
Extended Estimations of Neoclassical Transport for the TJ-II Stellarator: The
Bootstrap Current

V. Tribaldos∗

Departamento de F́ısica, Universidad Carlos III de Madrid, 28911 Leganés, Spain

C. D. Beidler, Y. Turkin, and H. Maaßberg
Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-17491 Greifswald, Germany

This work extends previous Monte Carlo estimations of neoclassical transport for the TJ-II stel-
larator [V. Tribaldos, Phys. Plasmas 8 1229 (2001)] to include, for the first time, the bootstrap
current in low collisionality electron cyclotron resonance heated (ECRH) plasmas. The calculations
are based on the mono-energetic coefficients calculated with DKES [W. I. van Rij and S. P. Hirsh-
man, Phys. Fluids B 1, 563 (1989)] and MOCA codes. It is shown that despite the difficulties of
calculating these coefficient in the long mean free path for TJ-II configurations the bootstrap current
can be accurately estimated thanks to the moderate temperatures measured in this device with and
without enforcing momentum conservation [H. Maaßberg and C. D. Beidler and Y. Turkin, Phys.
Plasmas 16 072504 (2009)]. The computed bootstrap current is found to be in fair agreement with
the currents being measured in ECRH regimes. Finally, the effect of the bootstrap current on the
rotational transform profile is discussed.

I. INTRODUCTION

The static (vacuum) confining magnetic field in a stel-
larator can be obtained solely through a set of coils; i.e.
without the need of plasma currents. This allows for
steady state operation at the price of a non-symmetrical
three-dimensional magnetic field and possibly a complex
coil system. The impact of the plasma on its own confine-
ment in these magnetic configurations is very much re-
duced but it is not completely eliminated. Several mech-
anisms exist generating currents in the plasma and there-
fore perturbing the original (designed) magnetic trap.
In most stellarators plasma currents are not only not
needed but also not wanted. Some of these plasma self-
generated current effects are known to such a degree that
they have been integrated in the stellarator designs since
long time ago, like the unavoidable equilibrium currents
due to plasma pressure. Minimization of some others
current sources can only be enforced partially since they
strongly depend on plasma profile details that cannot be
self-consistently simulated in advance with enough accu-
racy like the bootstrap current.

Contrary to other confining schemes, stellarators’ flex-
ibility offers the possibility to tailor the rotational trans-
form profile. Two approaches have been used to reduce
the effect of undesirable magnetic islands. One consists
in squeezing the islands by rapidly crossing the rationals,
as is natural in tokamaks. The other depends on finding
a gap in the density of rationals, which appears close to
low order rational, to place a flat rotational transform
profile. This latter solution allows to place large islands
at will if enough control is achieved on the shear, like e.g.
in island divertor concepts. Unfortunately, this fine con-
trol cannot be attained when net currents are present.

∗ Victor.Tribaldos@UC3M.es

Apart from unbalanced heating, that in principle could
be compensated to a large extent, the main responsible
for net plasma currents in stellarators is the neoclassical
bootstrap current.

This work will present for the first time a complete es-
timation of the bootstrap current and the induced mod-
ification on the rotational transform in the TJ-II[1] stel-
larator. In this regard, TJ-II is at an enviable position
since: i) as a stellarator, current measurements can be
very accurate, ii) its vacuum configurations have low
shear and therefore are very sensitive to the currents,
iii) is capable of a wide range of rotational transform
values (1.01 <  ι < 2.2), iv) is equipped with a set of
high resolution diagnostics for profile measurements [2, 3]
and v) currents can be induced with its ECCD[4] or
ohmic transformer systems[5] (each having quite differ-
ent induced current density profiles). Experimentally,
the modest plasma currents (|I| < 2 kA) measured in
TJ-II for ECRH plasmas have been always attributed
to the bootstrap current. The plasma parameter range
considered in this work corresponds to ECRH plasmas
since, theoretically, bootstrap currents will be negligible
for NBI operation because of its much larger collisional-
ity.

The paper is organized as follows: Section II briefly
reviews the basic approximations and results of neoclas-
sical theory and shows that a database containing the
three mono-energetic coefficients is needed to calculate
the bootstrap current. Section III is devoted to the cal-
culation of these coefficients for TJ-II stellarator its dif-
ficulties and a discussion on the possibility of describing
the bootstrap current accurately. The evaluation of the
radial electric field, the bootstrap current and the modi-
fication on the rotational transform profile is presented in
Section IV with and without enforcing momentum con-
servation. Finally, Section V summarizes the results and
presents conclusions.
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II. NEOCLASSICAL THEORY

The starting point to calculate neoclassical effects is
the drift kinetic equation (DKE) [6, 7], which is the re-
sult of imposing a drift ordering and averaging a full ki-
netic equation over gyro-scales. The drift ordering, also
called small gyro-radius ordering, demands the particle
radial drifts, vd, to be much smaller than thermal speeds,
vth, Larmor radius, ρ = mv/qB, much smaller than
the characteristic plasma scale lengths, L, and particle’s
bounce frequency, ωth, much smaller than the cyclotron
frequency, Ω, i.e. vd/vth ∼ ρ/L ∼ ωth/Ω = δ << 1. De-
spite the severe simplifications and averages made, the
inhomogeneity of the magnetic field on flux surfaces and
the non-linearity of the collisional term still make the
steady state DKE an intractable non-linear partial dif-
ferential equation in a five dimensional space. The solu-
tion, f = f(r, v, p), describes the distribution of guiding
centers at every point, r, for every speed, v, and pitch,
p = v · B/vB, in velocity space. The DKE is further
simplified with the local ansatz and the incompressible
E ×B flow approximations (where E = −∇Φ is the ra-
dial electric field). The local ansatz restricts the equation
to a single flux surface, which reduces the dimensionality
using the radial position as a parameter rather than a
variable. In the drift ordering approximation the kinetic
energy is not conserved but its variation is proportional
to the divergence of the E × B drift, VE = E × B/B2.
Whenever ∇ · VE = 0, as is the case for moderate ra-
dial electric fields [8], the total and kinetic energies are
conserved, which not only reduces the dimensionality of
the DKE again but also allows to use a simplified colli-
sion operator only including pitch angle scattering. The
final step consists in linearizing the guiding center distri-
bution function with respect to the drift ordering small
parameter δ << 1 as f ≈ f0 + δf1. The solution to
order δ0 is identically satisfied by a local maxwellian
f0 = fM = n(r)(m/2πT (r))3/2 exp(−mv2/2T (r)) and
the resulting DKE equation to order δ1 can be split into

two independent equations [9], one for f̂I , with a parallel
drive

R0

v
V (f̂I)−

R0

v
νL(f̂I) = −p B

B0
(1)

and the other for f̂II , with a radial drive

R0

v
V (f̂II)−

R0

v
νL(f̂II) = − 1

vd

dr

dt
(2)

where V and L are the Vlasov and Lorentz pitch an-
gle collision operators, ν is the collision frequency, m
is the mass, q is the charge, v is the speed, B0 is the
reference value of the magnetic field on the flux sur-
face (the B00 term in the expansion of B in Boozer-co-
ordinates), R0 is the major radius, VL is the loop voltage,
vd = mv2/(2qR0B0) and dr/dt is the first order radial
component of the ∇B-drift. Solving these two equations
is the central problem of neoclassical theory. A study

of eqs. (1) and (2) reveals several important things that
are easy to overlook: i) the only radial dependence is
contained in the magnetic field, thus these kinetic equa-
tions describe a local theory; ii) the movement of particles
within the flux surface, contained in the Vlasov operator,
is established by the competition of the streaming along
magnetic field lines, pvB/B, the E × B drift and the
magnetic field mirror term ∝ vB · ∇B, thus for fixed
magnetic field it only depends on the normalized drift
velocity v∗E = Er/vB0; iii) the balance between the mir-
ror term and the Lorentz pitch angle collision operator
depends on the normalized mean free path R0ν/v; iv) the
solution depends on the magnetic field structure but not
on its magnitude since it always appears in the combina-
tion B/B. Recapitulating, the solution of eqs. (1) and
(2) depends on the radial position, through the definition
of the normalized magnetic field, and the velocity, which
is conserved because of the incompressible approxima-
tion, through the two combinations Er/vB0 and R0ν/v.

From the distribution functions f̂I and f̂II one can con-
struct all quantities of interest like flux averaged particle
or heat fluxes, currents, ..., in the radial or parallel di-
rections by taking different moments and averaging. For
example, the flux surface averaged radial particle flux is

〈Γ · ∇r〉 = −n(L11A1 + L12A2 + L13A3) (3)

or the bootstrap current is

〈J ·B〉
qB0

= −n(L31A1 + L32A2 + L33A3), (4)

where the Ai terms act as thermodynamic forces since
they are related to the radial and parallel derivatives of
the maxwellian distribution:

A1 =
1

n

dn

dr
− qEr

T
− 3

2

1

T

dT

dr
;A2 =

1

T

dT

dr
;A3 =

qVL
R0T

and where

Lij =
2√
π

∫ ∞
0

dK
√
Ke−KDijhihj (5)

with K = mv2/2T , h1 = h3 = 1 and h2 = K, and where
Dij are the so-called mono-energetic diffusion coefficients

D11 =D12 = D21 = D22 = −v
2
dR0

2v

〈∫ 1

−1
dp

1

vd

dr

dt
f̂II

〉
D13 = D23 = −vdR0

2

〈∫ 1

−1
dp

1

vd

dr

dt
f̂I

〉
D31 = D32 = −vdR0

2

〈∫ 1

−1
dp p

B

B0
f̂II

〉
D33 = −vR0

2

〈∫ 1

−1
dp p

B

B0
f̂I

〉
(6)

that are themselves different moments of the two dis-
tribution functions f̂I and ˆfII . Now it should be more
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clear the reason why f̂I ( ˆfII) is said to govern the paral-
lel (radial) transport since its antiymmetric (symmetric)
part, with respect to the pitch, describes the parallel (ra-
dial) fluxes. What it is less clear is that the symmetric

(antiymmetric) part of f̂I ( ˆfII) is related to the Ware
pinch (bootstrap current) through Onsager symmetry ar-
guments. To compute the lower order neoclassical fluxes
only three different coefficients are needed D11, D31 and
D33.

In the neoclassical theory frame, radial transport is
the result of averaging over times of the order of the in-
verse of the collision frequency all possible radial drifts
(depending exclusively on B), or conversely the average
radial drift produce by particles moving a distance along
the field line of the order of the mean-free path. In some
cases the radial average of some, even broad, orbits is
very small and disturbing them with collisions results
in increased drifts, D11 ∝ ν (i.e. like in the collisional
Pfirsch-Schlüter (PS) regime or in the banana regime in
tokamaks). On the other hand, the characteristic diffu-
sive step size of locally trapped particles is limited by
collisions which scatter them out of the local ripple lead-
ing to D11 ∝ 1/ν (like various types of trapped particles
arising in stellarator fields).

The bootstrap current arises from the distribution

function symmetric (f̂I) or antisymmetric (f̂II) on the
pitch variable p. Thus, in a collision dominated PS
regime, where the Vlasov term can be neglected, the sym-

metric part of f̂I = 0 (the drive is antisymmetric), or

the antisymmetric part of f̂II = 0 (the drive is symmet-
ric) the bootstrap current must vanish. On the other
limit, deep in the long mean free path, it is possible
to show [10] that the bootstrap current is independent
of collisionality and it’s sign depends on the symme-
try of the magnetic field. For toroidal symmetric mag-
netic fields the bootstrap current flows in the direction
of increasing the poloidal magnetic field, thus increasing
the rotational transform, while for helically symmetric
fields the bootstrap current reduces the poloidal mag-
netic field and the rotational transform. See for example
the NCSX (toroidally quasi-symmetric) and HSX (helical
quasi-symmetric) in ref.[9]. The situation at intermediate
collisionalities for purely symmetric fields is a transition
from the null value at high collisionality to the plateau
value in the collisionless limit. For non-symmetric de-
vices this transition is far more troublesome. What it is
usually seen is a bootstrap coefficient dominated by short
range helically trapped particles at higher collisionalities,
flowing in the direction of decreasing the poloidal mag-
netic field, followed by a transition at smaller collision-
alities (larger mean-free paths) where the toroidal terms
dominate the drifts producing an increase in the poloidal
magnetic field. This different behavior has been used in
the design of Wendelstein-7X stellarator to reduce the
total bootstrap current [11].

The third mono-energetic coefficient, D33, depends

solely on the antiymmetric part of f̂I , solution of Eq. 1.
D33 measures the response of particles to a parallel elec-

tric field, which is a competition between the Vlasov and
collisional terms in Eq. 1. The number of particles flow-
ing along field lines, the pvB/B term in the Vlasov op-
erator, is reduced because of the trapping caused by the
mirror term, B · ∇B, and the collisions that stochasti-
cally change their pitch angle. Collisions always produce
a reduction of D33, which is a monotonically decreasing
function of collisionality, but the mirror term only has
an effect on ripple structures smaller than the mean free
path. The impact of trapped particles is negligible at
high collisionalities and saturates in the lmfp.

III. THE THREE MONO-ENERGETIC
DIFFUSION COEFFICIENTS

A quick inspection of Eq. (4) would suggest that to
estimate the neoclassical parallel flow (i.e. the bootstrap
current) in a stellarator (A3 should be zero since in princi-
ple no loop voltage, VL is necessary) it would be sufficient

to solve either Eq. (1) to obtain f̂I or Eq. (2) for getting
ˆfII since only the D13 or D31 mono-energetic coefficients

are necessary. Unfortunately, these coefficients depend
strongly on the value of the drift speed VE = Er/vB,
i.e. the radial electric field. This dependence is so pro-
nounced that an independent method is needed to deter-
mine the radial electric field. As is customary in non-
symmetric magnetic field devices, the neoclassical radial
electric field is obtained by imposing ambipolarity , i.e.
the same electron and ion flux surface average particle
fluxes, or more generally that Γe =

∑
α qαΓα (for all ion

species α). Remembering Eq. (3) this means that the
D11 coefficient is also needed. Actually, in Section IV it
is shown that to enforce momentum conservation, which
was not preserved with the Lorentz collision operator,
the D33 coefficient is also needed.

Calculating the bootstrap current for a given mag-
netic configuration requires creating a database of the
three mono-energetic diffusion coefficients, thus solving
both eqs.(1) and (2), for several radial positions, nor-
malized drift velocities, Er/vB0 and mean-free-paths,
R0ν/v. Several numerical techniques are nowadays avail-
able for the calculation of the mono-energetic diffusion
coefficients [9] each with its strengths and drawbacks:
i) analytical calculations [6, 7]; ii) spectral decomposi-
tion [12, 13] methods; iii) field line integration [14, 15]
techniques, and iv) Monte Carlo [16–21] simulations.
However, not all of them are suited for the TJ-II stel-
larator because of its complex magnetic field structure;
because they don’t include the effect of the radial electric
field; or because they can only compute one of the coeffi-
cients effectively. To create the database needed for the
purpose of this work the DKES code was used [12, 13]
since it gives the three mono-energetic coefficients, along
with their uncertainties, for general magnetic fields. It
was found that the convergence and precision of DKES
code estimates of D11 and D31 deteriorates with increas-
ing mean free path and depending on the number of
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modes necessary to accurately described the magnetic
field a point is reached where even a small reduction
in the calculation uncertainty becomes computationally
prohibitive.

The three mono-energetic coefficients, solutions of the
code, share limitations with their originating kinetic
equations, namely: transport is considered local and dif-
fusive, the VE = E × B/B2 drift is considered incom-
pressible, ∇ · VE = 0 and collisions are approximated
by the Lorentz operator. Non-local effects lie outside the
scope of this paper, although they have been described
for the TJ-II stellarator [22]. The assumption of incom-
pressibility of the E × B drift limits [8] the validity of
the results to radial electric fields smaller than the first
electric field resonance Eres =  ιvBr/R, where  ι is the
rotational transform, r the minor radius of the flux sur-
face and R the major radius of the device. Finally, the
Lorentz operator approximation requires a treatment, us-
ing the generated DKES database, to restore momentum
conservation that will be discussed in the next section.

To create a database with the three mono-energetic
coefficients the first step is to obtain the magnetic field
spectrum of a given equilibrium configuration in Boozer
magnetic co-ordinates. The VMEC [23] and JMC [24]
codes were used to obtain the equilibrium configuration
and making the VMEC to Boozer co-ordinate transfor-
mation. A database was created comprising around 2850
DKES calculations divided into seven radial positions,
r/a, around fifteen inverse mean-free paths, ν/v, and
many values of the parameter Er/vB. The radial electric
field grid was made sufficiently fine to resolve, at least,
the first electric field resonance Eres. The three nor-
malized diffusion coefficients are plotted versus the nor-
malized collisionality, ν∗ ≡ R0ν/( ιv), at half radius in
Fig. (1) for several values of the radial electric field. This
is the first time that the bootstrap, D31, and conductiv-
ity, D33, mono-energetic coefficients are published for TJ-
II stellarator. The lack of DKES values in the lmfp was
partly mitigated using D11 results from the Monte Carlo
code MOCA and for D33 using the extrapolation to the

fraction of passing particles, fp = 3
4

〈
h2
〉 ∫ 1

0
λdλ

〈(1−λh)1/2〉
with, h = B/Bmax. The values shown are normalized as
in [9]: D∗11 = D11/D

p
11 with Dp

11 = πv2dR0/4v ι; D∗31 =
D31/D

b
31 with Db

31 = 2vdR0fp/3v ι; D∗33 = D33/D
PS
33 ,

with DPS
33 = v2〈B2〉/3νB2

0 . Notice the logarithmic scale
in D∗11, the linear scale in the bootstrap coefficient, D∗31
and how error bars get larger at smaller collisionalities
and that the D∗33 is independent on the radial electric
field. In performing the energy convolutions with the
Maxwellian distribution function mono-energetic coeffi-
cients are required not only at intermediate grid points
(interpolation) but also outside of the database (ex-
trapolation) . The interpolation part was carried out
with a MLP1 type neural network (NN) as in Ref. [17]
but now including the other two mono-energetic coeffi-
cients, D31 and D33. The NN performs a very quick
and smooth interpolation of the three coefficients on
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FIG. 1. (Color online) Normalized mono-energetic coefficients
versus collisionality at half radius for the standard configura-
tion of TJ-II stellarator and Er/vB = 0 , 1× 10−5, 3× 10−5,
1× 10−4, 3× 10−4, 1× 10−3, 3× 10−3, and 1× 10−2. MOCA
data is shown for D∗

11 and DKES results for D∗
31 and D∗

33.

the radial, r/a, electric field, Er/vB and collisionality,
ν∗, dependences. On the other hand, the extrapolation
problem was treated case by case. The radial direction
poses only a problem towards the axis for D11 in the
lmfp. In this limit a least-squared fit to the numerical
results with the known analytical collisional and electric
field dependences,D11 = D1/ν ∝ 1/ν∗, D11 = D√ν ∝√
ν∗(vB0/Er)

3/2 and D11 = Dν ∝ ν∗(vB0/Er)
2, is used

in the extrapolation to the axis. For the electric field,
the limit Er → 0 only affects D11 and D31 in the lmfp
(D33 is independent on the radial electric field) and it
will be treated below in the collisionless limit discussion.
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In the large radial electric field limit the mono-energetic
coefficients are set to their maximum calculated values,
i.e. around the first electric field resonance to avoid diffi-
culties with the incompressible E×B approximation [8].
For the collisionality extrapolations, the Pfirsch-Schlüter
regime is usually not a problem except for D11 at high
values of Er/vB, like those found for impurities, which
are not considered in this work. The collisionless limit
problem for D11 is solved with the use of the Monte Carlo
solution of MOCA [17]. Obtaining the behavior of D31 is
not possible since no general, accurate and fast solution is
known; a problem that is exacerbated for the very broad
field spectra of TJ-II configurations. The lack of accu-
rate solutions at very low collisionalities is not a serious
problem for the calculations because of the plasma pa-
rameters found in TJ-II [25]. In estimating the thermal
coefficients Eq. 5 one has to evaluate the energy convo-
lution, which is the product of three terms: i) the mono-
energetic coefficient, Dij(r/a, ν/v,Er/vB), a power of

the kinetic energy, K = (v/vth)2, (vth =
√

2T/m) and an
exponentially decreasing function of the kinetic energy,
exp [−(v/vth)2], i.e. the maxwellian distribution func-
tion. The integral in kinetic energy, or speed, from zero
to infinity (relativistic effect are negligible) translates
into the mono-energetic coefficients’ variation in inverse
mean-free-path, ν/v, from collisionless (infinite mean free
path) to fully collisional (zero mean free path). As shown
in the literature [6, 9] and also in Fig. 1 the dependence
of the three coefficients on the mean free path is quite
different. In the collisional limit D11 scales with ν∗, D31

tends to zero as 1/ν∗2 and D33 scales with 1/ν∗ (what is
plotted in Fig. 1 is D∗33 not D33). Therefore, the argu-
ment of the integrals involving all coefficients tend to zero
because of the (v/vth)3 factor. In the collisionless limit,
both D11 and D33 scale with 1/ν∗ for Er = 0 and D31

saturates at a plateau value [26]. Here the maxwellian
exponential decrease in the number of particles with en-
ergy is much faster than the diffusion coefficients increase
with the mean free path. However, the unfavorable 1/ν∗

scaling of D11 and D33 extends the region contributing
to the integral to smaller values in collisionality and calls
for precise calculations of these coefficients deeper in the
lmfp. On the other hand, the contribution of D31 in the
lmfp has a smaller impact on the result of the thermal
convolution. How deep and how accurate the calculation
has to be depends on the maxwellian term, i.e. the lo-
cal temperature. In this regards the low temperatures
found in TJ-II plasma operation balance the troubles as-
sociated with its broad magnetic field spectrum and the
associated difficulties for accurately calculate D31.

To clarify this effect the argument of the integral defin-
ing L32 is plotted in Fig. 2 for electrons and ions versus
the normalized collisionality at r/a = 0.2, 0.5 and 0.8
and the conditions of Case 1 of next section. The colli-
sional dependence starts and ends at zero because of the
v/vth power and the maxwellian terms. In between, it
is controlled by D31, which is zero in the PS regime, has
the sign of decreasing the absolute value of the rotational

transform at intermediate collisionalities because of the
non-axisymmetric field terms, and in the lmfp has the
sign of increasing | ι| due to axi-symmetric contributions.
The unusual signs of the coefficients in Fig. 2 e.g. the
electron (ion) contribution is positive (negative) in the
lmfp is not in contradiction with the above discussion.
The signs are reversed for negatively charged particles,
see the normalization of D∗31. In TJ-II, bootstrap cur-
rent flows in the direction of increasing the poloidal com-
ponent of the magnetic field at low collisionalities. The
reason for the bizarre sign is that the rotational transform
in TJ-II is negative, see Fig.1 in [17], a positive toroidal
current decreases the poloidal magnetic field and thus  ι.

A rapid comparison of the result for r/a = 0.5, with
the middle plot in Fig. 1 shows that for electrons the
maximum contribution to the integral comes from the
region around ν∗ ≈ 10−3 − 10−4, where the uncertainty
in the calculation of D31 coefficient is moderate for the
ambipolar electric field considered. Notice that this is
the worst possible case since L32 decreases more slowly
with decreasing collisionality than L31 and L33 because
of the h2 = (v/vth)2 term. The radial dependences are
explained considering the electron and ion temperature
profiles and the larger non-axisymmetric field contribu-
tion in TJ-II closer to the axis, that increases the positive
part of D∗31 and extends it to smaller collisionalities. This
effect is noticeable in Fig. 2 at r/a = 0.2 where the higher
temperature of electrons shifts the contributing region to
lower collisionalities and the larger central helically sym-
metric contribution amplifies the negative part. The odd
behavior seen for the ions at r/a = 0.5 is due to its higher
temperature.

Let’s finish this section with the final expression that
will be used for calculating the local bootstrap current
density for particles of type α from Eq. (4), it is:

jαb (r) = −qαnα(r)

[
Lα31(r)Aα1 (r) + Lα32(r)Aα2 (r)

]
. (7)

Notice that the Lij coefficients are functions of position
through the local density and temperature dependence
on collisionality and radial electric field.

IV. RESULTS

There are two heating scenarios in TJ-II operation: i)
Electron Cyclotron Resonance Heating (ECRH) and ii)
Neutral Beam Injection (NBI) heating. ECRH is used
for plasma startup and heating below the cut-off density,
which is ncut−off ≈ 1.7× 1019m−3 for the f = 53.2 GHz
gyrotron setup. NBI is used with a sufficiently dense
and hot plasma target and allows overcoming the cut-off
density. In either case, the heating power is coupled to
the electrons (in NBI because of the high beam energy
Ebeam = 35 keV) The ion temperature is always limited
to about Ti ≈ 200 eV; at low densities because of the bad
electron-ion coupling [31] and at higher densities because
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FIG. 2. (Color online) Argument of the integral defining L32,
see Eq. 5, versus normalized collisionality for electrons (top)
and ions (bottom) at r/a =0.2 (circles), 0.5 (squares) and
0.8 (triangles) and their local ambipolar radial electric field
corresponding to the plasma parameters of the first profile
considered in next section. Points are not equally spaced be-
cause of the Gauss-Laguerre integration technique used

of the large ion transport [17]. For central ECRH depo-
sition, the electron temperature increases, from around
Te ≈ 200 eV in NBI up to Te ≈ 1.5 keV in ECRH and
gets more peaked with decreasing density [32]. For these
plasma parameters one expects bootstrap currents to be
mainly driven by electrons and being only sizable in low
density ECRH operation. TJ-II was originally designed
with enough flexibility to produce plasma configurations
with different rotational transforms and, to a minor ex-
tent, different shears. These plasma parameter change
from configuration to configuration is accompanied with
plasmas at different positions inside the vacuum vessel
and with different shapes and sizes [4, 28]. For this first
calculation of the bootstrap current and given work in-
volved in obtaining the mono-energetic coefficients and
the uncertainties in the plasma profiles it was decided
to calculate the database just for the standard configu-
ration of TJ-II and wait for experimental evidences to
justify further theoretical studies. Results of Ref. [29],
where around 4000 configurations were analyzed seeking
for a transport optimized configuration, suggest that, at
least, D11 is a smooth function of the configuration al-
though strong variations cannot be ruled out especially
for very small rounded plasmas and close to rational sur-
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FIG. 3. (Color online) Density and electron and ion temper-
ature profiles for Case 1 (top) and Case 2 (bottom).

faces. As for the β dependence, there is an unfavorable
effective helical ripple dependence with increasing β de-
spite the very mild modification of the flux surfaces with
plasmas pressure [30].

Two plasma scenarios were selected as examples for
calculating all neoclassical estimates like the ambipolar
radial electric field, the electron and ion particle and en-
ergy fluxes and bootstrap current densities. Both sce-
narios were simulated with the predictive transport code
of Ref. [33]. In the predictive simulations density and
ECRH power deposition profiles (with PECRH = 200
kW) were fixed and the electron and ion temperatures
were obtained solving the energy balance equations tak-
ing into account the neoclassical contributions, for the
ambipolar radial electric field, plus an edge anomalous
contribution. Ion and electron density profiles were fixed,
and set equal to each other (Z = 1) because of the un-
certainties in the recycling, the very small neoclassical
contributions at the edge and the difficulties in modeling
the anomalous particle channel. The first set of profiles,
Case 1, is the same as the one presented in Ref. [34], the
second one, called Case 2, corresponds to a higher density
ECRH operation. The density and temperature profiles
are plotted in Fig. 3. These two cases correspond ap-
proximately to the ECRH operation regimes described
in Refs. [35, 36] and where the net current was mea-
sured. Unfortunately, it was not possible to use these
experimental results directly since not all necessary pro-



7

-2

0

2

4

6

8

10

0 0.25 0.5 0.75 1

E r [
kV

/m
]

r/a

FIG. 4. (Color online) Radial electric field profiles for the
Case 1 (circles) and Case 2 (triangles).

files were available (ion temperature and Zeff profiles)
or were not available with the required accuracy for all
radii (edge electron density and temperature).

Since the impact of the Lorentz collision operator on
the perpendicular particle and energy transport (and
the radial electric field) is of minor importance for non-
axisymmetric devices except in the PS regime [27], the
procedure to make neoclassical estimates for these two
scenarios is the same as the one presented in Ref. [17]:
1) solve the ambipolar condition

∑
α ZαΓα = 0 for the

particle fluxes

Γα(r, Er) = −nα(r)

[
Lα11(r)Aα1 (r) + Lα12(r)Aα2

]
, (8)

where the Ware pinch is negligible, and use the solution
to obtain the ambipolar particle flux and the electron
and ion heat fluxes. In general, when there are all type of
thermodynamic forces, as in the outer part of the plasma,
not even the sign of the radial electric field can be an-
ticipated and the non-linear equation has to be solved
numerically (e.g. Fig. 8 of Ref. [17]), possibly leading to
multiple solutions. In Fig. 4 the solutions to the ambipo-
lar condition are plotted for both scenarios ( the result
for Case 1 is equal to Fig. 4 of Ref. [34]). Only one
solution with positive Er (electron root) is found in the
plasma core followed by three solutions (there is always
an odd number of solutions) at outer radius. The pre-
dicted radial electric field is obtained from the solution
of a diffusion equation for the radial electric field, see
Ref. [34] for details. It is worth stressing the fair agree-
ment between the results of Fig. 4 and the radial electric
field measured [37] by the HIBP diagnostic in TJ-II for
similar plasma parameters.

Once the radial electric field was obtained it is possible
to make all type of neoclassical estimates. The ambipo-
lar particle flux, Γ, is plotted along with the electron,
Qe, and ion, Qi, heat fluxes in Fig. 5. Where the radial
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FIG. 5. (Color online) Ambipolar particle (top) and electron
and ion heat (bottom) flux profiles for Case 1 (solid) and Case
2 (dotted).

energy fluxes are defined as:

Qα(r) = −nα(r)Tα(r)

[
Lα21(r)Aα1 (r)+Lα22(r)Aα2 (r)

]
(9)

where, again, the term related to the loop voltage was
omitted. Integrating these profiles one can calculate de-
rived quantities like the local particle and energy confine-
ment times, which in the cylindrical approximation leads
for the ambipolar particle confinement time:

τp(r) =
4π2R

∫ r
0
n(r′)r′dr′

4π2rRΓ(r)

and the energy confinement time

τE(r) =
4π2R

∫ r
0

3
2n(r′)[Te(r

′) + Ti(r
′)] r′dr′

4π2rR[Qe(r) +Qi(r)]
,

where Γ and Qα are given by Eq. (8) and (9). A com-
parison of these confinement times with experimental
analysis reveals a difficulty: experimentally, particle and
heat fluxes increase towards the edge whereas neoclassical
fluxes decrease towards the edge (are proportional to the
local density and temperature and strongly decreasing
functions of collisionality). So far, there is no satisfactory
explanation for this anomalous discrepancy in stellara-
tors. To partly avoid this difficulty, here (see Table I) the
particle and energy confinement times are compared at
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2/3 of the plasma radius for the both scenarios. The val-
ues obtained are very close to those obtained experimen-
tally in Ref. [38] in which the particle confinement time
was found to be approximately τP ≈ 105 × (Pin/n̄e)

−1.7

ms, where Pin is the ECRH injected power in kW and
n̄e the line integrated density in 1019 m−3. They are also
in agreement with a predictive transport code [39] us-
ing the plasma profiles, absolutely calibrated Hα signals
and EIRENE code simulations to estimate flux surface
averaged particle sources [40]. The fair agreement found
between the neoclassical energy confinement time and the
International Stellarator Scaling ISS04 [41] points to the
importance of the neoclassical channel for the TJ-II.

Case 1 Case 2
τP [ms] Neo. Ref. [38] Neo. Ref. [38]

6.5 7.7 12.0 17.6
τE [ms] Neo. ISS04 Neo. ISS04

3.0 2.2 4.5 2.8
momentum without with without with

Ie [kA] -2.36 -2.39 -2.00 -2.01
Ii [kA] 0.07 0.62 0.16 0.67

Itot [kA] -2.29 -1.77 -1.84 -1.35

TABLE I. Particle and energy confinement times and
Bootstrap current for the two scenarios considered.
τ ISS04E = 0.134fTJ-IIa

2.28R0.64P−0.61n̄0.54B0.84
 ι
0.41
2/3 and for

TJ-II: fTJ-II = 0.25, a = 0.18 m, R = 1.5 m, P = 0.2
MW, B = 0.95 T,  ι2/3 = 1.48, n̄Case 1 = 0.76 × 1019m−3,

n̄Case 2 = 1.24 × 1019m−3

The procedure implemented in this work to correct the
bootstrap estimation given by Eq. 7 is described in Sec.
V of in Ref. [27] which is based on a moment equation
expansion of the DKE. The electron and ion corrections
are coupled to each other and are obtained solving a sys-
tem of linear equations of size equal to the number of
species times the number of Sonine polynomials (which
is three for the simulations presented here). The electron
and ion bootstrap current density profiles are presented
in Fig. 6 with and without imposing momentum con-
servation for the high and low density ECRH scenarios.
The electron bootstrap current density is almost every-
where negative and larger, in absolute value, than the
ion contribution. This can be anticipated from the D31

dependence on collisionality, see Fig. 1, and the disparate
electron and ion collisionalities. In Case 2 the electron
bootstrap current density is positive in the plasma core
because of a combination of low temperature and small
gradients. The momentum correction on the individual
electron and ion channels is a tradeoff between their par-
allel flows and their collisional coupling. For the consid-
ered parameters, the impact of momentum correction on
the ion contribution is rather large; the parallel viscous
damping of the ion flow at higher collisionalities is de-
scribed by the effective trapped particle fraction, 1−D∗33
(see Fig.1). On the other hand, the electron flow is colli-
sionally coupled to the ion flow and partly compensates
the strong effect of the ion momentum correction (most

pronounced in Fig. 6 at inner radius for Case 1). These
effects, i.e. the huge ion correction and the electron par-
tial cancellation, can be seen in Fig. 6 where the ion and
electron current densities are shown with and without the
momentum corrections. The overall effect of momentum
conservation is a reduction in the total bootstrap cur-
rent. In Ref. [27] it is explained the different effect of
the momentum conservation on the bootstrap current de-
pending on the importance of the density or temperature
gradients. For temperature gradient dominated profiles
a significant reduction is found when considering a col-
lision operator conserving momentum, whereas density
gradients produce an increase in the bootstrap current.
The reduction found here for both cases is in agreement
with these results since both are mainly electron tem-
perature gradient dominated. The results obtained are
consistent with the neoclassical ordering since the radial
electric field is small enough to neglect radial momen-
tum transport effects (even for the lowest collisionality
and the central electron root ErR/ ιv

i
thrB is below 0.2)

and the ion parallel flow is small compared with the ion
thermal velocity, ji/qiniv

i
th < 0.3. It is difficult to com-

pare the bootstrap current values obtained with the net
currents measured during ECRH operation, ranging from
-0.5 to -1. kA35,36 since on the one hand experimental
values might be influenced by ECCD and on the other
hand because of the sensitivity of the total current on
the edge profiles and the Z = 1 value. Nevertheless, neo-
classical estimations have the same current sign and are
less than a factor of two larger than the experimental
measurements. More remarkable is the fact that better
agreement is found when momentum corrections are in-
cluded.

The impact of the bootstrap current on the rotational
transform can be calculated in several ways: with a cylin-
drical approximation, through the geometrical factors
of Ref. [42] or by directly including the currents in a
3D MHD code. In the past [4] no significant difference
was found for TJ-II between the full MHD and the sim-
ple cylindrical approach, so this latter was used here,

 ι =  ι0 + ∆ ι, where  ι0 is the vacuum rotational transform
and the modification, ∆ ι, due to the plasma current den-
sity j is:

∆ ι(r) ≈
µ0R

Br2

∫ r

0

j(r′)r′dr′.

Using the bootstrap current density profiles obtained (see
Fig. 6), which are small or a bit positive close to the
axis and negative at outer radius on can anticipate that
∆ ι = 0 on axis (there are no gradients on axis); will re-
duce the absolute value of the rotational transform close
to the axis, ∆ ι > 0, and will increase  ι towards the edge,
∆ ι < 0. In Fig. 7 the original and the modified  ι profiles
are plotted with and without the momentum correction
for both cases analyzed. These results are in accordance
with the experimental plasma currents measured at TJ-
II during ECRH operation, without electron cyclotron
current drive (ECCD), that are always negative [25]. For



9

-50

-25

0

25

50
j b [

kA
/m

2 ]

j
b

i

j
b

e

Case 1

j
b

e+j
b

i

-50

-25

0

25

50

0 0.25 0.5 0.75 1

j b [
kA

/m
2 ]

r/a

j
b

i

j
b

e

Case 2

j
b

e+j
b

i

FIG. 6. (Color online) Bootstrap current density profile with
(solid) and without (dotted) imposing momentum conserva-
tion for Case 1 (top) and Case 2 (bottom)

these conditions the bootstrap current reduces the abso-
lute value of the rotational transform close to the axis
and increases it towards the edge. As a consequence,
the rotational transform radial variation, i.e. the shear,

 ι′ = d ι/dr, increases with respect to the vacuum con-
figuration. Finally, it is worth stressing that once the
database with the three mono-energetic transport coeffi-
cient is computed the calculation of all the neoclassical
estimations of this section for a given set of plasma pro-
files takes half a second on a laptop computer .

V. CONCLUSIONS

For the first time bootstrap current has been computed
for TJ-II stellarator with the DKES and MOCA codes
despite the numerical difficulties found in the calculation
of the mono-energetic transport coefficients in the long
mean free path for this device. This was made possi-
ble because of the smooth dependence of the bootstrap
coefficient on the collisionality and radial electric field
and the moderate electron and ion temperatures found
in the routine ECRH operation in TJ-II. Neoclassical
estimates of: ambipolar radial electric field, ambipolar
particle flux, electron and ion heat fluxes, particle and
energy confinement times are presented for two ECRH
scenarios obtained with a predictive transport code. A
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FIG. 7. (Color online) Rotational transform profiles in vac-
uum (thick solid) and including the modification due to boot-
strap current with (solid) and without (dotted) imposing mo-
mentum conservation for Case 1 (top) and Case 2 (bottom).

remarkable agreement is found between neoclassical par-
ticle confinement times and those calculated from a com-
bination of experimental profiles and neutral code sim-
ulations and between the energy confinement times and
the ISS04 scaling law estimation. The bootstrap cur-
rent density is calculated with and without applying a
momentum correction technique based on moment equa-
tions. The results exhibit modest current densities in the
central plasma region becoming more negative at outer
radius due to the, low collisional, electron contribution
and a total negative integrated bootstrap current. The
effect of the momentum correction technique is a slight
reduction of the integrated current. The obtained boot-
strap currents, Ib ≈ −1.5 kA are close to the plasma cur-
rents usually measured in TJ-II during ECRH operation.
The modification of the rotational transform has been
calculated with a cylindrical approximation and shows a
reduction, in absolute value, close to the axis and a later
increase, also in absolute value, at outer radius. Ratio-
nal values of the rotational transform that were thought
to lie outside the plasma can be found inside the con-
figuration, both in the plasma core or at the edge. The
modified plasma configurations have a much larger rota-
tional transform shear,  ι′ = d ι/dr, up to 3a/4, possibly
with a multivalued  ι close to the axis, and almost the
same shear at outer positions.
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These conclusions are largely independent of the profile
details, as many other simulations that have not been in-
cluded here indicate. The neoclassical analysis presented
in this work allows a fast and systematic comparison with
experimental radial electric field profiles and plasma cur-
rents and should be taken into account to study magnetic
island appearance and MHD activity related to rational
surfaces in TJ-II.
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[4] V. Tribaldos, J. A. Jiménez, J. Guasp and B. Ph. van
Milligen, Plasma Phys. Control. Fusion 40 2113 (1998).

[5] J. Romero et al., Nucl. Fusion 43, 387 (2003).
[6] A. A. Galeev and R. Z. Sagdeev, Sov. Phys. JETP 26,

233 (1968).
[7] R. D. Hazeltine, Phys. Fluids 15, 77 (1973).
[8] C. D. Beidler, M. Yu. Isaev, S. V. Kasilov, W. Kern-

bichler, H. Maaßberg, S. Murakami, V. V. Nemov, D. A.
Spong and V. Tribaldos, in Proceedings of the 17th In-
ternational Toki Conference and 16th International Stel-
larator/Heliotron Workshop, Toki, 2007, edited by T.
Morisaki.

[9] C. D. Beidler, K. Allmaier, M. Yu. Isaev, S. V. Kasilov,
W. Kernbichler, G. O. Leitold, H. Maaßberg, D. R.
Mikkelsen, S. Murakami, M. Schmidt , D. A. Spong, V.
Tribaldos and A. Wakasa, Nucl. Fusion 51 076001 (2011).

[10] A. H. Boozer and H. J. Gardner, Phys. Fluids B 2 2408
(1990).

[11] H. Maaßberg, W. Lotz, and J. Nührenberg, Phys. Fluids
B 5, 3728 (1993).

[12] S. P. Hirshman, K. C. Shaing, W. I. van Rij, C. O.
Beasley, Jr., and E. C. Crume, Phys. Fluids 29 2951
(1986).

[13] W. I. van Rij and S. P. Hirshman, Phys. Fluids B 1 563
(1989).

[14] V. V. Nemov, S. V. Kasilov, W. Kernbichler, and M. F.
Heyn, Phys. Plasmas 6 4622 (1999).

[15] W. Kernbichler, S. V. Kasilov, G. O. Leitold, V. V.
Nemov, and K. Allmaier, Plasma Fusion Res. 3 S1061
(2008).

[16] C. D. Beidler, W. N. G. Hitchon, and J. L. Shohet, J.
Comput. Phys. 72, 220 (1987).

[17] V. Tribaldos, Phys. Plasmas 8 1229 (2001).
[18] A. Wakasa, S. Murakami, H. Maaßberg, C. D. Beidler, N.

Nakajima , K. Watanabe, H. Yamada, M. Okamoto, S.
Oikawa, and M. Itagaki, J. Plasma Fusion Res. SERIES
4 408 (2001).

[19] M. Yu. Isaev, S. Brunner, W. A. Cooper, T. M. Tran,

A. Bergmann, C. D. Beidler, J. Geiger, H. Maaßberg, J.
Nührenberg, and M. Schmidt, Fusion Sci. Technol. 50
440 (2006).

[20] A. Matsuyama, and K. Hanatani, Phys. Plasmas 17
032501 (2010).

[21] K. Allmaier, S. V. Kasilov, W. Kernbichler, and G. O.
Leitold, Phys. Plasmas 15 072512 (2008).

[22] V. Tribaldos and J. Guasp, Plasma Phys. Control. Fusion
47 545 (2005).

[23] S. P. Hirshman, W. I. van Rij, and P. Merkel, Comput.
Phys. Commun. 43 143 (1986).

[24] J. Nührenberg and R. Zille, Theory of Fusion Plasmas
(Varenna 1987) (Editrice Compositori, Bologna, 1988),
p. 3.

[25] V. Tribaldos, H. Maaßberg, J.A. Jiménez and A. Varias
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[35] I. Garćıa-Cortés, E. de la Luna, F. Castejón, J.A.
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Estrada and V. Tribaldos Plasma Phys. Control. Fusion
43 1023 (2001).

[39] J. Guasp private communication.
[40] E. de la Cal, J. Guasp, A. Salas, D. Reiter, P. Borner,

J.A. Alonso, R. Balb́ın, D. Carralero, C. Hidalgo, J.L.
de Pablos, F.L. Tabares, D. Tafalla and the TJ-II Team,
Nuc. Fusion 8 095005 (2008).

[41] H. Yamada, J.H. Harris, A. Dinklage, E. Ascasibar, F.
Sano, S. Okamura, J. Talmadge, U. Stroth, A. Kus, S.
Murakami, M. Yokoyama, C.D. Beidler, V. Tribaldos,
K.Y. Watanabe and Y. Suzuki, Nucl. Fusion 45 1684
(2005).

[42] P. I. Strand and W. A. Houlberg, Phys. Plasmas 8 2782
(2001).


