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Introduction
Function parameterization (FP) has been in use for identification of equilibrium parameters on
the ASDEX Upgrade tokamak since 1991 [1]. Scalar plasma parameters (Ip, Rp, Zp, βpol, · · ·)
recovered in realtime from magnetic data using parameterizations generated from an offline
training procedure are input to the feedback control algorithm for plasma position and shape.
FP, which has the reliability advantage over conventional equilibrium solvers of being predictive
rather than interpretive, is also used to recover the equilibrium poloidal flux function by the
brute force calculation of ψ(R,Z) as a scalar parameter at each point on a spatial grid[2]. The
slow speed of this “FPP” algorithm is challenging for realtime use, and the resulting flux grid
can deviate strongly from satisfying force balance.

Here, we present a new FP-based algorithm for full equilibrium flux recovery based on a Singular
Value Decomposition of a training equilibrium database represented as a matrix M of NEq rows
and NG = NR ×NZ columns where NEq is the number of equilibria in the database, NR and
NZ are the grid dimensions, and each row of M consists of all NG ψ-values for one equilibrium.
For the 129× 257 grid used here M has dimensions NEq ×NG = 2546× 33153 for NEq = 2546
lower single null equilibria giving an M−matrix size of 334 MB.

The SVD of M is M(NEq×NG) = U(NEq×NEq)Σ(NEq×NG)V
′

(NG×NG) (1)

where, if I(N) is the identity matrix with N diagonal elements, U ′U = I(NEq) (U ′ denotes the
transpose of U), V ′V = I(NG) and Σ = diag(s1, s2, · · · , sNEq

) is the diagonal matrix of ordered
singular values (s1 ≥ s2 · · · ≥ sNEq

≥ 0). The first NEq columns of V constitute a set {Fj}
of NEq eigenfaces (a concept familiar from image analysis[3]) of ψ(R,Z) which represent 2-D
basis functions for the equilibrium grid. A small subset Np $ NEq of principal eigenfaces
suffices in practice to identify all recoverable information on ψ(R,Z), at least in the case of
equilibrium magnetic data. The flux function is reconstructed as a linear combination

ψi(R,Z) =
p∑

j=1

ϕi, j Fj

with Fourier-like amplitudes ϕi, j given by ϕi, j = Fj ·ψi (NG×1) where ψi (NG×1) is the flux grid
for the ith case in the database expressed as an NG × 1 column vector.

Database Generation and FP Model
To prepare for realtime recovery of ψ(R,Z), the NEq× p matrix of amplitudes Φ is constructed
from the training database and a predictor for each amplitude is prepared by regressing each
Fourier amplitude data vector φj = {ϕ1,j , · · · , ϕNEq ,j} versus principal components of available
diagnostic signals, in the present study consisting of equilibrium magnetic data. The following
summarizes the main steps in database generation and analysis.

(i) Monte Carlo methods are used to generate NEq equilibria drawn from a high-dimensional
(h > 20D) input parameter space. NEq typically lies in the range 103 − 104 and the random
choice of inputs results in NEq distinct values for each equilibrium parameter, thus overcoming
the ”Curse of Dimensionality” that afflicts scans of high-dimensional parameter spaces on a
regular grid.
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(ii) A vector of h candidate input parameters (poloidal field coil currents, passive currents,
and free parameters describing the size and shape of the p′(ψ) and ff ′(ψ) source profiles) is
randomly selected from a h −D hypercuboid. The subset of random input vectors (a few %)
resulting in physically meaningful (e.g. located within the vacuum vessel), converged equilibria
maps out the feasible solution region within the hypercuboid.

(iii) The poloidal flux solution grid (for a fixed plasma current of 1 MA), a selection of 1-
D flux profiles, and a variety of scalar parameters are stored for each valid case. Simulated
magnetic measurements may be calculated as and when required by reading in each flux grid
from the stored database and evaluating flux differences and poloidal field values at the current
experimental configuration of flux loop and field probe locations.

(iv) Perform a Principal Components Analysis (PCA) by diagonalizing the covariance matrix of
the set of magnetic signals, and retain the leading m principal components {µr}, r = 1, · · · ,m,
where the lowest retained PC has an eigenvalue equivalent to a signal to noise ratio in the range
2− 10 and the noise variance is known from experimental calibration information.

(v) Regress the jth Fourier amplitude variable Φj using a standard quadratic FP model with
(m+1)(m+2)/2 terms and save the coefficients for realtime use:

Φj = aj +
m∑

r=1

brj µr +
m∑

r=1, s=r

crsj µr µs for j = 1, 2, · · · , p

(vi) Recover ψ(R,Z) by (i) evaluating Φ1, · · · ,Φp using PC values calculated from realtime
magnetic data and (ii) computing ψ =

∑p
j=1 ΦjFj for p eigenfaces. The two steps require

≈ m2p/2 + p × NG multiplications, while FPP requires m2NG/2. The new method gains in
speed over FPP if p < m2/2 holds.

FIG. 1: Singular value distribution (1st panel), contour plots (versus R and Z) of eigenfaces 1, 6, 18,
36 and (lower level) midplane (z=0) profiles of the Grad-Shafranov operator applied to each eigenface.
The singular values normalized to s1 are: s6/s1=0.05, s18/s1=0.006, s36/s1=0.0007. Eigenfaces tend to
become progressively localized to the plasma centre with increasing index/decreasing singular value.

Description and Identifiability of Eigenface Amplitudes
The SVD procedure for the 334 MB database matrix M was carried out using Mathematica[5]
and yielded ≈ 1000 out of a possible 2546 eigenfaces and singular values due to finite numerical
accuracy. The machine resources comprised ≈ 1 gigabyte of memory and 3300 s on a 2.5 GHz,
4 GB MacBook Pro. The distribution of singular values is shown in the first panel in fig. 1 and
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s100 is already a factor of 2.7×10−5 smaller than s1 and it will be shown later that 100 eigenfaces
is already well beyond the limits of identifiability. Sample eigenfaces are shown in fig. 1 together
with midplane profiles of the toroidal current density-like quantity −(∆∗F)/R where ∆∗ is the
Grad-Shafranov operator. Singular values indicating the relative strength of each eigenface
are given in the caption. An FP model with m =23 magnetic principal components resulting
in a quadratic regression model size of 300 terms was used to regress the Fourier amplitudes
variables and hence determine how accurately they can be identified from magnetic data. Fig. 2
shows the quality of the recovery in the form of the root mean square regression error (adjusted
for degrees of freedom loss) expressed as a percentage of the root mean square value of the
variable in the database. A 100% recovery error corresponds to complete unidentifiability.
Results are presented for unperturbed and perturbed magnetic data with 1σ noise levels of
1.5 mT, 3 mT, 10 mT and 50 mT. For the lowest order 11 principal eigenfaces, the recovery
errors are in the sub-10% range for moderate (≤ 3mT) noise levels, while at the 50 mT level,
the information is heavily degraded for all but the leading three amplitudes. Above p = 50
even unperturbed data yields % errors in the range 70% − 100% so that these amplitudes are
essentially unidentifiable from magnetic data. In the ψ(R,Z) recovery results presented next
we accordingly use the leading p = 50 amplitudes.
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FIG. 2: Recovery rms error expressed as a % of the rms magnitude for eigenface Fourier amplitudes
1-100 from 23 PC quadratic FP regression models with unperturbed magnetic data, and perturbed
data with 1σ added noise levels of 1.5mT, 3mT, 10mT and 50mT.

A feature of the results presented in fig. 2 is the occasional strong departure from monotonically
increasing recovery errors versus eigenface index. An examination of these eigenfaces revealed
that they contain significant contributions from active or passive coil currents from coils located
within the computational grid. Fig. 3 shows that eigenface 23, whose recovery error for un-
perturbed or moderately perturbed data is superior to that of its lower index neighbours, has
strong contributions at the locations of the ASDEX Upgrade fast control coils CoIo and CoIu
whose outline is visible in fig. 3. Their proximity to the measurements allows relatively easy
identification of their contributions to ψ by the FP model.

Accuracy of Eigenface Reconstruction of Flux Surface Geometry
The accuracy of flux surface reconstructions from noisy magnetic data using p = 50 eigenfaces is
characterized as follows: The outboard major radius Rout (ψ(Rin)), where exact and recovered
contours with label ψ(Rin) intersect the magnetic midplane, was determined as a function of
regularly spaced values of the inboard intersection Rin. The exact and recoverd ψ values at
Rin will differ, and the difference in the corresponding Rout (ψ(Rin)) values is a measure of the
reconstruction error which has the advantage of being a purely geometric property, independent
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of the often large recovery errors in the absolute flux due to poor identifiability of the core
current profile by magnetics. Results for three noise levels are presented in fig. 4 which also
shows results for an alternative hybrid flux label ψ∗, a weighted mean of the area and flux
coordinates, where the ψ weighting vanishes at the centre and the area weighting vanishes at
the separatrix. This brings a factor of ≈ two improvement in the central geometrical error.
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FIG. 3: Contour plot versus (Z,R) (with Z axis horizontal) of eigenface no. 23, showing strong contri-
butions from ASDEX Upgrade upper and lower fast control coils CoIo CoIu.

FIG. 4: Error (1σ) in flux sur-
face diameter versus midplane
diameter for ψ (dashed traces )
and psi∗ (solid) flux labels for
reconstructed flux surfaces us-
ing p = 50 eigenfaces. Input
magnetic data were perturbed
by simulated 1σ noise levels of
1.5mT, 3mT and 10mT. The
1.5mT error level is typical for a
good quality interpretive equi-
librium fit using the CLISTE
code. Each curve is a boxcar
average at ≈ 2 cm intervals of
≈ 2000 individual results.

Discussion and Future Work
With (m + 1)(m + 2)/2 = 300 and p = 50 these promising initial results represent a factor of
6 speed-up as well as improved quality over the existing FPP recovery of ψ(R,Z) and should
enhance current efforts at accurate realtime flux surface geometry identification for NTM sta-
bilisation on ASDEX Upgrade[4]. One obvious possibility for improvement is to exclude grid
areas containing active and passive coils, since this will reduce the value of p leading to a fur-
ther performance enhancement. The superior results for the ψ∗ label are consistent with similar
behaviour found in the existing FPP method and require further study. It is planned to apply
the new method to an eigenface representation of the toroidal current density profile.
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