
On the bootstrap current in stellarators and tokamaks

P. Helander, J. Geiger and H. Maaßberg

Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany

The expression for the long-mean-free-path limit of the bootstrap current in stellara-

tors is rederived in such a way that the expansion procedure is identical to that used

in the corresponding calculation for a tokamak. In addition, the first correction due to

finite collisionality is calculated and shown to vanish in quasi-isodynamic configurations

without net current. This correction, which is proportional to the square root of the

collisionality, is found to compare well with a numerical solution of the first-order drift

kinetic equation in spherical tokamak geometry. Numerically, it appears that there is a

similar correction in general stellarator geometry, which however depends on the value

of the radial electric field.
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1 Introduction

The bootstrap current was predicted and calculated for tokamak geometry four decades

ago by Galeev [1] and Bickerton, Connor and Taylor [2]. The latter also patented it but

the patent has long expired. Experimentally, it was discovered only in the mid 1980’s [3]

but has since then proven to be of great importance to both tokamaks and stellarators.

In tokamaks, it can contribute significantly to the total plasma current and thereby to

confinement, whilst the bootstrap current in stellarators can either increase or reduce

the rotational transform ι. In devices with small magnetic shear, it can significantly

affect the radial ι-profile and introduce unwanted low-order rational surfaces into the

plasma. It can also interfere with island divertor operation.

A proper calculation of the bootstrap current in stellarator geometry was first done

by Shaing and Callen [4], using the Hirshman-Sigmar moment method, which was

followed by a more direct calcuation by Boozer and Gardner [5]. Both these derviations

are complicated, and it is not entirely clear whether they actually give the same result.

Therefore, a more direct calculation is presented in Secs. II-IV below, which arrives

at the same result as Shaing and Callen but without using the moment formalism.

In addition, the present calculation has the merit of being identical in tokamaks and

stellarators, since it does not rely on an expansion characteristic of the 1/ν-regime

of collisionality peculiar to stellarators and used in Refs. [6, 7]. In Sec. V, the first

correction due to finite collisionality is discussed. This correction, which was first

calculated by Hinton and Rosenbluth, is proportional to the square root of the collision

frequency and tends therefore to be important even in fairly low-collisionality plasmas.

The Hinton-Rosenbluth calculation was performed for the case of a large-aspect-ratio

tokamak with circular flux surfaces and is here generalized to arbitrary axisymmmetric

geometry. As shown in Sec V.B, it is then also relevant to quasi-isodynamic stellarators.

We also compare the analytical result with a numerical solution of the drift kinetic

equation in Sec. VI and find excellent agreement in the appropriate collisionality range.

In the penultimate section, we finally briefly discuss the collisionality dependence of

the bootstrap current in a classical stellarator.
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2 Adjoint equation

The first-order drift kinetic equation for each species a is

v‖∇‖fa1 − Ca(fa1) = −vda · ∇fa0 −
eav‖∇‖φ1

Ta
fa0, (1)

where we have neglected any effect of the radial electric field arising through a term

vE · ∇fa1, which is often kept in neoclassical stellarator calculations. The gradient is

taken holding the velocity v and the normalized magnetic moment λ = v2
⊥/v

2B fixed,

so that the mirror force is contained in the first term in Eq. (1). The bootstrap current

is found from the odd part (in v‖) of the distribution function,

J‖ =
∑

a

Ja‖ =
∑

a

ea

∫

v‖fa1d
3v.

The variation of the electrostatic potential φ1 within the magnetic surface is readily

eliminated by writing

fa1 = ha −
eaφ1

Ta
fa0,

so that the equation for ha is the same as that for fa0 but without the last term in

Eq. (1). For a pure plasma with large electron-ion mass ratio, we obtain

v‖∇hi − Cii(hi) = −vdi · ∇fi0 ≡ Si, (2)

v‖∇‖he − Ce0(he) = −vde · ∇fe0 + νei
D

mev‖Vi‖

Te
fe0 ≡ Se, (3)

where

Ce0 = Cee + νei
D(v)L,

with νD the pitch-angle deflection frequency [8] and

L =
2v‖
v2B

∂

∂λ
λv‖

∂

∂λ

the pitch-angle scattering operator.

Instead of solving these equations directly, we shall use the method of Antonsen

and Chu [9] and instead solve the adjoint equation

v‖∇‖ga + Ca0(ga) = −
v‖B

〈B2〉fa0, (4)

where 〈B2〉 is the flux-surface average (defined below) of B2 and Ca0 denotes either Cii

or Ce0. Both these operators are self-adjoint in the sense that

∫

k1

fa0

Ca0(k2)d
3v =

∫

k2

fa0

Ca0(k1)d
3v
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for any functions k1 and k2. With the help of this property and the solution of Eq. (4),

the current density of each species can be calculated by

〈

Ja‖B
〉

=

〈

eaB

∫

hav‖d
3v

〉

= ea
〈

B2
〉

〈∫

gaSa

fa0

d3v

〉

, (5)

where Sa denotes the right-hand side of Eqs. (2) and (3), respectively. The flux-

surface average is defined as the volume average between two neighboring flux surfaces.

Explicitly, in magnetic coordinates (ψ, θ, ϕ), where θ and ϕ are poloidal and toroidal

angles, ψ the toroidal flux and B = ∇ψ ×∇θ + ι∇ϕ×∇ψ, the average is defined as

〈· · ·〉 =

∫

2π

0

dθ

∫

2π

0

(· · ·)√g dϕ
/∫

2π

0

dθ

∫

2π

0

√
g dϕ,

with
√
g = 1/[∇ψ · (∇θ ×∇ϕ)].

3 Solving the kinetic equation

To solve Eq. (4) when the collisionality is low, i.e., when the bounce frequency exceeds

the collision frequency, we expand

ga = ga0 + ga1 + · · · (6)

in the same way as when treating the banana regime in a tokamak,

v‖∇‖ga0 = 0, (7)

v‖∇‖ga1 + Ca0(ga0) = −
v‖B

〈B2〉fa0. (8)

The function ga0(v, λ, σ, ψ), where σ = v‖/|v‖|, thus depends only on constants of the

lowest-order guiding centre motion (without drifts). On a flux surface with irrational

rotational transform, ι, ga0 is thus a flux function, and because of continuity this must

also be the case on rational surfaces. Incidentally, this argument suggests that the

long-mean-free-path limit we are considering is approached much more slowly in a

stellarator than in a tokamak as the collision frequency is decreased. In the tokamak,

it is sufficient that the mean free path should exceed a few times the connection length;

in the stellarator, it must be long enough that a particle covers much of the flux surface

between collisions. As we shall see numerically in the penultimate section, the long-

mean-free-path limit is indeed only appropriate at extremely low collision frequencies.
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As usual in neoclassical theory, the function ga0 is determined by the solvability

constraint following from Eq. (8). Since the right-hand side of this equation is odd in

v‖, ga0 vanishes in the trapped region of velocity space [8]. In the passing region, the

integrability constraint that follows from Eq. (8) by multiplying by B/v‖ and taking

the flux surface average,
〈

BCa0(ga0)

v‖

〉

= −fa0, (9)

determines ga0.

This equation can only be solved analytically (or even numerically, so far) if the

collision operator is simplified and replaced by an operator of the form

Ca0(ga) = νa
DL(ga) +M(v, ψ, θ, ϕ)v‖fa0. (10)

Historically, the rationale for approximating the collision operator by pitch-angle scat-

tering (the first term) was that Rosenbluth, Hazeltine and Hinton [10] proved that

this operator is sufficiently accurate when the fraction of trapped particles is small,

provided that a momentum-restoring term (here proportional to M) is also introduced

to ensure parallel momentum conservation. The constant M can then be taken to be

independent of velocity, but it has later emerged that allowing M to depend on v is

necessary for obtaining results that are reasonably accurate when the trapped-particle

fraction is finite [8, 11, 12]. For our purposes it is important that the calculation can be

divided into two steps: first the kinetic equation (4) is solved without the momentum-

restoring term, and in a second step the solution to the equation with M 6= 0 can be

found without solving another differential equation [13, 14]. This circumstance enables

us to focus on the simpler case with M = 0, where Eq. (9) has the well-known solution

[8, 10]

ga0 =
σvfa0

2νa
D

∫

1/Bmax

λ

dλ′
〈√

1 − λ′B
〉 . (11)

In addtion, we may ignore the term involving Vi‖ in Se, see Eq. (3), since it is of the

same form as the momentum-restoring term in the collision operator and can therefore

also be accounted for separately.
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4 Bootstrap current

In the expression (5) for the current, we note that ga0 does not contribute since it is

odd in v‖. We therefore need

ga1 =

∫ l

lmax

fa0

[

− B

〈B2〉 +
1

B

∂

∂λ

(

H
(

B−1
max − λ

) λξ

〈ξ〉

)]

dl′, (12)

from Eqs. (8) and (11), where ξ =
√

1 − λB. The Heaviside function H appearing

in this expression vanishes in the trapped domain, and we have fixed an arbitrary

integration constant by taking the integral from the point lmax where the field strength

is the largest, B(lmax) = Bmax. Substituting this expression in Eq. (5) gives the current

as a sum of two terms,
〈

Ja‖B
〉

= Ja1 + Ja2,

corresponding to the two terms in the integrand of Eq. (12). The first one is

Ja1 =

〈

eaB

∫

∂fa0

∂r
2πv2dv

∫

1/B

0

vda · ∇r
ξ

dλ

∫ l

lmax

Bdl′
〉

,

where r is an arbitrary flux-surface label and

vda · ∇r =
mav

2

ea
ξ (b ×∇r) · ∇

(

ξ

B

)

. (13)

It is straightforward to carry out the integrals over v and λ to obtain

Ja1 = paA1a

〈

(B ×∇r) · ∇
(

1

B2

)∫ l

lmax

Bdl′
〉

,

where we have written

A1a =
d ln pa

dr
+
ea
Ta

dΦ

dr
,

with Φ(r) the equilibrium electrostatic potential. If, following Ref. [15], we define

g2(l) = B2

∫ l

lmax

(b ×∇r) · ∇B−2dl′,

we obtain

Ja1 = −paA1a 〈g2〉 .

The second term in Eq. (12) makes the following contribution to the current,

Ja2 = −
〈

B2
〉

〈

ea

∫

∂fa0

∂r
2πv2dv

∫

1/Bmax

0

Bvda · ∇r
ξ

dλ

∫ l

lmax

∂

∂λ

(

λξ

〈ξ〉

)

dl′

B

〉

,
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where we substitute the drift velocity (13) and integrate by parts in λ to obtain

Ja2 =
3paA1a

〈

B2
〉

4

∫

1/Bmax

0

〈g4〉
〈ξ〉 λdλ,

with

g4(λ, l) = ξ

∫ l

lmax

(b ×∇r) · ∇ξ−1dl′, (λ < 1/Bmax).

The total current of each species is thus

〈

Ja‖B
〉

= Ja1 + Ja2 = paA1a





3
〈

B2
〉

4

∫

1/Bmax

0

〈g4〉λdλ
〈√

1 − λB
〉 − 〈g2〉



 , (14)

as originally found by Shaing and Callen [4] using a very different argument.

As already mentioned, the second term in the collision operator (10) has been ne-

glected but can be accounted for separately without solving another differential equa-

tion. This is accomplished by the moment method of Hirshman and Sigmar [8, 16]

employed in Ref. [4] and, to higher accuracy, by the methods described in Refs. [13, 14].

We will not go into the details here, but remark that the resulting bootstrap current

then contains terms that are proportional to the pressure and temperature gradients

of all the particle species in the plasma.

5 Finite collisionality

The result (14) is valid in the collisionless limit. Hinton and Rosenbluth [17] considered

the effect of a small but finite collisionality in tokamak geometry and showed that the

first correction to the bootstrap current is proportional to the square root of the colli-

sionality and therefore cannot be obtained by simply continuing the expansion (6) to

higher order. Instead, it arises from a boundary-layer analysis of the region around the

trapped-passing boundary, λ = 1/Bmax. Because ga0 vanishes in the trapped region

and is equal to Eq. (11) in the passing region, its derivative ∂ga0/∂λ is discontinuous

at the boundary, making the collision operator infinte, since the pitch-angle scatter-

ing operator contains two λ-derivatives. Collisions therefore need to be retained in a

boundary layer whose width is proportional to the square root of the collisionality. In

this layer, Eq. (7) needs to be replaced by

v‖∇‖ga + Ca0(ga) = 0,
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with boundary conditions obtained by asymptotic matching to the collisionless solution

ga0 away from λ = 1/Bmax.

A. Tokamak with arbitrary cross section

Alternatively, one can of course perform a similar calculation for the original kinetic

equation

v‖∇‖fa1 − Ca(fa1) = −vda · ∇fa0 +
eav‖E‖

Ta
fa0, (15)

which was done by Hinton and Rosenbluth for the case of a large-aspect-ratio tokamak

with circular cross section, where B ≃ B0(1 − ǫ cos θ). It appears difficult generalize

their calculation to arbitrary stellarator geometry, but it is possible to extend it to a

tokamak with arbitrary aspect ratio and shape of the flux surfaces. As we shall see,

the result then also applies to an important class of stellarators.

If we write B = I(ψ)∇ϕ + ι∇ϕ × ∇ψ, where ψ is the toroidal flux, ι = q−1 the

rotational transform, and I(ψ) = RBϕ, then the radial excursion (in terms of ψ) of a

particle orbit is given by

∆a =
Iv‖
ιΩa

. (16)

Thus vd · ∇ψ = v‖∇‖∆a and the drift kinetic equation (15) can be written as

v‖∇‖ga − Ca(ga + Fa) =
eav‖E‖

Ta
fa0, (17)

where ga = fa1 − Fa and

Fa = −∆a
∂fa0

∂ψ
. (18)

Expanding ga = ga0 + ga1 + · · · as usual in the smallness of the collisionality and using

pure pitch-angle scattering in the collsion operator yields the conventional solution

ga0 =
σsav

2νDa

∫

1/Bmax

λ

dλ′
〈√

1 − λ′B
〉 , (19)

sa =
ea〈E‖B〉

Ta
fa0 +

νDaIB

ιΩa

∂fa0

∂ψ
, (20)

in analogy with Eq. (11).

As already mentioned, the collision operator must be retained in the boundary layer,

where however the source terms in the kinetic equation (17) are unimportant, so we

need to solve the equation

B · ∇ga =
2νa

D

v

∂

∂λ

(

λξ
∂ga

∂λ

)

.
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In this equation, it is permissible to approximate λ by 1/Bmax, and the solution should

match the λ-derivative of Eq. (19),

∂ga

∂λ
→ − σvsa

2νa
D

〈√
1 − λB

〉 . (21)

away from the boundary layer on the circulating side.

In most of the layer, except in a sublayer close to the turning points, the term

∂2ga/∂λ
2 is dominant and we have

∇‖ga =
2σνa

D

vbB2
max

√
1 − b

∂2ga

∂λ2
, (22)

where b = B/Bmax. It is now convenient to introduce new independent variables by

defining

x(λ) =
λBmax − 1√

νa0

,

y(l) = σπ

∫ l

lmax

√

1 − b(l′)
dl′

b(l′)

/∮

√

1 − b(l′)
dl′

b(l′)
,

where dl = dθ/∇‖θ is the arc length along the field as in the previous section, and

νa0 =
2νa

D

πv

∮

√

1 − b(l)
dl

b(l)
. (23)

In the new variables, Eq. (22) reduces to the ordinary diffusion equation

∂ga

∂y
=
∂2ga

∂x2
, (24)

in the domain −π < y < π, −∞ < x < ∞, see Fig 1. The boundary conditions are,

however, unorthodox and make the equation non-trival to solve. The region x < 0

corresponds to circulating particles and x > 0 to trapped ones. Continuity at the

bounce points requires

ga(x, 0−) = ga(x, 0+), x > 0

ga(x,−π) = ga(x, π), x > 0

whilst periodicity in the counter-passing (y < 0) and co-passing (y > 0) domains implies

ga(x,−π) = ga(x, 0−), x < 0

ga(x, π) = ga(x, 0+), x < 0
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but ga need not be continuous at y = 0 for negative x. The point is that pitch-

angle scattering causes diffusion in the x-direction between the co- and counter-passing

domains on the one hand and the trapped region on the other, but there is no direct

exchange between the co- and counter-passing regions, see Fig. 1.

Remarkably, this boundary-value problem is identical to one arising in the theory

of transport across magnetic islands [18]. The solution, which can be obtained with

the Wiener-Hopf method, has the asymptotic behavior

ga(x, y) → 0, x→ +∞

on the trapped side of the boundary layer and

ga(x, y) → σ(c0 + c1x), x→ −∞

on the circulating side. Here σ = −y/|y|,

c0
c1

=
√

2
(√

2 − 1
)

ζ

(

1

2

)

≃ −0.855,

and ζ denotes the Riemann zeta function. Matching to the collisionless solution (21)

in the circulating region determines

c1 = − sav
√
νa0

2νa
DBmax

〈√
1 − b

〉 (25)

and thus

ga = Eq. (19) + 0.855c1σ. (26)

Having thus solved the boundary layer problem, we proceed to calculate the current

from the two terms in sa, Eq. (20). The first term produces a current proportional to

an effective conductivity
〈

Ja‖B
〉

= σeff

〈

E‖B
〉

,

which is smaller than the Spitzer value (for the scattering collision operator we use)

because of the existence of trapped particles. Evaluating the current

〈

Ja‖B
〉

=

〈

eaB

∫

v‖gad
3v

〉

(27)

using Eq. (26) gives

σeff =
nae

2
a

ma

{

f eff
c (v)

νDa

}

, (28)

10



where the brackets denote a velocity-space average [8]

{· · ·} =

∫ ∞

0

(· · ·) mav
2

3Ta

fa0

na
4πv2dv,

and

f eff
c = fc + δfc(v)

is an effective fraction of circulating particles [14]. The collisionless value (obtained

from taking ga = (19)) is

fc =
3〈B2〉

4

∫

1/Bmax

0

λdλ

〈
√

1 − λB〉
, (29)

and the correction from the boundary layer is

δfc =
3 · 0.855

4
· 〈b2〉
〈√

1 − b
〉

√
νa0 = 0.51

〈

b2
〉

√

√

√

√

νa
D

v
〈√

1 − b
〉

∮

dl

b
(30)

In a large-aspect-ratio tokamak with circular cross section, B = B0(1− ǫ cos θ), we find

〈√
1 − b

〉

≃ 2
√

2ǫ

π
,

∮

dl

b
≃ 2πR

ι

and hence

f eff
c ≃ 1 − 1.46ǫ1/2 +

1.35ν∗1/2

ǫ1/4
, (31)

where ν∗ = νa
DR/ιv. These relations show how the “effective” fraction of trapped

particles (1.46ǫ1/2 in a standard tokamak) is reduced by a factor proportional to the

square root of the collisionality, which thus increases the parallel conductivity.

We now turn to the bootstrap current, which is produced by the second term in

Eq. (20). Evaluating the current in this case gives

〈

Ja‖B
〉

=

〈

eaB

∫

v‖(Fa + ga)d
3v

〉

= −Ipa

ι

{

(

1 − f eff
c (v)

)

[

A1a +

(

mav
2

2Ta
− 5

2

)

A2a

]}

, (32)

where

A1a =
d ln pa

dψ
+
ea
Ta

dΦ

dψ
,

A2a =
d lnTa

dψ
.

The reduction in the effective number of trapped particles due to a small but finite

collisionality thus leads to a reduced bootstrap current.

11



B. Quasi-isodynamic stellarator

The calculation above applies to an axisymmetric tokamak and appears difficult to

generalize to general stellarator geometry. Of course, it immediately applies to quasi-

axisymmetric and quasihelically symmetric configurations, since their neoclassical prop-

erties are identical (in leading order) to those in tokamaks [19, 20]. However, there is

another important but less trivial case amenable to a similar analysis, and this is the

case of a perfectly quasi-isodynamic stellarator [21], i.e., a stellarator where the con-

tours of constant |B| are poloidally closed and the bounce-averaged radial drift vanishes

for all particle orbits,
∫

(vda · ∇r)dl
v‖

= 0,

where the integral is taken between two successive bounce points. The latter property

is also referred to as omnigeneity in the literature [22]. In such a magnetic field, it can

be shown that the minimum and maximum magnetic field strength, Bmin and Bmax,

are the same for all field lines on the same flux surface [23]. This circumstance makes

it convenient to use (r, α,B) as real-space coordinates, where α = θ − ιϕ in Boozer

coordinates. The first two coordinates then label the field line, and the position along

it is indicated by the magnetic field strength B. (In general, there will be an even

number of points with the same field strength in one period, so an additional discrete

variable is required for distinguishing these from one another.) Furthermore, it can be

shown that every integral of the form

∫ l2

l1
F (B)dl, (33)

taken along a field line between points of equal field strength (bounce points), is inde-

pendent of the field line label α and only depends on their flux surface r [23].

A further property of quasi-isodynamic fields is that it is possible describe the orbits

in a simple way. If we write B = ∇ψ ×∇α, then the radial excursion (in terms of ψ)

for passing particle orbits can be written as [21]

∆a = −µ0J(ψ)

2π

v‖
Ωa

+
∂

∂α

∫ Bmax

B
h(ψ, α,B′)

∂

∂B′

(

σmav
√

1 − λB′

eaB′

)

dB′, λ < 1/Bmax,

(34)

where J(ψ) is the toroidal current enclosed by the flux surface ψ, and the function h

encapsulates all other necessary geometric information about the magnetic field. Note
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the similarity between Eq.(16) and the first term in Eq. (34). As shown in Ref. [21], it

then follows that the first-order distribution function is equal to

fa1 = Fa + ga0,

with Fa = (18) as in the tokamak case, and as a result of the α-derivative in Eq. (34),

which disappears on an orbit average, the equation for ga0 is also the same as in a

tokamak, with the replacement I(ψ) → −ιµ0J(ψ)/2π. The solution therefore coincides

with Eq. (19), see Ref. [21] and [24] for details. In particular, if the flux surface

in question does not enclose any net toroidal current, J(ψ) = 0, which is the usual

situation in a stellarator, then ga0 = 0 and the bootstrap current vanishes, since Fa

does not carry any net current.

Turning to the collisional correction to the bootstrap current, we note that the

fact that ∂Bmax/∂α = 0 makes it possible to reduce the kinetic equation (22) for the

boundary layer to the diffusion equation (24) in each one of the magnetic wells along a

field line. In contrast to the tokamak, these wells are not identical since B depends on

the arc length differently in each well. But because of the property (33), the quantity

νa0 =(23) is the same for each well. This implies that the matching condition (25) is

also well-independent, and that the distribution function away from the boudary layer

is given by Eq. (26). The collisional correction to the bootstrap current is thus the

same as in a tokamak with the replacement I(ψ) = −ιµ0J(ψ)/2π and vanishes on flux

surfaces where J(ψ) = 0. Thus we conclude that the bootstrap current in a quasi-

isodynamic stellarator vanishes to a very high degree of accuracy: not only is there no

current in the collisionless limit (as known from Ref. [21]), but the leading correction

due to finite collisionality is also absent.

6 Comparison with numerical results

We now try to numerically verify some of the analytical predictions that have been

made. The first step is the construction of a suitable magnetic equiblibrium. In order

to display the effects of finite aspect ratio on the bootstrap current in a tokamak,

we choose a high-beta-poloidal discharge of the National Spherical Torus Experiment

(NSTX, discharge 133964 at t =505 ms) described in Ref. [25]. The plasma current

was 0.7 MA, the toroidal field on axis 0.48 T, and the edge safety factor q95 = 14.
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The magnetic equilibrium was calculated with the VMEC code [26] in fixed-boundary

mode with specified pressure and rotation transform profiles and with the boundary

taken at the normalized poloidal flux surface ψN = 0.9875. The beta value was found

to be 42.4% on axis and 8.3% on a volume average. The use of Boozer coordinates

proved arduous because of the strong variation of the Jacbian ∼ 1/B2 over the outer

flux surfaces, making it necessary to use hundreds of Fourier modes to attain sufficient

accuracy near the edge.

The neoclassical calculations were performed with the DKES (Drift Kinetic Equa-

tion Solver) code [27, 28], which uses a Fourier-Legendre representation of the distribu-

tion function to solve the drift kinetic equation by a variational principle. At very low

collisionalities, the first-order distribution function becomes highly localized in phase

space and thus requires a large number of Fourier-Legendre modes. In particular for

stellarators with complex Fourier spectra, it is in general impossible to numerically

verify the collisionless limit for the bootstrap current coefficient given in Eq. (14) [29].

For symmetric configurations, however, this problem is much less severe. In the present

NSTX example, it was nevertheless necessary to use up to 500 Fourier modes and 400

Legendre polynomials for the distribution function. The Bm0-Fourier spectrum (with

m being the poloidal mode number) in Boozer coordinates becomes rather broad near

the edge. Here, the analysis is limited to about 85% of the plasma radius and up to

100 Bm0-Fourier modes are taken into account.

The effective circulating-particle fraction f eff
c defined by Eqs. (27) and (28) can

be obtained from the parallel mono-energetic transport coefficient D33 calculated by

DKES [14]. For low collisionalities, the result was fitted to the ansatz f eff
c (ν∗) =

α0 + α1

√
ν∗ by a least-squares technique which includes the uncertainties of the D33

transport coefficient at low collisionalities in the weighting scheme. As found in the

previous section, α1

√
ν∗ describes the contribution of the boundary layer to the parallel

conductivity. With decreasing ν∗, the uncertainty in D33 increases whereas at higher ν∗

a systematic deviation from the fit appears before the transition to the plateau regime.

An extendend plateau regime exists at the innermost radii, which reduces the ν∗-range

for the fitting.

Figure 2 shows the results of the fitting of the DKES data and the analytical

expression of the boundary layer contribution given in Eq. (30) as well as the large-
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aspect-ratio-tokamak limit. The results are displayed as functions of the minor radius

represented by the local inverse aspect ratio, ǫ = ψ′/I, where ψ′ is the radial derivative

of the toroidal flux. Note that according to this standard stellarator definition, ǫ exceeds

unity in the edge region of NSTX. For all ǫ, the fitting coefficients α0 and α1 are

in very good agreement with the circulating particle fraction (29) and the analytical

result (30) from the boundary layer analysis, respectively. We can thus conclude that

Eqs. (28)-(30) provide an accurate description of the parallel transport coefficient at

low collisionalities.

We have already noted in Eq. (32) that the transport coefficient for the bootstrap

current is essentially the same as that for the parallel conductivity (28). This is a

general property of axisymmetric configurations, where the parallel friction and the

radials transport are related by the expression

B · ∇B = −ιǫ (B ×∇B) · ∇r,

which leads to a link between the mono-energetic transport coefficients [29, 30]. For

other types of symmetry, a similar relationship exists. In symmetric devices (in contrast

to a general stellarator), from a single mono-energetic transport coefficient, the other

coefficients can thus be computed. In DKES notation, the bootstrap current coefficient,

D31, is given by

D31 =
2

3ιǫ
(1 − f eff

c ). (35)

Figure 3 shows this coefficient computed numerically as well as the result obtained

from the analytic representation (30) of f eff
c and the large-aspect-ratio limit given by

the last term in Eq. (31) but using the exact fc value (29) instead of the first two terms.

The magnetic geometry is the same as in Fig. 2, and the calculation is done at three

different radii. The DKES results at low collisionality again confirm the boundary-layer

analysis. With increasing ǫ, the plateau regime shrinks and is shifted to higher ν∗. The

difference bewteen the full analaltical result (solid lines) and the large-aspect-ratio limit

(dashed lines) increases with ǫ.

7 The bootstrap current in a general stellarator

As already remarked, the low-collisionality limit (14) is valid in general stellarator

geometry, but the finite-collisionality correction calculated in Sec. V is restricted to
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axisymmetric, quasisymmetric and quasi-isodynamic devices. A qualitative difference

between these configurations and the general stellarator is that the maximum field

strength on each flux surface is attained along a curve, and not in a point, like in

a general stellarator. This circumstance could affect the structure of the collisional

boundary layer between trapped and circulating particles, and makes an analytical

treatment difficult.

In order to explore the effect of finite collisionality numerically instead, we use the

DKES code to analyze the behavior of the D31 bootstrap current coefficient. A classical

stellarator configuration is best suited for this analysis, since the number of Fourier

harmonics of the field strength is then kept low, making it possible to achieve relatively

good numerical accuracy at low collisionality. The standard configuration of the Large

Helical Device (LHD) with R = 3.75 at half the plasma radius was chosen for the task,

with the side-band Bmn-Fourier modes truncated, so that the only components are

B00 = 1, B1,0 = −0.07271 and B21 = 0.05063. Figure 4 shows the bootstrap current

coefficient normalized to the collisionless asymptotic value of a circular tokamak in

the large-aspect-ratio limit as function of collisionality and radial electric field. The

latter has no effect on the bootstrap current in a tokamak or quasisymmetric stellarator

in leading order; orbit-squeezing effects are beyond the standard neoclassical ordering

adopted here. The electric field is here treated in the conventional “mono-energetic”

approximation of DKES described in Refs. [27, 28, 29]. This treatment is not rigorous

and cannot be trusted when the parameter Er/vB approaches ιǫ [29, 31]. Therefore,

this parameter is kept very small in the present simulations. At very low ν∗, the DKES

D31 values have a rather low accuracy indicated by the error bars, in particular for small

Er/vB. Nevertheless, a weighted least-squares fit to an expression D31 = β0 + β1

√
ν∗

similar to that used above3 has been performed and is represented by the solid lines

in the figure. The approach to the collisionless Shaing-Callen asymptote (14) is seen

to depend on the radial electric field, and is slowest when Er = 0. Except when the

electric field is relatively large, β0 agrees well with Eq. (14), and it appears that the

collisional correction scales as
√
ν∗, like in the tokamak case.
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8 Conclusions

Several results concerning the bootstrap current in stellarators and tokamak are re-

ported in the present paper. First, the expression (14) for the bootstrap current origi-

nally derived by Shaing and Callen has been recovered by a method that does not rely

on the Hirshman-Sigmar moment formalism and makes no distinction between tokamak

and stellarator geometry. This expression applies to arbitrary magnetic geometry with

nested flux surfaces in the long-mean-free-path limit. Second, the correction due to a

small but finite collisionality has been considered, following Hinton and Rosenbluth,

whose calculation has been generalized to arbitrary axisymmetric geometry. This cor-

rection is proportional to the square root of the collisionality and tends therefore to

be important in practice. In fact, in most stellarators the long-mean-free-path limit

is approached so slowly at small collisionality that the correction is predicted to in-

crease or decrease the bootstrap current significantly in most relevant plasma scenarios

[29]. Third, it has been shown that although the finite-collisionality correction does

not apply to a general stellarator, it is applicable to quasi-isodynamic configurations.

In particular, if the net toroidal current in the plasma volume inside a flux surface

vanishes, then so does the bootstrap current (including the finite-collisionality correc-

tion) on that surface. This conclusion strengthens the result found in Ref. [21] that

the bootstrap current automatically becomes negligible in a sufficiently well optimized

stellarator of the quasi-isodynamic type. Finally, the drift kinetic equation has been

solved numerically using the DKES code, and the dependence on the collisionality has

been found to agree very well with the analytical result in spherical tokamak geometry.

In a classical stellarator, the finite-collisionality correction to the bootstrap current ap-

pears to have scaling similar to that in the tokamak, with a coefficient that depends on

the radial electric field.
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Figure 1: Domain representing the trapped-passing boundary layer, in which the diffu-

sion equation is solved.
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Figure 2: (color online) The boundary layer contribution coefficient, α1, vs. the local

inverse aspect ratio, ǫ: fits to DKES results (full circle), analytical contribution from

Eq. (30) (solid line), and the limit of a large-aspect-ratio tokamak with circular cross

section (dashed line).
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Figure 3: (color online) The mono-energetic bootstrap current coefficient (35) vs. col-

lisionality, ν∗, for ǫ = 0.0335, 0.119 and 1.047 (from top to bottom at low ν∗) with

DKES results (full circles), the analytical form of f eff
c from Eqs. (29)-(30) (solid lines)

and the limit of a large-aspect-ratio tokamak with circular cross section for δfc (dashed

lines). (The dotted lines depict interpolations to the DKES data.)
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Figure 4: (color online) Normalized mono-energetic bootstrap current coefficient vs.

collisionality, ν∗, for different radial electric fields: Er/vB = 0 (open squares), 10−5

(full circles), 3 · 10−5 (open diamonds), 10−4 (full triangles), 3 · 10−4 (open triangles),

10−3 (full diamonds), 3 · 10−3 (full squares). Solid lines are the fits to the DKES data

at the lowest ν∗. The Shaing-Callen value is indicated by the dot-dashed line, and the

equivalent tokamak values by the dotted line.
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