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The relation between magnetic geometry and the level of ion-temperature-gradient (ITG) driven
turbulence in stellarators is explored through gyrokinetic theory and direct linear and nonlinear
simulations. It is found that the ITG radial heat flux is sensitive to details of the magnetic config-
uration that can be understood in terms of the linear behavior of zonal flows. The results throw
light on the question of how the optimization of neoclassical confinement is related to the reduction
of turbulence.

Understanding the turbulence present in tokamaks and
stellarators is one of the most important challenges in
plasma physics. A particularly interesting question in
this context is how the magnetic geometry affects the
nature and amplitude of the turbulence. In plasmas
where the ion-temperature-gradient (ITG) instability is
significant, so-called zonal flows (ZFs) have a favorable
effect on the confinement [1]. However, the complexity
introduced by nonaxisymmetry had rendered, only until
very recently, the study of ZFs in stellarator configura-
tions intractable. The dynamical character of the ZF re-
sponse in a stellarator was first predicted analytically in
Refs. [2,3] and was later confirmed by linear gyrokinetic
simulations [4,5]. In a tokamak, the linear response to
an imposed ZF perturbation consists of geodesic acous-
tic mode (GAM) oscillations followed by a steady state
so-called Rosenbluth-Hinton (RH) residual level [6]. In
stellarators, there is an intermediate stage of slow (com-
pared with the GAM) damped ZF oscillations, and the
RH residual level can be much lower than in tokamaks
[3,5]. The details of this behavior depend on the mag-
netic configuration in question.
Recent work [7] sought to reduce turbulence in stel-

larators by directly targeting the ITG instability. Com-
plementing that study, here we investigate the role of
ZF dynamics in regulating turbulent transport. As will
become apparent, the situation is different from that in
tokamaks, since the residual level is not always reached
before turbulence saturates (see Figs. 4,6), and in these
cases, the RH level alone cannot account for differences
in the heat flux (as sometimes claimed in the tokamak lit-
erature, see e.g., Ref. [8]). Furthermore, we identify the
geodesic curvature as an important ingredient affecting
the ZF oscillations, viz., minimizing the geodesic curva-
ture proves to have a significant favorable effect on the
confinement. Finally, we revisit the relationship between
neoclassical (nc) optimization and turbulence reduction.
Although these two concepts turn out to be correlated

(see also Refs. [4,9]), here we show that turbulence must
be treated in addition to nc optimization. It should be
remembered that turbulent transport is important in op-
timized stellarators, especially at low temperatures [10].

As a preparatory step, to gain confidence in the numer-
ical treatment, we present (the first published) linear and

nonlinear benchmarks in stellarator geometry. Most of
the presented simulations are performed with the GENE
code (see, e.g., Refs. [11,12]), which solves the nonlinear,
gyrokinetic system of equations in flux-tube geometry of
an arbitrary toroidal configuration with closed flux sur-
faces. For the benchmarking, we compare GENE with
the GKV code (see, e.g., Ref. [4]), which solves the same
system of equations with independently developed nu-
merical techniques. The instability considered is the elec-
trostatic, collisionless ITG mode, assuming Boltzmann
distributed (adiabatic) electrons.
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FIG. 1. Linear (normalized) ZF potential by GENE and

GKV for two LHD configurations. Here, Vti =
√

Ti0/mi is
the ion thermal velocity and R is the major radius.

Starting with the linear case, we simulate two config-
urations of the Large Helical Device (LHD) [13], namely
the standard (LHD-SC) and the inward-shifted (LHD-IS)
configurations, to determine their linear ZF response. To
this end, we have employed an analytical magnetic field
representation in both codes (details of the implementa-
tion appear in Ref. [4]). The outcome of the comparison
is shown in Fig. 1, where fast GAM oscillations are fol-
lowed by a steady RH residual, resembling the response
in a tokamak. For the nonlinear benchmarking, the com-
putational effort is greatly increased. As inferred from
Fig. 2, the two simulations for each LHD configuration
are statistically almost equivalent at saturation. We note
in passing that the discrepancy during the growing phase
follows from the initial conditions of the codes (the lin-
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ear growth rates are in very good agreement). The dif-
ferences between the two configurations seen in the two
figures are believed to be related [4]: the fact that the
LHD-IS configuration has a slower ZF decay and higher
RH residual in the linear simulation leads to an increased
averaged ZF amplitude in the nonlinear simulation and,
in turn, to a reduced level of turbulence (even though
the linear growth rates of the instability are a bit larger).
Since this configuration also enjoys better nc confinement
properties, it has been suggested that the suppression of
turbulence is directly linked to the nc transport.
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FIG. 2. Turbulent heat diffusivities from nonlinear ITG
simulations produced by the GENE and GKV codes for two
LHD configurations. Ln denotes the density gradient scale
length. The parameters of the simulations are described in
Ref.[4].

As we shall see, the situation is more complicated. To
understand why, we first provide a brief analytical treat-
ment that explains the existence of ZF oscillations in a
generic stellarator configuration [5]. The linear gyroki-
netic equation for the ZF component of the electrostatic
potential with perpendicular wavevector k⊥ = kr∇r
reads

∂fa1
∂t

+ v‖∇‖fa1 + ikrvdfa1 = −ieakrvdφ̂J0(k⊥ρ)f0 (1)

where the zonal potential is normalized to the plasma
temperature, i.e., φ̂ = eφ/T , f0 is the Maxwellian equilib-
rium distribution function, f1 is the perturbed gyrocenter
distribution function, J0 is the zeroth-order Bessel func-
tion, ρ is the gyroradius, v‖ is the parallel velocity, and
vd is the radial drift velocity. For simplicity, we assume
J0(k⊥ρ) ≈ 1 and equal ion and electron temperatures,
although these restrictions can easily be relaxed.
Taking the first moment of Eq. (1) and employing

the gyrokinetic quasineutrality condition, one obtains an
equation for the evolution of the ZF potential

n0

〈

k2rρ
2
i

〉∂φ̂

∂t
+ ikr

∑

a

〈

∫

eavdfa1d
3v
〉

= 0 (2)

Here, ea equals +1 for ions or −1 for electrons, and n0

is the plasma density. The angular brackets denote flux-
surface averages.
Now, the initial-value problem is solved by applying

the Laplace transform to Eq. (1) and assuming charac-
teristic time scales much longer than the bounce time
(taking fi1(t = 0) = 〈k2rρ

2
i 〉f0φ0 and fe1(t = 0) = 0).

This allows us to cast Eq. (2) into the form of an ambipo-

larity condition J
(cl)
r(pol)+J

(neo)
r(pol)+Jr(3D) = 0, with J

(cl)
r(pol)

being the classical polarization current, J
(neo)
r(pol) the nc po-

larization current and Jr(3D) =
∑

a

〈

∫

eavdfa1d
3v
〉

the

radial current of locally trapped particles.
Solving this equation, we extract the ZF linear re-

sponse on time scales longer than the bounce time (here
{·} := 〈

∫

· f0 d
3v〉)

Φ(p)

φ0

=

{

1

p+ iωd

}

〈k2
rρ

2
i 〉

〈k2
rρ2i 〉+ {k2

rδ2r}+
{

i ωd

p+i ωd

} (3)

where Φ(p) is the Laplace transform of the potential, δr
the radial orbit excursion, defined by vd = v‖∇‖δr + vd
and ωd = krvd is the bounce-averaged radial drift fre-
quency. This equation is useful in two ways. First, the
information about the existence of ZF oscillations follows
from the dispersion relation

〈k2rρ
2
i 〉+ {k2rδ

2
r}+

{

i ωd

p+ i ωd

}

= 0 (4)

and particularly the last term (in a tokamak ωd = 0).
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FIG. 3. Linear ZF potential for W7X for radial wavenum-
bers krρi = 0.0005, where GAM oscillations are pronounced,
and krρi = 0.06, where ZF oscillations emerge. Here,
ρi = Vti/Ωi, where Ωi is the ion gyrofrequency, and α de-
notes the (average) minor radius of the device.

The existence of these oscillations is also seen in Fig. 3,
where a representative GENE result is shown for the
Wendelstein 7-X (W7X) stellarator [14]. In fact, by se-
lecting proper values for the radial wavenumber, it is for-
mally possible to separate the fast GAM oscillations from
the slow ones for the ZF response. Indeed, we observe
strong GAMs but practically no ZF oscillations for small
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wavenumbers and vice versa for large ones (in the latter
case, one can observe a small peak corresponding to the
remnant GAM at the very beginning of the simulation).
In addition, both the frequency and damping rate of the
ZF oscillations are inherently related to the magnetic ge-
ometry (via ωd).
Second, Eq. (4) can be used to calculate the RH resid-

ual level that is reached once the oscillations have died
out, as

lim
t→∞

φ(t) = lim
p→0

p Φ(p) =
〈k2rρ

2
i 〉(1− fh)φ(t = 0)

〈k2rρ
2
i 〉+ {k2rδ

2
r}+ fh

(5)

where fh is the fraction of helically trapped particles,

fh = 1
n0

〈

∫

k2<1
d3vf0

〉

with k2 the related trapping

parameter. We remark that, in contrast to the toka-
mak case, the residual level is a function of the radial
wavenumber (as was also reported in Ref. [2]), and is ex-
pected to vary among magnetic configurations. Specif-
ically, when the impact of helically trapped particles is
strong, i.e., fh ≫ {k2rδ

2
r}, the residual level is very small,

namely φ(t → ∞) ≈ 〈k2rρ
2
i 〉, which is the situation we

consider in the W7X case. In a less extreme case, where
fh ∼ {k2rδ

2
r} holds, the resulting dependence of the resid-

ual level on kr is approximately linear (see Ref. [15] for
an application in the LHD device).
How does the linear ZF dynamics thus considered af-

fect the turbulent transport in terms of the radial heat
flux levels? To address this issue, we carry out a numeri-
cal experiment, using the standard W7X configuration as
a test bed and artificially reducing the geodesic curvature
to a tenth of its nominal value throughout the simulated
flux tube, without otherwise altering the fraction of heli-
cally trapped particles. Although the resulting magnetic
configuration, termed here W7X10%, is fictitious, this
setup provides valuable insight, since the two configura-
tions are characterized by exactly the same linear growth
rates, something which is difficult to achieve through a
self-consistent equilibrium calculation.
The GENE simulations reveal that the linear ZF re-

sponses are very different, as it is anticipated theoreti-
cally from the fact that the radial drift velocity, which is
proportional to the geodesic curvature, enters in Eq. (3)
for the linear ZF dynamics. This is illustrated by Fig. 4,
where the configuration with small geodesic curvature is
seen to exhibit a much slower decay of the initial pertur-
bation. In a nonlinear simulation, this has the effect of
boosting the average ZF amplitude, as shown in Fig. 5,
and subsequently reducing the turbulent heat flux (see
Fig. 6). It is important to note that this difference in
the heat fluxes cannot be attributed to the residual level
since, according to Eq. (5), its value for both configu-
rations is extremely small, namely of the order 〈k2rρ

2
i 〉.

Instead, in W7X, the ZF oscillations (similar to the ZF
decay in LHD [4]), preceding the residual level, play a
key role in the regulation of the turbulent transport.
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FIG. 4. Linear ZF responses for W7X and W7X10% (see
text). The vertical line denotes roughly the saturation time
of turbulence, shown in Fig. 6.

 0

 10

 20

 30

 40

 50

 60

 0  100  200  300  400  500

|<
φ(

t)
>

|

Time (α/Vti)

W7X10%
W7X

FIG. 5. ZF time traces from nonlinear ITG simulations for
W7X and W7X10% (see text).

On the other hand, reducing the geodesic curvature
also has the known effect of shortening the radial step
length in the nc transport. Therefore, the minimization
of geodesic curvature reduces both the nc and turbulent
transport channels, and therefore results in a correlation
between nc optimization and turbulence reduction. This
conclusion is a prominent candidate for the interpetation
of the LHD cases studied in Ref. [4] (see also Figs. 1,2).
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FIG. 6. Turbulent heat flux levels from nonlinear ITG sim-
ulations for W7X and W7X10% (see text).
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Finally, we consider another member of the family of
W7X configurations, the so-called Low Mirror Configu-
ration (W7X-LM), which has larger helical ripple (about
a factor of 3) than the standard configuration in the
outer region of the plasma [16] but practically the same
geodesic curvature. The linear ZF responses, in Fig. 7,
are found to be very similar with respect to their decay
(and the residual level is also very small). In addition,
the linear ITG growth rates for the two simulations are
essentially identical.
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FIG. 7. Linear ZF responses for W7X and W7X-LM at
radius ρ = 0.8α.
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FIG. 8. ZF time traces from nonlinear ITG simulations for
W7X-LM and W7X at ρ = 0.8α.
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FIG. 9. Turbulent heat flux levels from nonlinear ITG sim-
ulations for W7X and W7X-LM at ρ = 0.8α.

The nonlinear ZF amplitudes are consistent with the
linear dynamics, as no significant difference is to be seen
in Fig. 8 (compared to Fig. 5). Accordingly, the outcome
of nonlinear ITG simulations for the two configurations,
in Fig. 9, suggests that the levels are almost the same.
We conclude that the 3D magnetic field geometry af-

fects the ITG heat transport via the linear ZF dynam-
ics – oscillations in W7X or slow decay in LHD [4] –
prior to the RH residual level. An improved nc confine-
ment is clearly correlated with reduced turbulent trans-
port via the geodesic curvature. However, we demon-
strated that configurations with very different effective
ripple can have similar turbulent heat levels. Separate
work [7], complementing this one, addressed the ITG in-
stability, by minimizing regions of bad curvature. There,
configurations with drastically reduced turbulent levels
were generated, without affecting nc transport. Thus,
the turbulent channel should be explicitly treated in fu-
ture stellarator designs, in addition to nc optimization.
We thank Prof. F. Jenko and Dr. C. Beidler for insight-
ful comments and the Jülich Supercomputing Center for
the GENE simulations.
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