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Introduction: A fusion power plant would require a high beta plasma. However, if

neoclassical tearing modes are avoided by a suitable choice of the current profile, external

kink modes may limit the achievable plasma beta in tokamak devices. These are ideal

modes, growing on a very short time scale of t ≈ 10−6 s. They could be stabilized by an

ideally conducting wall sufficiently close to the plasma boundary. But, in the presence

of resistive walls the instabilities grow on a resistive time scale of t ≈ 10−3 − 10−2 s.

Since these Resistive Wall Modes (RWMs) grow slowly, their feedback stabilization is

technically feasible.

Fig. 1: Resistive wall design (yellow)
and feedback coils (cyan) of AUG.

While tokamak plasmas are approximately axi-

symmetric, realistic external walls may have a

complex 3D shape. Figure 1 shows a preliminary

resistive wall design for ASDEX Upgrade (AUG)

and the 24 feedback coils [1]. The latter are cur-

rently being installed in AUG. Breaking the axi-

symmetry leads to a coupling of the toroidal har-

monics, and, as will be shown, to slightly differ-

ent growth rates depending on the rotational di-

rection of the plasma. Therefore, a 3D numerical

treatment of the stability and feedback stabiliza-

tion studies is necessary.

3D RWM studies: The three-dimensional STARWALL/OPTIM code [2,3] computes

growth rates of RWMs and designs robust feedback controllers for their stabilization

in the presence of 3D multiply-connected wall structures taking into account coupled

toroidal harmonics caused by these 3D walls. Results are presented for an AUG-like test

equilibrium, and the 3D, asymmetric wall design shown in Fig. 1.

The plasma equilibrium properties are: major radius R0 = 1.64 m, plasma current Ip =

0.98 MA, monotone q-profile with qaxis = 1.46 and qboundary = 5.26, vacuum magnetic

field strength B0(R0) = 2.43 T, and beta normalized βN = 3.16. At the low field side

the plasma boundary extends to R ≈ 2.14 m, while the resistive wall is localized at

R ≈ 2.23 m. Therefore, the plasma-wall distance amounts to ∆R ≈ 9 cm.

Without wall the plasma is unstable with respect to n = 1 (growth rate γ = 48818 1/s)

and n = 2 (γ = 26202 1/s) (Higher toroidal mode numbers are not considered in the

following studies.), but stable with wall assuming infinite conductivity. In case of a
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finite wall conductivity the plasma is unstable on a resistive time scale. Here we used

σd = 2.8 · 105 S with σ being the specific electrical conductivity and d the thickness of

the wall.

Figure 2 illustrates the current potential distributions Φw [2] in the resistive wall for the

pairs of unstable modes. The first two rows show the results obtained for separately

computed toroidal harmonics n = 1 and n = 2. The current pattern clearly reveal the

n = 1 (first row) and n = 2 (second row) mode structure, as well as the phase shift of

90 degrees between the two modes (left and the right coloumn). The growth rates γ of a

mode pair are slightly different.

n=1, γ = 55.5 1/s

n=2, γ = 210.7 1/s

n=1,2, γ = 238.7 1/s

n=1, γ = 43.0 1/s

n=2, γ = 192.1 1/s

n=1,2, γ = 219.0 1/s

Fig. 2: Current potential distribution Φw in the resistive wall for separately computed toroidal
harmonics n = 1 and n = 2 (upper two rows), and coupled harmonics n = 1, 2 (last row).

Taking the toroidal harmonics n = 1 and n = 2 simultaneously into account, one gets

4 unstable modes (γ = 238.7, 219.0, 53.2, and 41.1 1/s). The current distributions of

the two most unstable modes are illustrated in the last row of Fig. 2. Not shown are

the current pattern of the less unstable modes, because they are similiar to the n = 1

pattern presented in the first row. However, the current pattern of the most unstable

modes deviate from the corresponding pure n = 2 modes, especially the phase shift of the

second mode (right column) is changed. This finding is very important for the design of

Fig. 3: Eigenvalue spectrum with feedback
stabilization.

a feedback system. The feedback parame-

ters determined separately for n = 1 and

n = 2 are not able to stabilize the coupled

n = 1, 2 modes (red dots in Fig. 3), while

the feedback parameters determined for the

coupled system provide a completely stabi-

lized eigenvalue spectrum (black crosses in

Fig. 3).

38th EPS Conference on Plasma Physics (2011) P5.082



The 3D STARWALL/OPTIM code is limited to ideal, non-rotating plasma configurations,

while realistic tokamak plasmas are resistive, viscous and may rotate in toroidal direction.

It is well known that toroidal rotation has an stabilizing effect on RWMs. Since the 2D

CASTOR FlOW code [4] already includes these effects, it was obvious to extend this code

to the requirements of a 3D wall geometry, and to combine it with the STARWALL code.

CASTOR 3DW CODE: As the preceding CASTOR versions [4,5] the CASTOR 3DW

code uses a Fourier finite-element discretization in the magnetic coordinate system s, ϑ, ϕ,

adopted to the specific axisymmetric equilibrium, with s being the normalized poloidal

or toroial flux, and ϑ, ϕ being the poloidal and toroidal angle coordinates. Because of the

3D wall structure and the resulting coupling of the toroidal harmonics it was necessary

to extend the ansatz for the perturbations

wk(s, ϑ, ϕ) =
∑

j,p,m,n

αk,pm,n,jh
j
p,k(s)e

i(mϑ+nϕ) + ᾱk,pm,n,jh
j
p,k(s)e

−i(mϑ+nϕ) (1)

by the complex conjugate term (blue) and the sum over the toroidal harmonics n (red).

Perturbing the vacuum with unit field perturbations at the plasma boundary, the response

of the vacuum is computed with the STARWALL code, and the resulting boundary terms

serve as input to the CASTOR 3DW code. This procedure works very well in case of an

ideal wall, as demonstrated in Fig. 4 and Table I. There, the CASTOR 3DW results are

compared with the results of the 3D ideal CAS3DN code. The latter is a modified version

of the CAS3D code [6]. It uses a non-equidistant radial grid, allowing the accumulation

of grid points around rational surfaces to obtain the required numerical accuracy.

Fig.4: Growth rates of pure n = 1 and n = 2
modes as function of the ideal wall position.

Table I: Growth rates γ (1/s) of unsta-
ble n = 1, n = 2 and coupled n = 1, 2
modes. The 3D ideal wall was localized at
R = 2.56 m.

Figure 4 shows the growth rates of pure n = 1 and n = 2 modes as function of the ideal

wall distance. The splitting of the growth rates of a toroidal harmonic n increases with

decreasing wall distance, because then the small perturbation of the axisymmetry by the

3D wall is effective. Furthermore, the splitting of the growth rates is more pronounced for

smaller toroidal harmonics due to the larger radial extension of these modes. The results
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listed in Table I verify that the CASTOR 3DW code is also able to determine the growth

rates of coupled toroidal harmonics.

Fig.6: Growth rate as function of the
toroidal rotational frequency for n = 1.

Figure 6 shows first results obtained with the

CASTOR 3DW code taking toroidal plasma ro-

tation into account. For the plasma viscosity we

assumed a model for Landau damping [4] with

a viscosity coefficient κ‖ = 0.89. As expected,

the growth rate descreases with increasing ro-

tational frequency Ωt. Furthermore, the pres-

ence of the 3D wall leads to a dependency of the

growth rate on the rotational direction. Again,

the effect is more pronounced for smaller growth

rates.

The current CASTOR 3DW version in combination with the STARWALL code works

very well for an ideal 3D wall. But, in case of a resistive wall the boundary conditions

also depend on the eigenvalue. In order to deal with this problem further extensive

modifications of the CASTOR 3DW code are necessary.

OUTLOOK: The eigenvalue problem λBx = Ax resulting from the linearized MHD

equations [4] (CASTOR 3DW code), and the set of equations [2] derived from the vacuum

energy functional (STARWALL code) are coupled by their boundary terms. Combination

of these two sets of equations leads to the extended eigenvalue problem

λ




Bll Bls 0la
Bsl Bss 0sa
0al 0as Maa







xl
xs
xa


 =




All Als 0la
Asl Ass Rsa

0al Ras Raa







xl
xs
xa


 . (2)

The indices l, s and a refer to the inner part of the plasma, the plasma boundary and

the vacuum region, respectively. In order to solve this extended eigenvalue problem, it is

necessary to implement some of the STARWALL routines directly into the CASTOR 3DW

code. This work is currently in progress.
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