V) |v′ −V′| fb(V′)dV′dV∫ ∫ ∫
σ(v′,V′,v,V) |v′ −V′| fb(V)dv′dVdV

(3.16)

The factor ck(r;v
′ → v) is the conditional probability distribution for the post-

collision velocity v.
Generally the collision probability ck(r

′,v′ → v), should give a maximum of uncer-
tainty about the velocity with which a particle will emerge from a collision. This can
be achieved by maximizing the local Shannon-entropy S, known from information
theory, using the (normalized) probability for the emergent velocity[36]

ψ(r′,v) = 1/n(r′) ·
∫
c(r′,v′ → v)dv′ (3.17)

S(r) = −
∫
ψ(r′,v)lnψ(r',v)dv (3.18)

To �nd the extremum (i.e. the equilibrium) of this equation, the variation (δS =
0) can be solved by Largangian multipliers, which will have to satisfy the conserva-
tion laws stated by Eq. 3.19 [36].∫

(
δf

δt
)collΘ(v)dv = 0 (3.19)

with Θv = 1, vx, vy, vz, v
2, which is equivalent to the �uid motion conservation

laws stated by the Euler equations Eq. 3.11-3.13.
Also, considering only stationary problems, explicit time dependence can be ne-

glected and therefore the partial time derivative vanishes (∂f
∂t

= 0).
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3.3 The BGK approximation

In the free-molecular regime, particle-particle collisions can be neglected, rendering
the collision integral in the Boltzmann equation linear, so the collision kernel C(r′ →
r,v′ → v) will only depend on the boundaries and not on the distribution of any
possible collision partners (fb). However, in the transition regime (Kn ≤ 10) particle-
particle collisions can not be neglected, the collision integral becomes nonlinear in
v and therefore, in general hard to solve by conventional methods, except for highly
idealized cases [19].
To linearize the collision integral for particle-particle collisions the Bhatnagar,

Gross and Krook (BGK) collision model can be introduced, by assuming the collision
integral ( δf

δt
)coll to describe a relaxation of f(x) toward the local equilibrium, a

drifting Maxwellian distribution [19]

fM = n · ψ(v)M = (2πnkBT )−
3
2 exp(−[(v− u)2/2kBT ]) (3.20)

within a relaxation time τ :

(
δf

δt
)coll → (

δf

δt
)BGK =

f(r′,v′)− fM(r′,v′)

τ
(3.21)

It can be shown [37] that the BGK model reproduces the equilibrium solution
f = fM and the conservation of mass, momentum and energy at equilibrium (Eq.
3.19), resulting in the moment relations:∫

viψM(v)dv = ui (3.22)∫
(vi − ui)(vi − ui)ψM(v)dv = 3nkBT (3.23)

The BGK approximation also holds the H-theorem and leads to the Navier-Stokes
equations when the Chapman-Enskog expansion is applied [38]. The relaxation time
(in the case of single species and elastic collisions, corresponding to the inverse total
collision frequency 1

νt
) τ can be obtained in terms of dynamic viscosity µ [10]:

τ =
µ

nkBT
(3.24)

Alternatively it can be obtained using the coe�cient of thermal conductivity κ
[10]:

τ =
2

5

m

kB

κ

nkBT
(3.25)

The Prandtl number is a dimensionless number de�ned as a ratio

Pr =
viscous di�usion rate

thermal di�usion rate
=
cpµ

κ
(3.26)
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where cp = 5
2
kBT is the speci�c heat for monoatomic gases.

Here, the �rst disadvantage of the BGK model becomes apparent, since for both
relaxation times to match, the Prandtl-number will become unity, whereas it usually
di�ers appreciably from unity for most real gases (Pr ≈ 2

3
). It should be noted

that τ does not depend on the velocity but only on the local particle density and
temperature. None the less it has been shown to produce quantitatively good results
when applied to isothermal �ows of rare�ed gases.

3.4 The ellipsoidal BGK approximation for correct

Prandtl number

In an attempt to improve the BGK-approximation, the so called ellipsoidal BGK
approximation (from now on referred to as ESBGK) has been developed in [36].

(
δf

δt
)coll → (

δf

δt
)BGKES =

f(r′,v′)− n · ψBGKES(r′,v′)

τBGKES
(3.27)

The ESBGK model satis�es all conditions for a valid collision model, one of which,
the H-theorem has been proven to hold only recently in [38], reviving interest in the
model. As a main advantage of the model, it includes a free parameter that can be
adjusted to obtain a correct Prandtl number.
The underlying idea of the ESBGK model is to include so-called "persistence of

velocity"-e�ects by the additional information of the second-order moments into the
moment relation Eq. 3.23 [36]:

Pij(r) = m · n ·
∫

(vi − ui)(vj − uj)ψ(v)dv (3.28)

Through maximizing the Shannon entropy and using Eq. 3.28 as an additional
constraint, the emitted velocity probability distribution ψBGKES(v) results in an
anisotropic Gaussian:

ψBGKES(v) = (2π)−
3
2 |λ|−

1
2 exp(−1

2
(vi − ui)εij(vj − uj)) (3.29)

where |λ| is the determinant of λ, the tensor corresponding to λij and εij are the
components of ε = λ−1, the tensor inverse to λij [36]. Choosing λij to be a linear
function of the elements of the pressure tensor normalized by mass-density

m · n · λij = GijklPij (3.30)

and considering that Gijkl must be a symetric, isotropic tensor, it follows that

m · n · λij = (1− b)Pδij + b · Pij (3.31)
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including the free parameter b [36]. By applying the Chapman-Enskog expansion
a relationship for the free paramter b can be stated depending on the Prandtl number
[36]

b = (Pr− 1)/Pr (3.32)

and the collision frequency depending on the viscosity

νESBGK =
nkBT

µ(1− b)
(3.33)

For b = 0, ψESBGK(v) is transformed into ψM(v), yet again stating the ordinary
BGK-model. For b = −1

2
, the resulting Prandtl number will be such as to match

the experimentally found Prandtl number of 2/3 and the collision frequency will
decrease [36].

3.5 Implemented Transformation

In the original sampling method for the BGK-model, implemented in EIRENE, the
pre-collision velocities of the collision partners were sampled from a drifting 3D-
Maxwellian-distribution. For the implementation of the ESBGK-model, the sam-
pling distribution had to be transformed into the new distribution function denoted
by Eq. 3.29. For a more readable notation, the peculiar velocity c = (v − u) is
introduced. The transformation

(vi − ui)εij(vj − uj) = ciεijcj = cT εc = (Aζ)T εAζ = ζAT εAζ =
3∑

k=1

ζ2
k

with c = Aζ andAT εA =

1 0 0
0 1 0
0 0 1

 (3.34)

will be used to allow collision sampling to still occur from a 3D-Maxwellian-
distribution, while resulting velocities will be transformed back to obey the elliptic
distribution function Eq. 3.29. To determine A, it is easily shown [10] that

AT εA = I→ AT = A−1ε−1 → AT = A−1λ→ A · AT = λ (3.35)

Since λ is a symmetric matrix, there exists an equivalent notation in which A is
a triangular matrix and therefore

min(i,j)∑
k=1

aikajk = λij (3.36)

22



becomes a simple set of fully determined linear equations, from which all entries
aij can be derived. The emission probability for emergent particles reads:

ψBGKES(v) = (2π)−
3
2 |λ|−

1
2 exp(−1

2

3∑
k=1

ζ2
k) (3.37)

which is a 3D-Maxwellian. In order to obtain the new velocities, according to the
distribution ψBGKES, the resulting samples ζ can be transformed back via ci = Aijζj.

3.6 EIRENE - BGK/BGKES

EIRENE is a neutral gas transport code, which calculates the distribution functions
in 6-dimensional phase-space. In principle it is a multi-species code, solving simulta-
neously a system of time-dependent or stationary linear kinetic transport equations
of almost arbitrary complexity.
Although the �exibility of EIRENE would allow for a wide range of possible

applications, the work performed for this thesis focused on single species neutral
gas �ows and therefore the description will only be considered with this particular
aspect of its application (further information can be received from the EIRENE
manual on http://www.eirene.de [39]).
The Monte Carlo approach for solving Eq. 3.2 in EIRENE can be derived from its

physical meaning [14]. Test particles will be generated, one at a time, according to
the source distribution Q(x), traveling along straight lines undergoing collisions with
"background" particles and boundary surfaces at collision-frequencies νk, changing
velocity according to the distribution ck(r;v

′ → v)dv′ until they reach an "absorbing
state" xa in the phase-space which, once reached, is never left again [5].

3.6.1 Sampling Free Path:

The mean free path l between two collisions can be sampled from the inverse cumu-
lative distribution F (l), since the collision νt is a parameter of EIRENE.

for l < lmax : F (l) = 1− exp

[
−
∫ l

0

νt
|v|

ds

]
= 1− u

for l ≥ lmax : F (l) = δ(l − lmax)exp

[
−
∫ lmax

0

νt(r)

|v|

] (3.38)

where lmax is the distance of the �ight to the next boundary or internal surface where
the test �ight shall be stopped. u here is a random number distributed uniformly
between 0 and 1. At the point of collision, u is sampled and −

∫ l
0
νt
|v|ds is updated

for each cell along the trajectory s until it meets the equality Eq. 3.38 [14].
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3.6.2 Collision - Sampling

The collision probability ck(r
′,v′ → v) in this case is a distribution typical for elastic

collisions or surface re�ections. Several surface-re�ection models are implemented
in EIRENE, namely the Behrisch-Matrix model or TRIM code database re�ection
models [5].
For particle-particle collisions, thermalization with the "back-ground" is assumed

and post collision velocities are sampled from the local equilibrium velocity distribu-
tion ψ(x). For EIRENE-BGK this was the local drifting Maxwellian distribution Eq.
3.20 and for EIRENE-BGKES this was accomplished by transforming the samples
from a Maxwellian distributions according to Eq. 3.34.

3.6.3 Successive Linearization Method

For EIRENE-BGK, an iterative procedure ("successive linearization") is applied,
using the moments derived from a previous iteration to determine the local collision
velocity distribution ψM(= fb/n) or ψBGKES(= fb/n) as a background of the new
iterations. For each iteration the moments of f(x) u(x), T (x), n(x) and Pij(x) are
calculated, as well as all other derived quantities (for example: total energy, drift
energy, etc). These moments are then again used to de�ne new local Maxwellians
(ψ = fb/n). Iterations are repeated until the local equilibrium distribution (∂f

∂t
)coll =

0, or equivalently stated fb = f , is reached.

3.6.4 Responses

Detailed knowledge of the function f(x) is not required, but only of a set of moments
of this distribution. In order to do so, a discrete Marko� chain ωn = (x0, x1, x2, ...xn)
is generated using Q(x) as a initial distribution, F (l) (Eq. 3.38) as a distribution of
the free path and ψ(v) (Eq. 3.20) as a distribution of the velocity v [14].
To create such a chain, pseudo-random numbers (ξ1, ξ2, ...) are generated according

to the distributions Q, ψ and F . After the calculation of N (≈ several thousand)
histories, the responses R are taken as the arithmetic mean of an estimator X(ω)
[14].

R = R̃ =
1

N

N∑
i=1

X(ωi) (3.39)

By increasing N the response R can be made arbitrarily precise. X(ωi) depends
on the type of estimator. For the collision estimator:

XC(ωi) =
n∑
j=1

gc(xj)w(xj) (3.40)
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Here gc is the detector function which is calculated for each collision and w(xj) is
the so called statistical weight. In the simplest case gc = 1, this estimation yields
the total number of collisions. It can be shown that XC gives unbiased estimation
of the sum of gc over all collisions [14].
For the track-length estimator:

XT (ωj) =
n∑
j=1

∫ xj+1

xj

ds

|v(s)|
gt(s)w(s) (3.41)

Here gt(s) is the detector function which is de�ned in each point of the parti-
cle's trajectory. This estimator gives the unbiased estimation of the corresponding
moment of the distribution function:∫

f(r,v)gt(r,v)dv (3.42)

It means that the sum over residence time of the particles in a volume is proportional
to the number of particles in this volume. The estimators can be applied to any
volume, in particular to each cell of the computational grid to get the spatially
resolved estimation [14].

3.6.5 Statistical Error

One advantage of a Monte-Carlo method of calculation is that it inherently yields a
result for the statistical error of the calculation. The variance per history is obtained
as

σ2
1(N) =

1

N − 1

N∑
i=1

(Xi − X̄)2 (3.43)

where Xi = X(ωi) is the contribution of Monte Carlo history ωi to estimator X for
each moment of f (referred to as a "tally") and N is the number of Monte Carlo
histories[14]. Due to the Central Limit theorem, the �nal estimate for the variance
will be indirectly proportional to N

σ2(N) =
1

N
σ2

1(N) (3.44)

so the standard deviation scales as σ = 1/
√
N [14].
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Chapter 4

Grid Generation and Methods of

Evaluation

The EIRENE code is intended as a highly �exible tool to calculate particle distri-
butions so therefore setting options are plentiful. In this chapter an overview of the
most relevant settings is given, followed by a detailed description of the geometrical
grids used for the validation. In the last part of this chapter possible sources of error
are being discussed.

4.1 The EIRENE Input-�le

EIRENE is con�gured by a formated input-�le (Sec. 7.2) that gives full control over
the �exibility of the code. The input-�le will include all settings for the operational
mode, the geometrical (e.g. boundaries and sources) and physical properties (e.g.
interactions and particles) as well as the output. The plentiful options can be looked
up in the manual [5], so this description will focus on the options that were most
relevant for this work.

4.1.1 Input Block 1: Input data for operating mode

This block controlled some of the more general options in EIRENE such as overall
running time, number of iterations and usage of dump �les. Also a few parameters
depending on the simulation model (drifts included or not, etc.) [5].

4.1.2 Input Block 2: Input data for standard mesh

In this section, the boundaries of the mesh-cells are de�ned by co-ordinate surfaces,
called "standard mesh surfaces". There are up to three sets of standard surfaces,
corresponding to a radial- or x-dimension, a poloidal- or y-dimension and a toroidal-
or z-dimension, depending on the geometry level. There are several geometry-level
options: cartesian co-ordinates (x,y,z), a 2D "�nite element" triangular mesh, and
several others that will not be discussed here. For cartesian co-ordinates as well as for
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the toroidal dimension, the number of surfaces as well as two zones of equidistant dis-
cretizations could be de�ned. For the triangular option, an external routine (TRIA
by [Boerner, FZJ]) generated a 2 dimensional triangular mesh and co-ordinates of the
triangles were loaded into the radial-dimension array, disabeling the poloidal dimen-
sion array. The toroidal- or z-dimension could be set straight (grid in z-direction),
or as an approximation by a number (≥ 30) of straight cylinders for both cartesian
and triangular mesh options [5].

4.1.3 Input Block 3A: Non-default Standard Surfaces

In this input block surfaces from the standard mesh or subregions of the surfaces,
could be set to non-default properties such as re�ecting or absorbing. For trian-
gular meshes, closed surface boundaries implemented in the mesh were recognized
and could be set to non-default properties as well. Each non-default standard sur-
face could be assigned a surface interaction model (de�ned in Input Block 6), an
absorption coe�cient or set to be specular re�ective [5].

4.1.4 Input Block 3B: Additional surfaces

Additional surfaces could be con�gured by de�ning coe�cients that were used as
input parameters of an algebraic hyperbolic equation or inequality, to specify the
boundary of the surface, i.e. the part of the surface which is seen by the test particles.
The additional surfaces are independent of the co-ordinate system of the standard
mesh and can be modeled individually in 3D cartesian co-ordinates. Each surface
could also be assigned a surface interaction model (de�ned in Input Block 6), an
absorption coe�cient or set to be specular re�ective analogously to the non-default
standard surfaces [5].

4.1.5 Input Block 7: Input data for Initial Distribution of

Test Particles

In this input block, the type of source distribution is set as either a point or a
surface source and co-ordinates for position and direction are speci�ed, as well as
the temperature of the source. The �ux could be supplied directly in units of
[Ampere] or a density could be de�ned for a speci�c grid cell instead, as a scaling
factor for all surface- or volume averaged results. Several di�erent sources could
be de�ned and CPU time is assigned to each, but by default CPU time was evenly
split among each source. The seed for the random number generation is speci�ed,
either as a �xed seed (for repeatability) or as truly random (determined by machine
clock). Also, the particle species emitted by the source is chosen [5].
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4.2 General geometrical set-up

Figure 4.1: The �gure displays a typical particle (density) distribution from a grid (slit)
used for evaluating conductance. A source generates an evenly distributed particle density
in a high pressure reservoir and an absorbing surface acts as a pump in a low pressure
reservoir. Both reservoirs are connected by an conducting structure, causing a pressure
gradient and therefore �ow. The yellow marked areas represent pressure measurement
areas where the pressure is evaluated as an average over each area.

In general the geometrical set-up consists of a high-pressure reservoir containing
a neutral particle source that is connected to a low-pressure reservoir containing a
pump (see Fig. 4.1). The ratio of the chamber dimensions to the typical dimension
of the connection ought to be large to minimize in�uence on the conductance by
the reservoir walls and to guarantee a uniform distribution. It should also be small
enough to allow a su�cient throughput to generate particle histories by a reasonable
computation time. The coarseness of the grid is restricted by available memory and
CPU-time as well as the necessary resolution. The cell-size of the mesh determines
the minimal Knudsen number that produces valid results, since it needs to be small
enough to resolve any occurring gradients and allow the gas �ow to develop correctly.
The source distribution is set as a point source emitting single-species thermal test-

particles at 300K and the source-�ux was set to establish certain Knudsen numbers.
The boundary walls are assumed to be di�usively re�ecting at a temperature of
300K, being on the same temperature as the source. To calculate the conductance
by Eq. 2.1, an average of the particle density is taken over a uniformly distributed
part of the high-pressure reservoir as well as the low pressure reservoir (see Fig. 4.1).
The simulations were usually run to yield at least 1000 histories, to guarantee

su�ciently low statistical error, and CPU time was set accordingly (300 − 5000s
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per iteration). In non-linear mode, iterations were repeated until convergence was
reached, although in general convergence was costly for low Knudsen numbers (Kn <
0.1; Nr.iteration > 50) (also see Sec. 4.6.1 for more detail).
The �ow was aimed to be into vacuum, except when explicitly aiming for a �ow

with a �nite pressure drop, so minimal pressure in the low pressure volume was
desired. For the circular ori�ce the pressure ratio was around 0.1%, while for the
slit, due to the larger opening, the pressure ratio could not be lowered further than
to around 1.5% within the computational limits.

4.3 Grids with aperture of rectangular

cross-section

Grids for modeling �ows through apertures of rectangular cross-sections are generally
more demanding in memory since large parts of the volume need to be �nely meshed
due to EIRENE being able to de�ne only two zones of di�erent sized discretizations
per dimension. The comparatively large ori�ce area caused the pressure ratio (P2

P1
)

to be, in general, higher. But, on the other hand, allowed for more particle histories.
The grids were usually produced having only one cell along the slit to exploit the
symmetry and to save memory. Tests with more cells along the slit, to no surprise,
showed no di�erence.

4.3.1 Grid for slit created by 2D-triangular mesh for free

molecular length scan

The grid depicted in Fig. 4.2 and 4.3 was used to model the free-molecular �ow
through a rectangular duct, with length 0cm < l < 100cm, height h = 1cm and
width p = 10.366m (in z-direction). For the length scan, grids similar to this would
be produced analogously for di�erent l. A �ne mesh (∆t1 = 1cm) was applied in the
area around the slit (Fig. 4.3), while the mesh in the remaining area was chosen to
be coarser at (∆t2 = 10cm). Since all runs performed on this grid were collisionless,
cell-size was actually no constraint and CPU demands were very low at 1000s per
Knudsen value (except for the 10m run, which was set to run for 50000s). The
source was placed at the center of Y and Z at x = 0.0001cm and the pump was set
to be a 99% absorbing surface covering the whole opposing wall (x = xmax).

4.3.2 Grid for slit created by 2D-triangular mesh for

Knudsen-scan

A similar grid, shown in Fig. 4.4 and 4.5, was used to model �ow in the transition
regime through a slit with height h = 3cm (= D, the typical dimension de�ned in

29



0 50 100 150 200 250 300
0

20

40

60

80

100

X[cm]

Y
 [c

m
]

 

 

Figure 4.2: Grid for the free molecular length scan of a rectangular duct (height h = 0.01m
and depth p = 10.37m) generated by the TRIA routine. Two volumes of 1× 1× 10.37m3

are connected by a rectangular duct of �nite length (l = 100cm in this case). The source
is placed in the left hand chamber, far away from the opening of the duct. The pump is
modeled as an absorbing surface in the volume on the right hand side at x = 300cm.
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Figure 4.3: Close-up of the area surrounding a rectangular duct of height h = 1cm (see
Fig. 4.2, showing a �ne discretization of the mesh: ∆t = 1.0cm.

2.5) and width p = 60cm. The connected volumes were 60×60×60cm3. The meshing
was produced to be �ner (∆t1 = 0.03cm) around the edges (giving a resolution of
∆t1/D = 0.01), to resolve larger gradients, medium sized around the the outlet
(∆t2 = 0.2 and ∆t3 = 0.5) (see Fig. 4.5) and large anywhere else (∆t4 = 4cm) (see
Fig. 4.4). Memory requirements were very low (≈ 20MB) and computational e�ort
was moderate at 100 iterations and 500s each, resulting in a total run-time of 14h
per Kn-value.
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Figure 4.4: Grid for a Knudsen scan of a slit/rectangular ori�ce (h/p = 1/20) generated
by the TRIA routine. Two volumes of 60 × 60 × 60cm3 are connected by a rectangular
ori�ce (h = 3cm and p = 60cm). The source was placed at the center of Y and Z at
x = 0.0001cm and the pump was set to cover all walls of the low pressure chamber with
an absorption coe�cient of 100%.
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Figure 4.5: Close-Up of the ori�ce in Fig. 4.4. Three di�erent mesh sizes become apparent:
∆t1 = 0.03cm around the edges, ∆t2 = 0.2 and ∆t3 = 0.5 around the aperture
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4.3.3 Grid for slit created by 3D cartesian mesh

Figure 4.6: Grid for the Knudsen scan of a slit (h/p = 1/60) created by a 3D cartesian
mesh. A high-pressure volume of 23×25×60cm3 is connected to a low pressure volume of
7×25×60cm3 by a rectangular ori�ce of height 1cm. The source is placed in the left hand
chamber, far away from the opening in the center of Y and Z at x = 0.0001. The pump is
modeled as an absorbing surface in the volume on the right hand side at x = 30cm with
an absorption coe�cient of 100%.

Figure 4.7: Close-up of the ori�ce area of the grid for the Knudsen scan of a slit created by
a 3D cartesian mesh (see Fig. 4.6). The �ne mesh resolution was chosen to be ∆x,∆y =
0.05cm.

The grid depicted in Fig. 4.6 was also used to model a slit of height h = 1cm and
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depth p = 60cm. The size of the high-pressure volume was chosen to be x = 25cm
and y = 23cm with X, Y > 20 · h, to minimize in�uence of the boundaries on the
�ow. The mesh-spacing was chosen to be ∆x

h
= ∆y

h
= 0.05 for 0cm < x < 25cm, to

resolve the density pro�le around the outlet (Fig. 4.7), while the mesh-spacing at
25cm < x < 350cm was chosen to be more coarse in order to save memory. Memory
demands were tolerable at 250MB while computational e�ort was high at around
100− 150 iterations and 3000s each, resulting in total run-time of up to 5days per
Kn-value. It should be said, however, that the main reason for high computational
cost was the exploration of low Knudsen numbers (Kn ≈ 0.01), while it was much
cheaper for (Kn > 0.1) with convergence after only a few (0− 30) iterations.

4.4 Grids with apertures of circular cross-section

Grids with circular cross-section generally demanded more CPU-time per iteration,
since the area of the opening was rather small compared to the volume. Therefore
particles would spend a lot of time in the high-pressure volume, before hitting the
ori�ce. On the other hand, pressure ratios were always low "by design". For most
grids (in fact for all except 4.4.2) rotational symmetry was exploited by rotation
along one axis, reducing memory demands quite a bit. The approximation to a
circle was done by 60 straight elements. Since EIRENE demands the computational
volume to be closed, the boundary at the axis was made specular re�ective, or, if not
possible, a specular re�ective wrap was created around it by an additional surface.
Although by strict de�nition these geometries are not circular ori�ces but rather an
annulus, these "wires" were very small compared to the tube (Rwire

Rtube
≈ 10−4) as well

as to the cell-size (Rwire

∆rcell
≈ 10−3). The distorting in�uences could be assumed to

be negligible, especially since �ne gradients occur rather on the outer edge of the
ori�ce, instead of the center.

4.4.1 Grid for tube of �nite length with circular cross-section

generated by a rotated 2D cartesian mesh

The grid depicted in Fig. 4.8 and 4.9 was used to model circular tubes of �nite
length (0cm ≤ l ≤ 10cm). The ratio between the diameter d and the sides of
the high-pressure volume was always ensured to be large compared to the ori�ce
(R/d, Z/d > 20). Again, use was made of the option to split the modeled volume into
areas of high resolution in the area around the ori�ce and low resolution in front of
the pump and far away from the ori�ce. The grid size was set to be ∆r,∆z = 0.05cm
in the high resolution area (see Fig. 4.9) giving a resolution of ∆ r

d
,∆ z

d
= 0.05, and

lower elsewhere. The grid was generated using the option implemented in EIRENE
for 3D-cylindrical coordinates, the rotational axis was located at r = 0.0001cm, and
the discretization in R was set to be equidistant (for the �ne and coarse resolution
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Figure 4.8: The grid for a �nite-length circular tube of length l = 2cm and diameter
d = 1cm. The grid was created as a 2D cartesian mesh and rotated around the Z-axis.
The high-pressure volume of 2π ∗ 10 × 6cm3 is connected to the low pressure volume of
2π ∗ 10 × (20 − l)cm3 by a circular duct. The source is placed in the left hand chamber
at (z = 0.0001cm, r = 0.0001cm). The pump is modeled as an absorbing surface in the
volume on the right hand side at z = 20cm with an absorption coe�cient of 100%, covering
the whole wall. Similar grids were generated using the same mesh, varying the length of
the tube l.
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Figure 4.9: Close-Up of the opening of the �nite-length circular tube Fig. 4.8. The cell-size
was set to be ∆r = 0.05cm, ∆z = 0.05cm in the area around the whole tube

area each). The memory demands were low (≈ 20MB) but demands on CPU time
were quite large (100iterations and 3000s each) especially for l > 1cm .
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4.4.2 Grid for circular ori�ce generated by a 3D-Cartesian

with an additional surface
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Figure 4.10: A 2D projection of the grid for a circular ori�ce with diameter d = 1cm,
generated by a full 3D-Cartesian mesh with an additional surface. The grid was created
as a full 3D cartesian mesh and a di�usely re�ective additional surface with a circular hole
was set at 6.25cm. The high-pressure volume of 6.25 × 6.25 × 6.25cm3 is connected to
the low pressure volume of the same size. The source is placed in the left hand chamber
at (x = 0.0001cm, y = 3cm, z = 3cm). The pump is modeled as an absorbing surface in
the volume on the right hand side at x = 13cm with an absorption coe�cient of 100%,
covering the whole wall.
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Figure 4.11: Close-Up of the ori�ce area for the grid in Fig. 4.10. The grid size was set
to be ∆x = 0.0625cm, ∆y = 0.0625cm, ∆z = 0.0625cm.

Fig. 4.10 and Fig. 4.11 show a 2D view of the fully resolved 3D-Cartesian grid.
The cell-size was (∆x,∆y,∆z = 0.0625cm) in the whole volume for 0cm < x <
8.25cm (see Fig. 4.11) and coarser elsewhere. An additional surface with a circular
ori�ce and diameter d = 1cm was set at x = 6, 25cm. The high-pressure volume
was 6, 25 · 6, 25 · 6, 25cm3, as well as the low-pressure volume. This type of grid
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was the most memory demanding, since no symmetries could be used for averaging
during calculation. Therefore optimization was done for memory. Keeping cell-
size and volume on the minimum memory demands were still around 3GB. The
computational e�ort was quite moderate at 500s and 100 iterations each resulting
in a total run-time of around 14h.

4.4.3 Grid for a circular ori�ce generated by a rotated 2D

triangular mesh
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Figure 4.12: The grid for a circular ori�ce of diameter d = 3cm. The grid was created
as a 2D triangular mesh and rotated around the Z-axis. The high-pressure volume is
2π ∗ 30× 60cm3 as well as the low pressure volume. The source is placed in the left hand
chamber at (z = 0.0001cm, r = 0.0003cm). The pump is modeled as an absorbing surface
in the volume on the right hand side at z = 120cm with an absorption coe�cient of 100%,
covering the whole wall.

Fig. 4.12 and 4.13 show a grid for a circular ori�ce. It is a triangular grid with
variable cell-size, creating two volumes of radius R = 30cm and height Z = 60cm
each, connected by a circular ori�ce of diameter d = 3cm. The cell-size around the
edge of the ori�ce is set to be ∆t1 = 0.03cm giving a resolution of ∆t1/d = 0.01.
The cell size near the rotational axis was chosen to be coarser at ∆t2 = 0.3cm to
counteract the radius to cell-volume dependence and to allow for better statistics.
Throughout the reservoirs, the cell-size was set to be ∆t3 = 4cm. The grid proved to
be quite memory e�cient, though EIRENE, at the current state, is not able to give
any output for more then 9999 triangular cells. It is technically possible, however,
to extend the code to express output for more cells in principle. The demands on
memory were minimal (≈ 10MB). The hardest limitation was the computational
e�ort needed, so for lower Knudsen numbers (Kn < 0.1) CPU-time had to be set to
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Figure 4.13: Close-Up of the opening of the circular ori�ce from the grid in Fig4.12. The
grid size was set to be ∆t1 = 0.03cm, ∆t2 = 0.3cm in the area around the ori�ce and
t3 = 4cm everywhere else.

5000s for 100 iterations each, resulting in a total runtime of about a week (≈ 6days)
for each Knudsen value, to generate a su�cient number of histories.

4.5 Comparison between grid performance

Fig. 4.14 gives a rough overview of the performance of all grids in terms of mem-
ory, CPU-time and resolution. Reducing memory by exploiting symmetries had a
great impact on memory demands. Grids with a circular ori�ce tend to be more
demanding in CPU time since the particles would spend more time in the high
pressure volume compared to the grids with rectangular ori�ces, before crossing the
aperture, simply because the cross section is smaller compared to the surface of
the volume. Grids for ducts and pipes of �nite length also demanded more CPU
time due to interaction with the walls, as well as grids with more cells, because
for smaller cells statistical noise was higher. Obviously, for lower Knudsen numbers
and therefore higher collisionality, demands on CPU were higher as well. As for the
ratio between the dimensions of the high pressure volume and the dimensions of the
aperture, the in�uence of the volume boundaries on the result were kept minimal
while maintaining computational e�ciency. The triangular grids proved to be the
most memory e�cient (although a bit slower), since highly resolved areas could be
de�ned locally, whereas the cartesian grid grids allowed for only two di�erent res-
olutions per dimension. On the other hand, triangular grids were limited by the
maximum number of cells Ncell < 9999.

37



Section in 
this 
chapter

cross-section TRIA/Cartesian/
Cartesian3D

Memory 
Demands

CPU 
demands

Resolution

Sec.:5.2.
1

rectangular TRIA low low for 
linear runs

low

Sec.:5.2.
2

rectangular Cartesian moderate high 0.05

Sec.:5.2.
3

rectangular TRIA low moderate 0.01

Sec.:5.3.
1

circular/rotated Cartesian moderate/low high 0.05

Sec.:5.3.
2

circular Cartesian3D Very high moderate 0.0625

Sec.:5.3.
3

circular/rotated TRIA low very high 0.01

Figure 4.14: A Comparison between the performance of all grids. The resolution is the ratio
between the cell-size ∆x,∆y,∆z,∆t of the �nely meshed area and the typical dimension
D (∆x y z t

D ).
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4.6 Uncertainties

For a veri�cation it is essential to give a measure of the uncertainties of the per-
formed calculations. Critical sources of possible errors were choosing the point of
convergence, in�uence of the grid and, of course, statistical errors when dealing with
Monte-Carlo methods.

4.6.1 Convergence
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Figure 4.15: Example for convergence(3D slit)

Although great care was taken to ensure convergence, it was not always clear when
convergence was reached. Especially in cases with high collisionality, build up to
equilibrium could need a lot of CPU time per iterations, as well as many iterations,
so the convergence would be slow and in some cases not obvious. For high Knudsen
numbers (Kn > 0.1) convergence was reached quickly, usually within 30 iterations
and often even less. Fig. 4.15 shows examples displaying typical behavior. A point
at which convergence was assumed was then identi�ed and an average was taken over
all following results. This procedure showed to yield a standard deviation, slightly
larger then the statistical error σ calculated from the Monte Carlo algorithm. This
di�erence is a consequence of the successive linearization scheme in particular the
�nite cell-size, which ampli�ed the statistical error and caused a slightly �uctuating
equilibrium. Also, each set-up showed speci�c convergence behavior which had to
be veri�ed each time.
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Figure 4.16: The statistical error, calculated by EIRENE, averaged over all cells as well
as the standard deviation of the converged conductance is plotted against the Knudsen
number. The values correspond to a circular tube with length to radius ratio L/R = 1 for
3000s for each iteration.

4.6.2 Statistical error

For the error in the calculation of conductance, the relative standard-deviation of
all converged non-linear runs is taken. At �xed CPU time, the number of parti-
cle histories decreases for lower Knudsen-numbers because more collisions demand
more computational e�ort. The number of histories, also depends on the actual
conductance. In Fig 4.16 the relative standard deviation of conductance is plotted
against the Knudsen number and shows typical behavior for �xed CPU time and
the maximum standard deviation was always 3−5% for low Knudsen numbers. The
standard deviation of the converged conductance surpassed the statistical error for
low knudsen numbers.

4.6.3 In�uence of the grid

The cell-size turned out to be a limiting factor in this validation. In order for the �ow
to develop properly, all gradients must be resolved correctly. To ensure high enough
resolution, cell-size should not surpass the mean free path length. Unfortunately
with increased number of cells, demands in memory and CPU time increased as well.
When using too few cells, calculations would give the correct value for conductance
until a Knudsen number was reached, where the mean free path lenth was smaller
then the cell-size/D -ratio (D is the typical dimension as de�nied in Sec. 2.2) and
then break down. This can be seen from Fig. 4.17, where the same geometry was
scanned with di�erent cell-size/D-ratios. They are marked in corresponding color
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on the Knudsen scale. When using too many, memory demands increased, often
beyond hardware limitations and when cells were too small, the statistical noise
was high and therefore necessary CPU-time was increased as well. Hence, �nding a
reasonable compromise was important.
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Figure 4.17: Cellsize-dependence

Additional uncertainty comes along all toroidally rotated grids, since in those cases
the cell-size varies with R2 and the cells close to the rotational axis are therefore
extremely small. This also results in a higher statistical error and in some cases has
e�ected the outcome of the results. Although the di�erences for most cases were
negligible, this needs to be kept in mind.
Also, because larger reservoir volumes needed more memory and CPU-time, the

volumes were set to a size, where the in�uence was tolerable while still being compu-
tationally e�cient. This usually resulted in a slightly increased �nite pressure ratio
and a slightly increased free-molecular conductance, than what would have been
expected by Eq 2.6. Theses e�ects were the strongest for rectangular ducts but the
o�-set was always kept below 1.5%.
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Chapter 5

Results

For the validation of the distributions calculated by EIRENE, the conductances
calculated for the grids described in the previous chapter have been evaluated and
compared to well documented cases in the literature. All simulations were run
using D2 with correct viscosity, while neglecting energy levels from inner degrees
of freedom. De�nitions of Knudsen numbers have been made consistent with the
convention used for this thesis (See Eq. 2.5). The conductance for �ow into vacuum
of a slit, a circular ori�ce and circular tubes of length-to-diameter-ratios between
0.05 < l/d < 10.0 has been compared for Kn > 0.05. The conductance for �ow at
�nite pressure-ratio of a short tube of length/diameter-ratio l/d = 0.5 compared for
Kn > 0.1. Finally the implemented BGKES extension has been tested, although
not yet fully validated.

5.1 Free molecular length scan of a slit

In the beginning of the validation of EIRENE, the validity of the resulting conduc-
tance was checked for the free-molecular regime, for the case of slits of di�erent
lengths Fig. 5.1, using the grid from Sec. 4.3.1. The results were compared with
di�erent formulas to calculate conductance namely using the analog from electric
conductance Eq. 2.9, applying the original formulas by Knudsen Eq. 2.8 and Smolu-
chowski Eq. 2.10 for in�nitely long slits, and a more correct numerical treatment
performed by Clausing, found in the literature [40]. The agreement with the Claus-
ing data was found to be within 0.3% (except for l = 10m, where agreement was
found to be in between 8% but right between the Clausing and the Smoluchowski
equation), while the statistical error σ calculated by EIRENE was around 0.8%.
The agreement with Eq. 2.9 using the Smoluchowski formula was the worst for
short lengths, but for the very long duct (l = 10m) it agreed with the Clausing data
as well as the EIRENE results, while the Knudsen-formula failed and underestimated
conductance by more then 50%. This surprising e�ect of two errors co-occuring to
give a more realistic result has already been pointed out by Clausing in his orig-
inal paper [21]. Meanwhile, there have been carried out more accurate numerical
calculations, for example Santeler's work [41], using the Clausing integral equation,
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Figure 5.1: Scan of slits of various length-to-height ratios (h = 1cm; 0 < l < 1000cm,
width: p = 10.366m) in the free-molecular regime. Theoretical values are plotted for
comparison. The Conductance calculated by EIRENE agrees very well (within 0.3%) with
the theoretical value given by Clausing [40].

which shows the same results as Clausing's, only with higher accuracy up to 0.03%.
Although highly accurate, these numerical solutions have only produced tabulated
data for �xed geometrical properties, making them quite unhandy for the calculation
of conductance for complex 3-dimensional structures.

5.2 Knudsen scan of a slit

A Knudsen scan was performed for a slit (see Fig. 5.2) using the grid in Sec. 4.3.3.
The agreement with the DMCS-results provided by Felix Sharipov Eq. 2.15 was
very good (< 2%) for all Knudsen numbers (Kn > 0.02) even up to the continuum
regime. A slight overestimation for high Kn could be detected, probably resulting
from the �nite reservoir volume. For Kn < 0.05 the results obtained, showed some
level of scatter resulting from larger statistical error.
A second Knudsen scan was performed for a slit (see Fig. 5.3) using the grid in

Sec. 4.3.2. The agreement was fair (< 5%) for Kn > 0.05 and good for Kn < 0.1
(< 3%). For lower Knudsen numbers the conductance was systematically underesti-
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Figure 5.2: Knudsen scan of a slit (height h = 1cm, width p = 60cm) on a grid with a
cartesian mesh. The agreement was within 2% up to the continuum regime (Kn > 0.02).
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Figure 5.3: Knudsen scan of a slit (height h = 3cm, width p = 60cm) on a grid with a
triangular mesh. The agreement was (< 3%) for Kn > 0.1 and (< 5%) for Kn > 0.05.
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mated, indicating insu�ciency of the grid resolution. Since in�uences from the �nite
reservoir volume could not be totally neglected, the pressure ratio was P2

P1
= 1.3%

and a slight overestimation for high Kn was also observed. Although the grid in-
cluded a �ne resolution area around the edges of the slit, the medium sized resolution
surrounding it, may have prevented an accurate calculation of the �ow pro�le and
therefore an early break down as indicated in Sec. 4.6.3. Unfortunately, because
the current version of EIRENE is unable to produce output for more then 9999
triangles, a �ner grid resolution could not be tested.

5.3 Knudsen scan of a circular ori�ce
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Figure 5.4: Knudsen scan for circular ori�ce (radius R = 0.5cm) performed by 3 di�erent
mesh types. Agreement in between the mesh types is very good for Kn > 0.1. Overall
agreement with the empirical formula Eq. 2.14 by Fujimoto and Usami was within 3% for
Kn > 0.05.

Since EIRENE is highly �exible in generating 3-dimensional meshes, several op-
tions to model a circular ori�ce have been found to produce good results and each
mesh-type has its own advantages. A comparison has been made (Fig. 5.4) between
the option of a rotated triangular grid (Sec. 4.4.3), a cylindrical grid (Sec. 4.4.1) and
a fully resolved 3D cartesian grid including an additional surface with a circular hole
in it (Sec. 4.4.2). Additionally, the proposed formula (Eq. 2.14) by Tetsuo Fujimoto
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and Masaru Usami [6] has been plotted, even though it is a formula derived from
experimental data and therefore only includes a approximation for circular ori�ces
with length l = 0. The comparison shows absolute agreement within statistical er-
ror between the grids and a good agreement with the empirical formula (< 3% for
Kn > 0.05). In the transition regime (0.5 < Kn < 10) the conductance seemes to be
systematically overestimated by a few percent. It can be seen that the cylindrical
grid and the triangular grid give scattered results for Kn < 0.05, yet indicating a
slight underestimation of the "overshoot", a local maximum between the viscous
and inviscid regime, with slightly higher conductance than what the Euler equation
predicts (See Fig. 2.4). Surprisingly the result of the fully resolved 3D-cartesian
grid seems to resolve the "overshoot" and remains to produce reasonable results
even though the cell-size was the coarsest and should not have allowed resolution
for Kn < 0.0625.

5.4 Circular Pipe: Lengthscan

Due to the problems with the other grids (memory demands, limited cell-number
and CPU time e�ciency), the cylindrical grid (Sec. 4.4.1) was chosen to perform a
comparison with empirical data for Knudsen scans of circular pipes with di�erent
length-diameter ratio L/2R (see Fig. 5.5). The agreement is good, varying slightly
for each pipe-length. Very short pipes (L/D < 0.2) were found to have the weakest
agreement(< 4− 6%), overestimating in the transition regime (0.5 < Kn < 10) and
underestimating in the continuous regime (Kn < 0.5). This might be due to poor
resolution of the pipe length, yielding only 1,2 or 4 cells over the whole pipe length.
For medium length pipes the agreement was found to be good (≈ 3%) for Kn > 0.05.
Generally it was within standard deviation but with a trend for underestimation at
lower Knudsen numbers Kn < 0.1.

The longer pipes with L/2R > 2.0 showed again only fair agreement (< 5%)
for Kn > 0.05 and tended to underestimate over all Kn. Underestimation for long
pipes could be a result of large �uctuations due to weak statistics and therefore poor
convergence, since ducts of �nite length show increased collisionality and consume
generally more CPU time.

5.5 Conductance at �nite pressure ratios

An attempt was also made to compare conductances at �nite pressure-ratios P2

P1
,

on the cylindrical grid 4.4.1 with L/2R = 0.5. To vary the pressure ratio, the
absorption coe�cient of the pump was varied for each scan. Because there was
no option to stabilize the pressure ratio between the volumes at a steady value,
averages had to be taken. The pressure ratio would not only vary from iteration to
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Figure 5.5: Knudsen scan for circular tubes of di�erent L/R ratio (R = 0.5cm; 0.05cm <
L < 10cm). The agreement was generally between 2 − 6%, depending on L/R, mostly
within standard deviation for Kn > 0.05. The dotted grey vertical line marks the Kn
where cell-size≈mean free-path.

iteration, but also within each scan. For lower pressure ratios, the variation was not
as wide, but still signi�cant as can bee seen in Fig. 5.6, but in particular the high
pressure ratio would vary from 30% for high Knudsen values to around 65% for the
lowest Knudsen value. Non the less the data shows good agreement with the data
by Fujimoto and Usami (see Fig 5.7) up to a Knudsen number of Kn > 0.1 and for
the data from Varoutis [9] the agreement is always within 4%.

Because of the great uncertainty involved in averaging the pressure ratios, an
additional comparison was made with a semi-empirical formula from Sreekanth Eq.
2.16 in Fig. 5.8. Although Eq. 2.16 is claimed to be valid for 0.1 < Kn < 1.7,
the formula has been shown in [9] to overestimate for low pressure ratios P1

P2
and

small Knudsen numbers. Since Eq. 2.16 is depending on the pressure-ratio, the
actual value from each Knudsen value was used for the evaluation, and pressure was
only averaged for each Knudsen value. The data shows good agreement with the
empirical formula Eq. 2.16 for Kn > 0.1772 within less than 5%. The value for very
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Figure 5.6: Normalized conductance (W = C/CFM0) calculated by EIRENE is plotted
against KnFU for L/R = 1. Several pressure ratios (P2/P1) are depicted. The error given
for each pressure consists of the absolute standard deviation of the scan, followed by the
absolute standard deviation within each iteration for the lowest Kn value, if it was larger
then 1%. Additionaly, selected W values are highlighted for 1/KnFU = 10 from the scans
with average pressure ratio P2/P1 = 0%,22% and 49%, corresponding to the marked values
in Fig. 5.7. (Please note that the convention for the Knudsen number KnFU = 1

2Kn by
Fujimoto and Usami [6] is applied in this graph for easier comparison with their results!).
Also two scans from [9] have been included, for P2/P1 = 10% and 50%. The agreement is
very good for 1/KnFU = 20, corresponding to Kn > 0.1. The disagreement is always less
then 4%.

low pressure ratio, showed the worst agreement, although the pressure ratio was
the most stable and comparision with the more recent data [6] showed very good
agreement up to Kn > 0.05 (see Fig 5.5). This is in accordance with [9] and can be
explained by the empirical nature of Eq. 2.16, where low pressure ratios were not
taken into account. For the comparison a normalized conductance W (1 − P2

P1
) has
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Figure 5.7: The original plot of a Knudsen scan for di�erent pressure ratios P1−P2
P1

by
Fujimoto and Usami taken from [6] for a short pipe with L/R = 1. Additionally the
corresponding values for P2/P1 = 0%,22% and 49% are highlighted for easy comparison
with Fig. 5.6.

been applied, corresponding to the convention used by Varoutis [9].

W (1− P2

P1

) =
CP1/(P1 − P2)

CFM0

(5.1)
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Figure 5.8: Results of EIRENE (marked with symbols) for a slit (L/R = 1) are compared
against the empirical formula by Sreekanth 2.16. A normalized conductance W (1 − P2

P1
)

is plotted against the rarefaction parameter δ =
√
π

2 Kn−1 for easier comparison with [9].
The agreement is within 5% for δ < 5 or Kn > 0.1772, except for low pressure ratios. The
legend gives the values of the averaged pressure for each scan, to allow a comparision with
Fig. 5.6, but Eq. 2.16 is evaluated using the actual corresponging pressure ratio for each
Knudsen value.

The scans were computationally quite expensive, because of high collisionality in
both volumes and longer histories due to lower pumping, which resulted in very
poor performance for Kn < 0.1 and weak convergence, even for long CPU time
( 2000s× 100iterations).
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5.6 The BGKES extension

The EIRENE-BGK code was successfully extended to include the BGKES collision
model described in Sec. 3.4. A comparison has been made also including the case
where the free parameter b (see Eq. 3.31 ) was chosen to replicate the results from
the BGK model (b = 0). The conductances calculated by the new collision model
were able to replicate the conductance calculated by the currently implemented
model, within standard deviation (see Fig. 5.9 and 5.10), indicating the correctness
of the extension, but no improvement in accuracy of conductance was found.
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Figure 5.9: Comparison of BGK and BGKES extension, for a circular ori�ce (R = 0.5cm),
the pressure ratio was P1
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Figure 5.10: Comparison of BGK and BGKES extension, for a slit (h = 1cm, P = 60cm)
the pressure ratio was P1

P2
= 0.02

Unfortunately �nding a well documented temperature pro�le for �ows into vacuum
to compare with was di�cult, since the temperature pro�les are highly depended on
any �nite background pressure [9]. Thus so far only a qualitative statement can be
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made. The temperature pro�les produced, showed only little di�erences for the free
parameter b = −1

2
, resulting from a realistic Prandtl number, while the temperature

pro�le of the current model was reproduced for b = 0, as expected (compare Fig.
5.12, 5.11). The di�erences between the temperature pro�les are within statistical
uncertainty, although a slight di�erence in shape can be observed in Fig. 5.11. Are
better test case needs to be examined for a �nal validation of the new model for a
correct Prandtl number (Pr = 2/3), bnd it might give a more realistic calculation
of the temperature distributions for future applications.

Figure 5.11: The temperature pro�le along the mid-axis of a slit (h = 1cm, p = 60cm),
generated by the cartesian grid described in 4.3.3. The agreement between the BGKES
with b = 0 and th BGK is very good. The BGKES approximation with b = −0.5 shows a
slightly di�erent shape but within statistical error. Since computational time was scarce,
statistical error is large far away from the ori�ce. Background density in the downstream
volume is not negligible and has a very strong e�ect on the temperature pro�le.

The e�ciency of the new model is somewhat worse then of the current model,
using about 20% as much CPU time for the same number of histories, but the cur-
rent extension is not yet optimized for computational e�ciency. Another problem
occurred for the transformation when the free path lengths was sampled to end in a
"dead" (or empty) cell. The temperature there is read as zero, and the transforma-
tion matrix will then always return a zero velocity, causing the particle to "freeze",
and stop the whole run. This problem was solved by skipping the transformation
and thereby assuming regular BGK-like distribution in the "dead" cells.
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Figure 5.12: Temperature pro�les for a slit (h = 1cm, P = 60cm) in the BGK approxi-
mation (a)), in the BGKES approximation, with b=0 (b)), in the BGKES approximation,
with b = −1/2 (c)). A slight di�erence can be observed, but all within statistical noise.
The pro�les are taken at Kn = 9.5 or δ = 0.093, the pressure ratio was at P1

P2
= 0.02
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Chapter 6

Summary and Conclusion

In magnetic con�ned fusion experiments, neutral particles are essential in control-
ling the plasma properties. Since under high vacuum condition, especially in the
transition between the �uid and the collision-less limitss, analytical approaches fail
in calculating correct neutral particle distributions and numerical approaches are re-
quired. Since the numerical calculation of �ows in complex 3 dimensional structures
under high vacuum conditions is impracticable even with modern day computer
power, alternative methods are being explored.

In this thesis the Monte Carlo code EIRENE has been benchmarked for the cal-
culation of conductances against data obtained from experiments as well Direct
Simulation Monte Carlo (DSMC) calculations. EIRENE is a Monte Carlo solver
of the Boltzmann equation in the well validated BGK approximation, where the
complex collision integral of the Boltzmann equation has been replaced by a term,
assuming local relaxation to a drifting Maxwellian distribution.

The resulting comparison with the data obtained from experiments as well as
DSMC calculations proved to yield satisfying results for �ow into vacuum for Knud-
sen numbers up to the continuum regime Kn > 0.05. The maximum deviation was
found to be 5% and usually even less. It can partly be attributed to inevitable
external factors, like the �nite reservoir volume or slow convergence. Computation
time highly depended on the particular case but results could be aquired within a
reasonable amount of time. For Kn > 0.1 computation time was between a few
hours and a day, for lower Kn it was up to one week in extreme cases. For �ow at
�nite pressure ratio, agreement was found to be within 5% as well, for Kn > 0.1.
It can be con�dently said that, given the proper grid resolution and computational
resources, conductances calculated by EIRENE will be in general accurate to a few
percent. However, it should be noted, that EIRENE was originally not designed
for the calculations attempted in the continuous regime at low knudsen numbers
Kn < 0.1 but still provides good results.

As part of this thesis, the code was extended with a new collision model, to solve
the Boltzmann equation in the BGKES approximation. The resulting conductances
showed no di�erence to the current model, but the temperature pro�les appeared to
be more realistic. A thorough validation of the temperature pro�les, produced by the
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extended code has yet to be done. A more realistic determination of temperature
distributions of neutral particles could be very useful for to determine the heat
transports in a Divertor con�guration. Overall the feasibility to include transformed
collision models has been shown and might even be extended to include other similar
models.
Finding appropriate meshes for the calculations and optimzing them in terms of

memory and computational e�ciency was crucial. Grid resolution showed to have an
great impact on the performance of the calculation and limit the range of Knudsen
numbers where a valid result can be expected. For low grid resolution, higher �ows
at higher densities could not appropriately be resolved and for resolutions too high,
the calculations became computationally too ine�cient. Since for each grid, the
speci�c conditions had to be found, investigations of the properties of the grids were
necessary, to minimize external e�ects. The grids were documented in great detail
and represent an optimum in resolution, computational e�ciency and accuracy.
As EIRENE is considered work-in-progress by the authors D.Reiter et al. from

the Institute of Energy Research, Forschungszentrum Jülich GmbH, it is constantly
extended and validated, which is part of the concept of high �exibility. Although
the high �exibility makes EIRENE extremely useful for a multitude of applications,
especially in fusion research as the neutral-plasma coupled version B2-EIRENE, it
comes at a cost of complexity. Learning how to use EIRENE properly and debugging
the version was therefore a major part of this thesis.
As a conclusion it can be stated that in combination with the TRIA routine,

EIRENE represents an accurate and computationally e�cient tool for the calculation
of particle transport in 3 dimensional structures of almost arbitrary complexity.
Since a parallelized version has been recently released, the e�ciency will increase
even further, making EIRENE a convenient tool for calculating vacuum gas �ows.
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Chapter 7

Appendix

7.1 Table for parameters in Fujimoto Usami

formula

Figure 7.1: Table from [6] for Eq. 2.14
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7.2 Example of formated Input-File

*** 1. DATA FOR OPERATING MODE

2 1 500 10111 1 1 0 0

0 1 0 1 1 9 0 0 0

FFFTF FFFFF FFFFF

*** 2. DATA FOR STANDARD MESH

1 1 1

T

TFFFF FFFFF

145 133 0 0

0.0000E 00 8.2500E 00 1.3000E 01

T

TFFFF

102 101

0.0000E 00 6.2500E 00 6.2501E 00

TFFFF

TFFFF

102 101 0

0.0000E 00 6.2500E 00 6.2501E 00

FFFFF

0

FFFFF

0

*** 3a. DATA FOR NON DEFAULT STANDARD SURFACES, NSTSI=

10

* outer contour, wall, reflecting, x=0;

1 1 1

1 0 0 0 0 2 0 0

SURFMOD_C_300_K

* outer contour, wall, reflecting, x=1.5m

2 1 145

1 0 0 0 0 2 0 0

SURFMOD_C_300_K

* outer contour, wall, reflecting, y=0

3 2 1 1 145 1 1 1 102

1 0 0 0 0 3 0 0

SURFMOD_C_300_K

* outer contour, wall, reflecting, y=40cm

4 2 102 1 145 102 102 1 102

1 0 0 0 0 3 0 0

SURFMOD_C_300_K
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* outer contour, wall, reflecting, z=0

5 3 1 1 145 1 102 1 1

1 0 0 0 0 4 0 0

SURFMOD_C_300_K

* outer contour, wall, reflecting, z=40cm

6 3 102 1 145 1 102 102 102

1 0 0 0 0 4 0 0

SURFMOD_C_300_K

* inner contour, slitwall, reflecting, x=21cm, 0m<y<9cm, 0cm<z<40cm

7 1 101 101 101 1 43 1 102

1 0 0 0 0 2 0 0

SURFMOD_C_300_K

* inner contour, slitwall, reflecting, x=21cm, 11cm<y<40cm,0cm<z<40cm

8 1 101 101 101 59 102 1 102

1 0 0 0 0 2 0 0

SURFMOD_C_300_K

* inner contour, slitwall, reflecting, x=21cm, 0m<y<9cm, 0cm<z<40cm

9 1 101 101 101 43 59 1 43

1 0 0 0 0 2 0 0

SURFMOD_C_300_K

* inner contour, slitwall, reflecting, x=21cm, 11cm<y<40cm,0cm<z<40cm

10 1 101 101 101 43 59 59 102

1 0 0 0 0 2 0 0

SURFMOD_C_300_K

*** 3B. DATA FOR ADDITIONAL SURFACES

2

* additional surface n. 1 crypump

2.10000E+00 1.00000E+00 1.00000E-05

1 0 0 0 0 3 0 0 0

+1.29999E+01 0.00001E+00-1.00000E+20+1.29999E+01 6.24999E+00+1.00000E+20

1 0 0 0

+1.20600E+03-2.60000E-02+0.00000E+00+0.00000E+00+0.00000E+00+0.00000E+00

+1.00000E+00+0.10000E-01+0.00000E+00+1.00000E+00+5.00000E-01+1.00000E+00

* additional surface n. 1 reflecting wrap

-1.00000E+01 1.00000E+00 1.00000E-05

1 0 0 0 0 3 0 0 0

6.24999E+00-1.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

-1.92812E+01 0.00000E 00 6.25000E 00+6.25000E 00 0.00000E 00-1.00000E 00

-1.00000E 00 0.00000E 00 0.00000E 00 0.00000E 00

1 0 0 0

+1.20600E+03-2.60000E-02+0.00000E+00+0.00000E+00+0.00000E+00+0.00000E+00
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+1.00000E+00+1.00000E 00+0.00000E+00+1.00000E+00+5.00000E-01+1.00000E+00

*** 4. DATA FOR SPECIES SPECIFICATION AND ATOMIC PHYSICS MODULE

* ATOMIC REACTION CARDS NREACI=

1

1 CONST H.2 EL 4 4

-20.9450E 00 0.2500E 00 0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00

0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00

*NEUTRAL ATOMS SPECIES CARDS: NATMI SPECIES ARE CONSIDERED, NATMI=

1

1 H 2 1 1 0 1 -1 2 -1

* NEUTRAL MOLECULES SPECIES CARDS: NMOLI SPECIES ARE CONSIDERED, NMOLI=

1

1 H2(V=?) 4 2 2 0 1 1 0 1

1 214 214 112 01001 000 112

0.0000E 00 0.0000E 00

* TEST ION SPECIES CARDS: NIONI ION SPECIES ARE CONSIDERED, NIONI=

1

1 H2+ 4 2 2 1 0 -1 0 -1 -1

*** 5. DATA FOR PLASMA-BACKGROUND

*BULK ION SPECIES CARDS: NPLSI ION SPECIES ARE CONSIDERED, NPLSI=

2

1 H+ 2 1 1 1 1 -1 2 0

2 H2(B) 4 2 2 0 1 -1 0 0

3 -3 3 3 3 3 0 0 0 0 0 0

1.0000E-02 1.0000E-02 0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00

1.0000E-02 1.0000E-02 0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00

1.0000E-02 1.0000E-02 0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00

1.0000E 01 1.0000E 01 0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00

1.0000E 01 1.0000E 01 0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00

0.0000E 00 0.0000E 00 0.0000E 00

0.0000E 00 0.0000E 00 0.0000E 00

0.0000E 00 0.0000E 00 0.0000E 00

0.0000E 00 0.0000E 00 0.0000E 00

1.0000E 00 1.0000E 00 0.0000E 00

1.0000E 00 1.0000E 00 0.0000E 00

0.1000E 00 0.1000E 00 1.0000E 00 1.0000E 00 0.0000E 00

*** 6. DATA FOR GENERAL REFLECTION MODEL

TF

1.0000E 00 1.0000E 00

1.0000E 00

1.0000E 00

1.0000E 00 1.0000E 00
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1.0000E 00

1.0000E 00 1.0000E 00 0.1000E 00

SURFMOD_C_1150_K

1 00 2 2

1.20600E+03-1.00000E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

1.00000E+00 1.00000E+00 0.00000E+00 1.00000E+00 5.00000E-01 1.00000E+00

1.00000E+00 0.00000E-02 0.00000E+00

SURFMOD_C_300_K

1 00 2 2

1.20600E+03-0.02600E 00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

1.00000E+00 1.00000E+00 0.00000E+00 1.00000E+00 5.00000E-01 1.00000E+00

1.00000E+00 0.00000E-02 0.00000E+00

*** 7. DATA FOR PRIMARY SOURCES OF NEUTRALS. NSTRAT =

2

1 1

0.0000E 00

* Point Source, 300 K, H2 Molecules, at (x,y,z) = (208, 1.74, 0 ) mid-plane

FFFFF

-1 -1 1 1

1.0000E+02

FTFFF

1

TFFFF

1

1

1.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00

0

0.0001E 00 3.0001E+00 3.0001E 00 +1.0000E 00 0.0000E 00 0.0000E 00

0.0260E 00 0.0000E 00

1.0000E 00 9.0000E 01

* Point Source, 300 K, H2 Molecules, at (x,y,z) = (200, 110, 0 )

FFFFF

0 1001 1 1

1.4960E+05

FTFFF

1

TFFFF

1

1

1.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00

0

1.5000E 02 -0.9000E+02 0.0000E 00 0.0000E 00 0.0000E 00 0.0000E 00
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-0.0260E 00 0.0000E 00

1.0000E 00 9.0000E 01

*** 8. ADDITIONAL DATA FOR SPECIFIC ZONES

0

*** 9. DATA FOR STATISTICS AND NONANALOG METHODS

FFFFF FFFFF FFFFF FFFFF FFFFF FFFFF FFFFF FFFFF FFFFF FFFFF FFFFF FFFFF

0

0 0

1.0000E 03 1.0000E-02 0.0000E 00 7.5000E 02 2.5000E 05 1.0000E-08

0.2000E 01

*CARDS FOR EMPIRICAL STANDARD DEVIATION, NSIG, NSIGW =

0 0 0 0 0

1 2

*** 10. DATA FOR ADDITIONAL VOLUME AND SURFACE AVERAGED TALLIES

0 0 4 0 0 0

*** 10A.

*** 10B.

*** 10C.

<1,86>/<1,2>

VX, Molecules

H2 CM/S

<1,90>/<1,2>

VY, Molecules

H2 CM/S

(<1,62>*<1,62>+<2,62>*<2,62>)**<0.5>

V-POL, Molecules

H2 CM/S

<1,6>/<1,2>*<0.6667>

Mol. Temperature

H2 eV

*** 10D.

*** 10E.

*** 11. DATA FOR NUMERICAL AND GRAPHICAL OUTPUT

ftfff tffft fftff ttttt FFFFF fffff fffff

tffff fffff fffff FFFFF

1

2 2

1

1

TTTTT fftFF FFFFF FFFFF

1 3019 1

FFFFF
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FFFFF

FFFFF

FFFFF

FFFFF

f radial surfaces 3 1 1 4 4 11 11

f poloidal surfaces 3 1 1 3 4 11 11

f toroidal surfaces 3 1 1 3 4 11 11

1.5000E 01 1.5000E 01 1.5000E 01 0.0000E 02

1.5000E 02 5.0000E 01 5.0000E 01 1.5000E 02 5.0000E 01 5.0000E 01

1.0000E 01 1.0000E 01

1 0 0 0 0 0 0 0 0 0 1

0

*** 12. DATA FOR DIAGNOSTIC MODULE. FIRST: CX SPECTRA

0 0

*** 13. DATA FOR NONLINEAR AND/OR TIME DEP. MODE

0

*** 14. DATA FOR INTERFACING

0

0 0 0

7.3 Implemented Code

In the routine /iterate uptbgk.f, the velocity moments (compare Eq.3.3) are inte-
grated. For the extension, the number of tallies was expanded and the vivj moments
(

WTRVXY, WTRVXZ, WTRVXY

) added.

changes in Eirene/iterate/uptbgk.f

CMS for ES-BGK

IBGK=NPBGK

IUPD1=(IBGK-1)*9+1

IUPD2=(IBGK-1)*9+2

IUPD3=(IBGK-1)*9+3

IUPD4=(IBGK-1)*9+4

IUPD5=(IBGK-1)*9+5

IUPD6=(IBGK-1)*9+6

IUPD7=(IBGK-1)*9+7

IUPD8=(IBGK-1)*9+8
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IUPD9=(IBGK-1)*9+9

LMETSP(NMTSP+IUPD1)=.TRUE.

LMETSP(NMTSP+IUPD2)=.TRUE.

LMETSP(NMTSP+IUPD3)=.TRUE.

LMETSP(NMTSP+IUPD4)=.TRUE.

LMETSP(NMTSP+IUPD5)=.TRUE.

LMETSP(NMTSP+IUPD6)=.TRUE.

LMETSP(NMTSP+IUPD7)=.TRUE.

LMETSP(NMTSP+IUPD8)=.TRUE.

LMETSP(NMTSP+IUPD9)=.TRUE.

DO 51 I=1,NCOU

DIST=CLPD(I)

WTRV=WV*DIST*VEL

WTRVV=WTRV*VEL

WTRVX=WTRV*VELX

WTRVY=WTRV*VELY

WTRVZ=WTRV*VELZ

WTRVXX=WTRVV*VELX*VELX

WTRVYY=WTRVV*VELY*VELY

WTRVZZ=WTRVV*VELZ*VELZ

WTRVXY=WTRVV*VELX*VELY

WTRVXZ=WTRVV*VELX*VELZ

WTRVYZ=WTRVV*VELY*VELZ

IRD=NRCELL+NUPC(I)*NR1P2+NBLCKA

BGKV(IUPD1,IRD)=BGKV(IUPD1,IRD)+WTRVX

BGKV(IUPD2,IRD)=BGKV(IUPD2,IRD)+WTRVY

BGKV(IUPD3,IRD)=BGKV(IUPD3,IRD)+WTRVZ

BGKV(IUPD4,IRD)=BGKV(IUPD4,IRD)+WTRVXX

BGKV(IUPD5,IRD)=BGKV(IUPD5,IRD)+WTRVYY

BGKV(IUPD6,IRD)=BGKV(IUPD6,IRD)+WTRVZZ

BGKV(IUPD7,IRD)=BGKV(IUPD7,IRD)+WTRVXY

BGKV(IUPD8,IRD)=BGKV(IUPD8,IRD)+WTRVXZ

BGKV(IUPD9,IRD)=BGKV(IUPD9,IRD)+WTRVYZ

CMS END

In the /iterate/modbgk.f routine, the moments were calculated to the pressure-
tensor and �nally transformed according to Eq. 3.34.

Changes in Eirene/iterate/modbgk.f
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CMS - pressure tensor

PRXX(IRAD)=BGKV(IUP4,IRAD)-VXIN(IPLSV,IRAD)**2*

. PDEN(IRAD)

PRYY(IRAD)=BGKV(IUP5,IRAD)-VYIN(IPLSV,IRAD)**2*

. PDEN(IRAD)

PRZZ(IRAD)=BGKV(IUP6,IRAD)-VYIN(IPLSV,IRAD)**2*

. PDEN(IRAD)

PRXY(IRAD)=BGKV(IUP7,IRAD)-VXIN(IPLSV,IRAD)*

. VYIN(IPLSV,IRAD)*PDEN(IRAD)

PRXZ(IRAD)=BGKV(IUP8,IRAD)-VXIN(IPLSV,IRAD)*

. VZIN(IPLSV,IRAD)*PDEN(IRAD)

PRYZ(IRAD)=BGKV(IUP9,IRAD)-VYIN(IPLSV,IRAD)*

. VZIN(IPLSV,IRAD)*PDEN(IRAD)

CMS END

C NEW N

DIIN(IPLS,IRAD)=PDEN(IRAD)

RRN=RRN+PDEN(IRAD)*VOL(IRAD)

C RRM=?

RRE=RRE+EDEN(IRAD)*VOL(IRAD)

CMS

c ES transformation matrix

c TRCL(1,IRAD)=lambda_11, TRCL(2,IRAD)=lambda_21, TRCL(3,IRAD)=lambda_22,

c TRCL(4,IRAD)=lambda_31, TRCL(5,IRAD)=lambda_32, TRCL(6,IRAD)=lambda_33

c ESCF=ES-coefficient=-1/2;

c TRCL in cm**2/s**2

c TRCL(1,IRAD)=(1-ESCF)*TIIN(IPLSTI,IRAD)/FACT1/2+

c . ESCF*PRXX(IRAD)/DIIN(IPLS,IRAD)+EPS60

TRCL(2,IRAD)=ESCF*PRXY(IRAD)/(DIIN(IPLS,IRAD))

c TRCL(3,IRAD)=(1-ESCF)*TIIN(IPLSTI,IRAD)/FACT1/2+

c . ESCF*PRYY(IRAD)/DIIN(IPLS,IRAD)+EPS60

TRCL(4,IRAD)=ESCF*PRXZ(IRAD)/(DIIN(IPLS,IRAD))

TRCL(5,IRAD)=ESCF*PRYZ(IRAD)/(DIIN(IPLS,IRAD))

c TRCL(6,IRAD)=(1-ESCF)*TIIN(IPLSTI,IRAD)/FACT1/2+

c . ESCF*PRZZ(IRAD)/DIIN(IPLS,IRAD)+EPS60

TRCL(1,IRAD)=TIIN(IPLSTI,IRAD)/FACT1/2

TRCL(3,IRAD)=TIIN(IPLSTI,IRAD)/FACT1/2

TRCL(6,IRAD)=TIIN(IPLSTI,IRAD)/FACT1/2
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c Transformation of transformation matrix: X_ij=sum(a_ik*ajk)=lambda_ij ; X_ij

c dreiecksmatrix;

c coefficient ADIN(1,IRAD)=a_11; ADIN(2,IRAD)=a_21; ADIN(3,IRAD=a_22; etc analog TRCL

c to be sent to veloel.f; used to transform samples from maxwellian, to samples from ES

c ADIN in cm/s

ADIN(1,IRAD)=SQRT(TRCL(1,IRAD))

ADIN(2,IRAD)=TRCL(2,IRAD)/(ADIN(1,IRAD))

ADIN(3,IRAD)=SQRT(TRCL(3,IRAD)-ADIN(2,IRAD)**2)

ADIN(4,IRAD)=TRCL(4,IRAD)/(ADIN(1,IRAD))

ADIN(5,IRAD)=(TRCL(5,IRAD)-ADIN(4,IRAD)*

. ADIN(2,IRAD))/ADIN(3,IRAD)

ADIN(6,IRAD)=SQRT(TRCL(6,IRAD)-ADIN(4,IRAD)**2-

. ADIN(5,IRAD)**2)

c if ADIN NaN set 0

IF (ADIN(1,IRAD) .NE. ADIN(1,IRAD)) THEN

ADIN(1,IRAD)=0

ADIN(2,IRAD)=0

ADIN(3,IRAD)=0

ADIN(4,IRAD)=0

ADIN(5,IRAD)=0

ADIN(6,IRAD)=0

ELSE IF (ADIN(2,IRAD) .NE. ADIN(2,IRAD)) THEN

ADIN(1,IRAD)=0

ADIN(2,IRAD)=0

ADIN(3,IRAD)=0

ADIN(4,IRAD)=0

ADIN(5,IRAD)=0

ADIN(6,IRAD)=0

ELSE IF (ADIN(3,IRAD) .NE. ADIN(3,IRAD)) THEN

ADIN(1,IRAD)=0

ADIN(2,IRAD)=0

ADIN(3,IRAD)=0

ADIN(4,IRAD)=0

ADIN(5,IRAD)=0

ADIN(6,IRAD)=0

ELSE IF (ADIN(4,IRAD) .NE. ADIN(4,IRAD)) THEN

ADIN(1,IRAD)=0

ADIN(2,IRAD)=0
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ADIN(3,IRAD)=0

ADIN(4,IRAD)=0

ADIN(5,IRAD)=0

ADIN(6,IRAD)=0

ELSE IF (ADIN(5,IRAD) .NE. ADIN(5,IRAD)) THEN

ADIN(1,IRAD)=0

ADIN(2,IRAD)=0

ADIN(3,IRAD)=0

ADIN(4,IRAD)=0

ADIN(5,IRAD)=0

ADIN(6,IRAD)=0

ELSE IF (ADIN(6,IRAD) .NE. ADIN(6,IRAD)) THEN

ADIN(1,IRAD)=0

ADIN(2,IRAD)=0

ADIN(3,IRAD)=0

ADIN(4,IRAD)=0

ADIN(5,IRAD)=0

ADIN(6,IRAD)=0

END IF

CMS END

In the particle-tracing/veloel.f the Samples from a 3-D Maxwell distribution are
transformed by the transformation coe�cient aij in accordance with Eq. 3.36.

%changes in Eirene/particle-tracing/veloel.f

C SAMPLE FROM 3D MAXWELLIAN

VXN=FG1(INIV2)

VYN=FG2(INIV2)

VZN=FG3(INIV2)

INIV2=INIV2-1

CMS - transform 3D-gauss samples with a_ij(ES)

c to velocity relative to background
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c check if ADIN = 0

TIILIM=ADIN(1,K)+ADIN(2,K)+ADIN(3,K)

.+ADIN(4,K)+ADIN(5,K)+ADIN(6,K)

IF (TIILIM .NE. 0) THEN

CHI1=VXN

CHI2=VYN

CHI3=VZN

VXN=(ADIN(1,K)*CHI1)

VYN=(ADIN(2,K)*CHI1+ADIN(3,K)*CHI2)

VZN=(ADIN(4,K)*CHI1+ADIN(5,K)*CHI2+ADIN(6,K)*

. CHI3)

c normalize with respect to thermal velocity

NORMALIZE=SQRT(VXN**2+VYN**2+VZN**2)/SQRT(CHI1**2+CHI2**2+CHI3**2)

VXN=VXN/NORMALIZE

VYN=VYN/NORMALIZE

VZN=VZN/NORMALIZE

END IF

CMS END
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