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Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching,
Germany

Abstract

Non-physical effects of discretization schemes on simulations of plasma micro-
turbulence are investigated, and different types of hyperdiffusion terms in the
gyrokinetic Vlasov equation are employed to cancel or mitigate these effects.
Widely applicable rules on how to operate parallel spatial and velocity space
diffusion – to avoid numerically excited high-k‖ modes and recurrence phenom-
ena, respectively – are presented. The impact of diffusion terms on and the
applicability of these findings to results obtained in the context of a benchmark
scenario are demonstrated.

1. Introduction

Plasma microturbulence is known to be responsible for the anomalously high
heat and particle transport observed in magnetic confinement fusion experi-
ments. Hence it represents a key challenge on the way to the construction of
effective power plants of this kind. The nonlinear dynamics of various microin-
stabilities driven (mainly) by background temperature and density gradients and
leading to a saturated turbulent state associated with large cross-field transport
levels is generally described in the framework of gyrokinetic theory [1, 2, 3].
When solving the underlying integro-differential equations on a finite grid, mul-
tiple numerical effects may come into play which can change the results. Among
these effects are zigzag-like mode growth due to finite difference schemes and
recurrence phenomena where finite velocity space resolution causes the code to
reproduce the initial state after a certain time. In order to retain physicality of
the simulations results, one needs to either go to enormously high resolutions –
which is not a practically viable option –, find numerical schemes which avoid
said issues, or remove their unphysical influence by making use of other numer-
ical techniques. In this paper, we shall examine such issues with the help of the
gyrokinetic Vlasov code Gene [4, 5, 6] and reduced versions thereof.
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The structure of the present work is as follows. After a summary of the equations
solved by the Gene code, a brief overview of stencils for finite differencing is
given. In Sec. 4, a number of simplifications are made to isolate the effects
of high-k‖ modes which are then removed from the simulations by employing
upwind differencing or numerical diffusion in the parallel direction. Numerical
recurrence is investigated, Sec. 5, and parallel velocity space diffusion is shown
to cause such effects to vanish. The results of these investigations are applied to
a benchmark scenario in Sec. 6 before a summation of the findings of this work
is given.

2. The gyrokinetic equations

A large part of the simulations presented in this paper are performed with the
nonlinear gyrokinetic turbulence code Gene. Here, the nonlinear gyrokinetic
equations [1, 2, 3] are solved on a fixed grid in five-dimensional phase space
(plus time). The independent variables are normalized according to Tab. 1,
with the ion sound scale ρs = cs/Ωi, the ion Larmor frequency Ωi = eBref/mic,
the ion sound speed cs = (Te0/mi)1/2, the thermal velocity vTj = (2Tj0/mj)1/2

of species j, the safety factor q0, the major radius R0, and a typical equilibrium
scale length Lref which typically is set to R0. The equilibrium magnetic field
is taken to be along the z direction with strength B0 = B̂Bref where Bref is
the magnetic field on the magnetic axis and B̂ = 1/(1 + εt cos z) describes the
variation of B0 with respect to Bref . The x direction is across the flux surfaces,
and y is a field-line label on a given flux surface. As velocity space coordinates,
the parallel velocity v‖ and the magnetic moment µ are employed.

x y z v‖ µ t

ρs ρs q0R0 vTj
Tj0

Bref

Lref

cs

Table 1: Normalization of the independent variables.

Fj0 Fj1 Φ A‖
nj0

v3
T j

nj0

v3
T j

ρs

Lref

Te0

e
ρs

Lref

q0R0

Lref
Brefβeρs

ρs

Lref

Table 2: Normalization of the dependent variables.

The dependent variables, on the other hand, are normalized according to Tab. 2.
Here, the distribution function Fj is broken up into an equilibrium part Fj0 and
a perturbed part Fj1. In these units, the gyrokinetic Vlasov equation reads

∂gj

∂t
+

[

ωn + ωTj

(

v2
‖ + µB̂ −

3

2

)]

Fj0
∂χj

∂y
+

(

∂χj

∂x

∂gj

∂y
−
∂χj

∂y

∂gj

∂x

)

+
µB̂ + 2v2

‖

2σj

(

Kx
∂Gj

∂x
+ Ky

∂Gj

∂y

)

+ αjv‖
∂Gj

∂z
−
αj

2
µB̂2εt sin z

∂Fj1

∂v‖
= 0 (1)
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with the curvature terms

Kx = −
Lref

R0
sin z Ky = −

Lref

R0
(cos z + (ŝz − αMHD sin z) sin z)

and the definitions (where an overbar indicates a gyroaveraged quantity: Φ̄ =
J0(λj)Φ and Ā‖ = J0(λj)A‖ with the Bessel function J0 and λj defined below)

gj = Fj1 + σjαjv‖Fj0 ε̂βeĀ‖ Gj = gj + σjχjFj0 χj = Φ̄− αjv‖ε̂βeĀ‖

as well as

σj =
ej

e

Te0

Tj0
αj =

vTj

cs

Lref

q0R0
ε̂ =

(

q0R0

Lref

)2

βe =
8πnrefTe0

B2
ref

εt =
r0

R0
ŝ =

r0

q0

∂q

∂r

ωn =
Lref

Ln
= −

Lref

nj0

dnj0

dx
ωTj =

Lref

LTj
= −

Lref

Tj0

dTj0

dx
.

As equilibrium distribution, a Maxwellian is taken which reads

Fj0(v‖, µ) =
1

π3/2
e−(v2

‖+µB̂)

in normalized units. Moreover, while Gene is capable of handling general ge-
ometries, the well-known ŝ-α geometry [7] (with α ≡ αMHD set to zero) is
employed in this paper.
The gyrokinetic Maxwell equations used to determine the self-consistent elec-
tromagnetic fields are the gyrokinetic Poisson equation

∑

j

ejσj (1 − Γ0(bj))Φ =
∑

j

ejπB̂

∫

J0(λj)gj dv‖ dµ (2)

and the gyrokinetic Ampère’s law


∇2
⊥ −

1

2
ε̂βe

∑

j

σjα
2
j
ej

e
Γ0(bj)



 A‖ = −
∑

j

αj
ej

e
πB̂

∫

v‖J0(λj)gj dv‖ dµ .

(3)
Here, the Bessel function J0 and the function Γ0(bj) = e−bj I0(bj) (where I0 is
the modified Bessel function) have been introduced. The arguments λj and bj

are defined as

λ2
j = 2µB̂bj , bj = −

mj

mi

Tj0

Te0

e2

e2
j

∇2
⊥

B̂2
,

respectively, with ∇2
⊥ = ∂2/∂x2 + 2ŝz∂2/∂x∂y + (1 + ŝ2z2)∂2/∂y2. While the

results on numerical dissipation in the parallel velocity space (see Sec. 5) are
based on the above equations as implemented in the Gene code, the respective
studies of the role of numerical dissipation in the parallel real space dynamics
(see Sec. 4) deal with a somewhat simplified problem.

3
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O type stencil

1 u ξ−1 [−1 1 0 ]

2 c (2ξ)−1 [−1 0 1 ]

3 u (6ξ)−1 [ 1 − 6 3 2 0 ]

4 c (12ξ)−1 [ 1 − 8 0 8 − 1 ]

5 u (60ξ)−1 [−2 15 − 60 20 30 − 3 0 ]

6 c (60ξ)−1 [−1 9 − 45 0 45 − 9 1 ]

7 u (420ξ)−1 [ 3 − 28 126 − 420 105 252 − 42 4 0 ]

8 c (840ξ)−1 [ 3 − 32 168 − 672 0 672 − 168 32 − 3 ]

Table 3: First derivative stencils; the first column specifies the stencil order, the second
column the type, with u and c denoting upwind and centered schemes, respectively. The
centered stencils shown here have maximal order for their size, while the upwind stencils’
order is one less than that of the centered stencils of the same width.

3. Finite Difference Schemes

While in Fourier space, derivatives are calculated through multiplication by
powers of the corresponding wave number k, real space numerical derivatives
require knowledge of function values at neighboring points on the discretization
grid. For instance, a simple way of calculating a first derivative of a function
f(x) which is discretized on a grid with spacing ∆x using this principle is

[

∂f

∂x

]

(x) =
f(x) − f(x −∆x)

∆x
. (4)

In the shorthand notation used in this chapter, this scheme reads

[−1 1 0 ] . (5)

Here, by definition, the central number is the coefficient for the function value
at x, to the left are the coefficients for function values at positions < x, and to
the right those for function values at positions > x.

3.1. Centered and Upwind First Derivatives

In the case of first derivatives, centered stencils may be defined as those with
entries antisymmetric about the center, while upwind schemes are asymmetric,
with the last stencil coefficient being zero. Unlike centered stencils, upwind
stencils are diffusive in nature, a property described in more detail later. It
shall be noted at this point, however, that in order to exploit the stabilizing
nature of upwind stencils, one has to take into account the total sign of the
derivative term: in case it changes (which may happen, e.g., when the parallel
velocity sign changes in the parallel derivative term of Eq. 1), the upwind stencil
has to be inverted to avoid destabilization of the simulation.

4
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n stencil

2 ξ−2 [ 1 − 2 1 ]

4 ξ−4 [ 1 − 4 6 − 4 1 ]

6 ξ−6 [ 1 − 6 15 − 20 15 − 6 1 ]

8 ξ−8 [ 1 − 8 28 − 56 70 − 56 28 − 8 1 ]

Table 4: Higher derivatives as required for (hyper-)diffusion terms; the derivative ∂n
x is spec-

ified in the first column. All stencils shown here are of second order.

Generally, stencils are of the form

a−lf(x − lξ) + . . . + a−1f(x − ξ) + a0f(x) +

+ a1f(x + ξ) + . . . + alf(x + lξ) =̂ (6)

=̂ [ a−l . . . a−1 a0 a1 . . . al ] ,

with the stencil width l ∈ N. To give meaning to this stencil while imposing
conditions on its entries, it may be equated to, e.g., the first derivative of f(x).
Hence, one arrives at a linear system of equations with the variables ai, i =
−l . . . l. This system is homogeneous save for the entry in the column marked
ξ−1 which results from the term ∂xf(x):























a−l a−2 a−1 a0 a1 a2 al ξ−1

1 · · · 1 1 1 1 1 · · · 1 0
−l −2 −1 0 1 2 l 1
l2 4 1 0 1 4 l2 0
−l3 −8 −1 0 1 8 l3 0
...

...
...

...
(−l)n · · · (−2)n (−1)n 0 1 2n · · · ln 0























(7)

One may also impose conditions on the entries, with each condition – generally
– reducing the order by one. To calculate upwind stencils, al must be set to
zero. Results obtained using the above prescriptions can be found in Tab. 3.

3.2. Higher Derivatives

Going to higher derivatives, one must simply place the inhomogeneity in Eq. (7)
in another line; for the n-th derivative, it has to be in the (n + 1)-th line, with
an adjusted exponent of ξ−n. For diffusion and hyperdiffusion terms – which
are investigated in this work – derivatives ∂n

x with even n are required. Stencils
for some common choices of n are found in Tab. 4.
Henceforth, hyperdiffusion (n ≥ 4) and diffusion (n = 2) are both referred to
as simply diffusion. While generally, this term may also be used for diffusive
physical processes, here it means inclusion of a numerically dissipative term in
the Vlasov equation that involves an n-th derivative (with n an even integer) of
the distribution function.

5
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4. Parallel Dissipation

4.1. A Simplified Model

4.1.1. The Adiabatic Slab Case

In order to gain a deeper understanding of the dynamics parallel to the magnetic
field lines, a simplified model is used; it is derived from the full gyrokinetic
framework (see Eqs. (1) to (3)), making the following assumptions: the magnetic
field is homogeneous and static, the (singly charged) ions may be treated in a
drift-kinetic fashion, the electrons behave adiabatically, and the nonlinearity is
dropped. The first of these assumptions implies that B0 = 1, Kx = Ky = 0,
εt = 0, and β = 0. Additionally, in the drift-kinetic limit – corresponding
to the long-wavelength regime – bi,λi & 1, which leads to J0(λi) ≈ 1 and
Γ0(bi) ≈ 1. Note that unlike in the general case, the parallel direction is now
periodic, allowing for Fourier representation of the parallel coordinate. The
velocity space coordinate µ may be integrated out (as shown in Ref. [8]), and
one is left with two coupled equations,

∂F1

∂t
+

[

ωn + ωT i

(

v2
‖ −

1

2

)]

ikyΦF0 + αiv‖
∂F1

∂z
+ τeαiv‖

∂Φ

∂z
F0 = 0 (8)

and

Φ =

∫

F1dv‖ , (9)

for the complex quantities F1(z, v‖, t) and Φ(z, t). Here, the distribution func-
tions’ species subscript i was dropped, and the parameter τe = Te0/Ti0 was
introduced. The equilibrium distribution function becomes

F0(v‖) =
1

π1/2
e−v2

‖ . (10)

The (binormal) y direction is represented in Fourier space, and the (radial) x
direction is averaged over (corresponding to kx = 0). For Eqs. (8) and (9), the
dispersion relation can be written as

1 + τe + (τe- +-ni)Z(-) +-T iY (-) = 0 , (11)

with the plasma dispersion function Z(x) [9] and the derived function Y (x) =
x+(x2−1/2)Z(x). The other quantities are - ≡ ω/(αik‖), -ni ≡ ωnky/(αik‖),
and -T i ≡ ωT iky/(αik‖). For certain physical parameters, this dispersion re-
lation has one solution with a positive imaginary part, corresponding to a slab
ITG mode [10]. Eq. (11) can be evaluated numerically in a straightforward
fashion, allowing for comparisons with direct numerical solutions of Eqs. (8)
and (9). This is useful when investigating the role of numerical dissipation in
the parallel dynamics, as is done below.

6
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4.1.2. Numerical Approach

For the numerical solution of Eqs. (8) and (9), a simple (1 + 1)-dimensional
Vlasov code was used, which amounts to a reduced version of the Gene code.
The spatial parallel z coordinate is defined on the range −π . . .π, while the
parallel velocity coordinate ranges from v‖ = −4 to 4. Real space and velocity
space are discretized by employing Nz and Nv‖ equally spaced grid points,
respectively. In slab geometry, the spatial boundary conditions are taken to be
periodic, and for the integration procedure in velocity space, a simple trapezoidal
rule is used. A standard third-order explicit Runge-Kutta scheme is employed
for the time stepping. Unless stated otherwise, the physical and numerical
parameters are chosen as follows: τe = ωn = 1, ωT i = 10, αi = 0.34, and ky = 0.3
– this corresponds to rather typical parameters of gyrokinetic simulations, where
growth rates tend to peak around this value of ky. For the basic scenario, the
phase space grid is characterized by Nz = 16 and Nv‖ = 32, and the time step is
always chosen to be well below the Courant limit. Usually, the total run time is
about 100cs/Lref , with the initial transients typically dying off after only a few
time units. In order to compute a linear growth rate, the spatial average of the
absolute of the (complex) electric potential perturbation is evaluated. Then, a
straight line is fitted to the logarithmic plot of that average, excluding effects
from the initial transient time range.

4.2. Occurrence of High-k‖ Modes

When discretizing Eqs. (8) and (9) on the aforementioned phase space grid –
including the time domain – one encounters the following problem: Naturally,
every finite difference representation of the spatial derivative ∂z can only be
an approximation to the exact expression. For example, using a second-order
centered stencil (as provided in Tab. 3),

∂Φ

∂z
→
Φ(z +∆z) − Φ(z −∆z)

2∆z
, (12)

on an equidistant z grid with grid spacing ∆z, and assuming a disturbance of
the form Φ(z) ∝ exp(ik‖z), one obtains

ik‖Φ→
sin(k‖∆z)

k‖∆z
ik‖Φ ≡ h(k‖)ik‖Φ . (13)

The same applies to ∂zF1. This means that the physical value of k‖ in Eq. (11)
is replaced by an effective value keff

‖ = h(k‖)k‖. In the case of Eq. (13), h(k‖)

is symmetric about k‖∆z = π/2; in particular, keff
‖ → 0 as k‖ → π/∆z. This

latter property is shared by higher-order centered schemes as well as other non-
dissipative schemes.
It is well-known that the growth rates of linear ITG modes in unsheared slab
geometry fall off with increasing k‖ and even become negative, provided k‖ is
sufficiently large (see Ref. [10]). At the same time, centered finite difference rep-
resentations of Eqs. (8) and (9) will yield modes with high k‖ that are linearly

7
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Figure 1: Linear growth rates of slab ITG modes as functions of the parallel wavenumber,
k‖, for different parallel discretization schemes. The curve labeled exact was obtained by
numerically solving the dispersion relation, Eq. (11), while the other curves show the impact
of centered schemes of different order and their respective values of keff

‖ . The corresponding

data points have been obtained using the initial value code described in the text. Note that
here, k‖ is given in units of 2π/Nz .

unstable. This effect is clearly unphysical and may pollute gyrokinetic simula-
tions of plasma turbulence. In a saturated quasi-steady state, such numerically
destabilized modes may contain a significant amount of energy which is trans-
ferred to them via nonlinear processes. The profiles of Φ or other fluctuating
quantities in z space may then exhibit a sawtooth-like structure. Although in
a more realistic case that includes magnetic curvature, this problem tends to
be reduced, slab-like modes can be important even then (see Ref. [11]), making
it necessary to deal with the issue of high-k‖ perturbations in order to retain
physicality of simulation results. An obvious way to deal with this problem is
to introduce numerical dissipation. In the following, this method is discussed in
more detail.
In Fig. 1, the linear growth rates γ(k‖) of slab ITG modes are shown for cases
where low-order centered discretization schemes (as listed in Tab. 3) were used
for the parallel coordinate; the solutions of the dispersion relation, Eq. (11),
using the exact and the modified effective values for k‖, are displayed for com-
parison. For the lowest k‖ mode (k‖ = 1 in the figure, specified in units of
2π/Nz), the exact solution of the dispersion relation and the Vlasov code show
very good agreement, independently of the employed parallel scheme. As k‖ is
increased, however, significant deviations are observed – in particular, the nu-
merical growth rates do not follow the exact solution into the range of negative
values for high k‖. Instead, they increase again and reach values comparable to

8
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the growth rate of the k‖ = 1 mode.
This behavior can be understood in terms of the fact that keff

‖ → 0 for k‖ → π,
as has been discussed above. In the case of the second-order scheme, specifically,
γ(k‖) is symmetric about k‖ = π/2, which is reflected by Eq. (13). While higher
order centered schemes perform slightly better (due to the fact that the symme-
try is broken), they ultimately encounter the same problem for sufficiently high
k‖. Two possible solutions – using upwind differencing schemes and introducing
diffusion terms to stabilize high-k‖ modes – will be discussed next.

4.3. The Impact of Upwind Schemes and Diffusion Terms

4.3.1. Upwind Schemes

Unlike their centered counterparts, upwind-type schemes (see Tab. 3) are known
to be numerically dissipative. In the present context, this feature is important
in that it has a stabilizing effect on the high-k‖ modes which otherwise are
destabilized numerically. The disadvantage of upwind differencing is two-fold:
Firstly, upwind schemes are of lower order than centered schemes for a given
stencil width; for the same number of allocation points, the maximum order of
the upwind scheme is one less than that of the corresponding centered scheme.
Secondly, the dissipative effect of the scheme cannot be controlled, possibly
resulting in an unphysical influence on the simulation or causing inapplicability
in different areas where significant numerical dissipation may be required.
It is important to note that upwind differencing in Eq. (8) should not be applied
to the potential Φ. This would lead to severe time step restrictions [12]. For
this reason, only the term ∂zF1 may be treated by upwind schemes, while the
term ∂zΦ is always discretized by means of a centered scheme with a stencil
width identical to that of the upwind scheme for ∂zF1. More specifically, for a
given upwind scheme in Tab. 3, the centered scheme in the line directly below
it is used for ∂zΦ.
Upwind schemes exhibit some similarities to diffusion terms, as will be shown be-
low. In particular, high-k‖ modes are stabilized – as they should be, physically,
according to the solution of the dispersion relation, Eq. (11). Thus, upwinding
is one way to solve the issue of numerical high-k‖ instability.

4.3.2. Numerical Diffusion

High-k‖ modes can also be damped by introducing an additional diffusive term
DnF1 on the right-hand side of the Vlasov equation (8) which contains an n-th
spatial derivative of the distribution function. The resulting new Vlasov equa-
tion reads

∂F1

∂t
+

[

ωn + ωT i

(

v2
‖ −

1

2

)]

ikyΦF0 + αiv‖∇‖F1 + τeαiv‖∇‖ΦF0 = DnF1 ,

(14)
where n is an even and positive integer number, ∇‖ ≡ ∂z, and Dn is defined as

Dn ≡ −inηn∇n
‖ . (15)
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The inclusion of −in requires the factor ηn to be positive in order to obtain
a stabilizing effect, and is motivated by the ansatz F1 ∝ exp(ik‖z). ηn can
be used to regulate the strength of the diffusion, as well as include additional
dependencies, as desired.
Using stencils with n + 1 points each and centered finite difference schemes for
both ∇‖ (n-th order) and ∇n

‖ (second order), the addition of the diffusive term
to the Vlasov equation can be interpreted as a mere modification of the finite
difference scheme for ∇‖F1. For instance, in the n = 2 case, the second order
centered schemes for ∇‖ and ∇2

‖ read

∇{2}
‖ =

1

2∆z
[−1 0 1 ] ,

(

∇{2}
‖

)2
=

1

(∆z)2
[ 1 − 2 1 ] , (16)

where the number in curly brackets denotes the order of the scheme. On the
other hand, the first order scheme for ∇‖ is given by the one parameter (c2)
family

∇{1}
‖ = ∇{2}

‖ + c2∆z
(

∇{2}
‖

)2
. (17)

For arbitrary scheme orders, this relation becomes

∇{n−1}
‖ = ∇{n}

‖ + cn∆zn−1
(

∇{2}
‖

)n
, (18)

such that, for the present case,

∂F1

∂t
+ αiv‖∇

{n}
‖ F1 + inηn

(

∇{2}
‖

)n
F1 = . . . (19)

can be replaced by
∂F1

∂t
+ αiv‖∇

{n−1}
‖ F1 = . . . , (20)

assuming that ηn ∝ (∆z)n−1, and splitting off the prefactor αiv‖ from ηn. If
one chooses ηn ∝ (∆z)m, with m < n, the combined scheme is of m-th order,
while for m ≥ n, it is of n-th order, just as the original scheme. This will prove
to be relevant later on, when the scaling ηn ∝ (∆z)n is chosen in order to make
the diffusion coefficient ε – to be defined below in Eq. (24) – independent of the
spatial resolution.
In the following, a critical diffusion coefficient ηcrit

n shall be presented for which
all physically stable modes of the curve in Fig. 1 representing the solution of
the dispersion relation are also numerically stable. The value of ηcrit

n depends
on the order of the scheme, as well as on the spatial resolution and the set of
physical parameters. For the dispersion relation, Eq. (11), the fastest growing
mode is usually characterized by k‖ = 1 (in units of 2π/Nz). However, the mode
with the highest k‖, here: (Nz/2 − 1), will have a similar growth rate due to
keff
‖ → 0 for k‖ → Nz/2. To identify the value and functional dependencies of

ηcrit
n , one thus has to find the value of ηn for which the k‖ = (Nz/2 − 1) mode

is marginally stable.

10
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Figure 2: Growth of the k‖ = 7 mode for a spatial resolution of Nz = 16, depending on ε for
second (solid), fourth (dotted), and sixth order (dashed) diffusion term. At ε = εc ≈ 0.25, the
curves cross the abscissa, marginally stabilizing the seventh mode at this point. Here, k‖ is
specified in units of 2π/Nz .

The diffusion-extended Vlasov equation (see Eq. (14)), leads to a modified dis-
persion relation,

1 + τe + (τeψ̄ +-ni)Z(ψ̄) +-T iY (ψ̄) = 0 , (21)

where ψ̄ ≡ - + ikn−1
‖ ηn/αi. Note that Eq. (14) is valid only if Dn (and thus

ηn) is independent of v‖. The new dispersion relation has the same form as the
original one, Eq. (11) – and therefore the same solution, only now for ψ̄ instead
of -; thus, an imaginary number ikn−1

‖ ηn/αi is subtracted when comparing
the original - with the new one. The corresponding numerical damping rate is
proportional to kn

‖ (since ω ∝ k‖-) which is consistent with the goal to stabilize
high-k‖ modes while influencing low-k‖ modes as little as possible. The impact
on the growth rate can thus be written as

∆γ ≡ γdiff − γ = −ηn(kdiff
‖ )n , (22)

where γdiff is the growth rate of a mode as given by the diffusive Vlasov equation,
Eq. (14), and kdiff

‖ is the effective wave number for the diffusion term. It is

defined similarly to keff
‖ , only for a second order n-th derivative. For n = 2, its

high-k‖ limit is given by

lim
k‖∆z→π

kdiff
‖ = lim

k‖∆z→π

(

2 − 2 cos(k‖∆z)

(∆z)2

)1/2

=
2

∆z
. (23)

11
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In this particular limit, one always obtains the same result, independently of
n. Demanding that ηn ∝ (kdiff

‖ )−n – which is suggested by Eq. (22) – one can
rewrite the diffusion coefficient,

ηn = ε

(

∆z

2

)n

, (24)

which yields a new diffusion coefficient ε that is independent of both ∆z and n.
This leads to a new form for the diffusion term:

Dn = −inη(crit)
n ∇n

‖ = −inε(c)

(

∆z

2

)n

∇n
‖ . (25)

Using this expression, numerical simulations confirm that the critical value εc
is independent of the resolution ∆z and the order n of the scheme. Even for
low resolutions, only small deviations were found. As is illustrated in Fig. 2,
εc ≈ 0.25 for the present choice of physical parameters. Also note that, as
mentioned before, the combination of centered scheme and n-th derivative is of
order n, due to ηcrit

n ∝ (∆z)n.
The range of allowed values for the diffusion coefficient is limited on the lower
end by the appearance of high-k‖ modes, motivating a lower boundary εmin ∼ εc,
and by numerical stability issues on the higher end. For a given time step, ε
cannot be increased indefinitely – at a certain value, the diffusion term will
become unstable, losing its previous damping effect; this is illustrated in Fig. 3.
Analogously to the Courant limit, there exists a maximum ε above which the
simulation becomes numerically unstable. In reality, however, this value lies far
beyond the order of magnitude investigated here. The Courant limit remains
the most restrictive factor in determining the time step. Note that while in
the more general case of multi-species, finite-β simulations at non-zero ŝ, much
higher values of ε are common, the time step also is much smaller to allow for
the inclusion of the electron dynamics.
For a third order Runge-Kutta time scheme, the maximum value for ε is deter-
mined to be

εRK3
max =

(4 +
√

17)1/3 − (4 +
√

17)−1/3 + 1

∆t
≈

2.5127

∆t
. (26)

This relation can be obtained by equating the diffusion coefficient ε (which, for
even Nz, corresponds to the location of the eigenvalue with the most negative
real part) to the leftmost zero point of the time stepping stability regime (which
is calculated by Taylor-expanding a complex exponential function) and is inde-
pendent of the spatial resolution if the time step is assumed to be limited by
the diffusion term alone, i.e., not by the Courant limit. For practical purposes,
one can simply write

ε <
2.5

∆t
. (27)

Note that this value is much larger than the above εc = 0.25 for any realistic
time step. For a typical ∆t = 0.1 (which is rather large compared to common
values in Gene simulations), εmax exceeds εc by two orders of magnitude.

12



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

–20

–10

0

10

20

Im(   )ω

–20 –15 –10 –5Re(   )ω

Figure 3: Stability regions (contours) of the third order Runge-Kutta explicit time stepping
scheme, along with the eigenvalue cloud (circles) of a fourth order spatially differenced Vlasov
system (Nz = 16) with a diffusion term as described in the text. While the spatial resolution is
responsible for stretching the cloud along the imaginary axis, increasing the diffusion coefficient
will elongate the cloud along the negative real axis. Once an eigenvalue lies outside the
stability region, the simulation will become unstable. The time resolutions shown here are
∆t = 0.12 (outer contour) and ∆t = 0.13 (inner contour). Note that an extremely high
diffusion coefficient ε = 20 has been chosen here to illustrate its potentially time step limiting
property.

13



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure 4: Linear growth rates of slab ITG modes for a fourth order parallel discretization
scheme for a range of ε values (upper graph), and constant diffusion ε = 0.3 for a range of
scheme orders (lower graph).
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In terms of the scaling factor ε of the diffusion term, one can recalculate the
results for the centered schemes displayed in Fig. 1, using values ∼ εc; those
new results are shown in Fig. 4. Thus, it is demonstrated that the problem
caused by the high-k‖ modes has been resolved without significantly affecting
the physical modes of the system.
By changing the set of physical parameters of the problem, a different choice of
εc may become necessary. In principle, one would have to make a readjustment
after every change of a physical quantity. In practice, however, there is some
freedom as to what value εc can be set to. This is illustrated by the influence
of the diffusion term on the low-k‖ modes: A relative deviation of 6×10−5 from
the diffusion-less result is found for k‖ = 2π/Nz at sixth order with εc = 0.25,
making the result mostly independent of the precise value. For the next higher
k‖, the deviation is 3×10−3, which is still reasonably small.
However, if the changes to the physical parameters become significant, one has
to identify the new value of εc. Generally, this is done by determining the
approximate linear growth rate of the lowest k‖ mode and setting ε to that
value:

εc(PP) = γ(kmin
‖ ,PP) , (28)

where PP symbolizes a set of physical input parameters. This prescription seizes
to work when the dispersion relation changes in a way that the intermediate
range (here, this would correspond to a value of k‖ ∼ 8π/Nz) is contributing
significantly to the physics. However, in such a case, the physics would likely
not be resolved sufficiently anyway, requiring a higher parallel resolution; then,
εc will again be sufficient to dampen unwanted high-k‖ modes.
One can show that the aforementioned upwinding is simply a special case of
diffusion: taking a 2n+1 point stencil, employing an n-th order centered scheme
for ∇‖ as well as a second order centered scheme for ∇n

‖ , and using the respective
choice of the following ηn:

ηupw
2 = αi‖v‖‖

∆z

2
(29)

ηupw
4 = αi‖v‖‖

(∆z)3

12
(30)

ηupw
6 = αi‖v‖‖

(∆z)5

60
(31)

one obtains an (n − 1)-th order upwind stencil.
However, the diffusion term defined above is the more desirable choice compared
with upwind differencing for two reasons: firstly, its order is n, compared to n−1
for upwinding, where n is the order of the employed centered scheme; secondly,
it can be fine tuned, allowing for more precise regulation of the impact on both
the physical and the numerical modes. At the same time, using a diffusion term
requires only slightly more effort – to find the value of εc, one simply needs an
estimate of the growth rate. Therefore, introducing a diffusion term – or, more
correctly for most cases, a hyperdiffusion term – is the preferable choice.
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Since for this investigation, a strongly simplified model was used, it is impor-
tant to note how directly and with what impact the thus obtained results can
be applied to more general cases, i.e.: kinetic electrons, more complex geom-
etry, and magnetic fluctuations, described no longer in a drift-kinetic but a
gyrokinetic fashion. Performing simulations with the Gene code, one finds
that for most cases, the above prescription (as given in Eq. (28)) holds true;
one of these scenarios, involving simulations of ETG turbulence, is described in
more detail in Sec. 6. However, finite magnetic shear, in conjunction with finite
plasma β, will cause zigzag-like structures to appear in the magnetic potential
A‖ which then are transfered to other quantities. The reason for this lies in the
properties of A‖, along with the parallel boundary conditions at finite ŝ and
finite radial resolution; since the mechanism causing this numerical feature is
not identical to the one discussed above, the aforementioned prescription fails
if applied without modification. In fact, one can either choose very high radial
resolutions, or increase the diffusion coefficient to values of ε ∼ 10. The latter
is computationally much less expensive and thus the preferred solution—cases
where this prescription is applicable are discussed in Ref. [13]. If gyrokinetic
simulations are performed in the electrostatic limit or in unsheared geometry,
however, the method of determining the diffusion coefficient ε as detailed above
can be expected to hold.

5. Recurrence Phenomena

5.1. Decaying Zonal Flows

Zonal flows [14] are modes with a purely radial structure that can be excited
nonlinearly by turbulent processes. In a linear, collisionless model, they are
damped, typically within a few ten to a hundred time units. The damping
is connected to radial drifts of magnetically trapped particles—thus critically
involving the parallel dynamics [15].
In order to investigate zonal flows linearly, one can initialize a kx mode that is
constant in both toroidal and poloidal direction, and subject this mode to time
evolution via the Vlasov equation. However, this setup is susceptible to so-called
recurrence phenomena in a finite resolution code, i.e.: the initial amplitude of the
zonal mode is remembered by the code and reproduced after half the recurrence
time trec = 2π/(αi∆v‖). Again, this recurrence problem can be solved by the
use of numerical diffusion. Since the (1 + 1)-dimensional slab model described
above cannot capture the physics involved here, the Gene code was used for
the numerical simulations detailed below.
As can be seen in Fig. 5, a damped mode recurs after a certain time for no phys-
ical reason. This behavior may pollute linear as well as nonlinear simulations.
While the theoretically predicted residual level [16] of the mode,

AR =
1

1 + 1.6q2
0ε

−1/2
t

, (32)
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Figure 5: Velocity space resolution dependence of linear simulations of zonal modes; the
displayed quantity is the normalized electrostatic potential Φ. From the upper left to the lower
right graph, the parallel velocity space resolution Nv‖ is increased successively by factors of 2
from 32 to 256 points. Note that the recurrence time trec = 2π/(αi∆v‖) doubles for each such
step, an effect which is reflected by the results. The dashed line corresponds to the (physical)
residual level AR of the modes, as given in the text.
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is reproduced correctly (again, q0 is the safety factor and εt the inverse as-
pect ratio), energy is reinserted numerically into the system at multiples of the
recurrence time trec after the initial occurrence of the mode.
For these simulations, the following set of physical parameters was used: the
driving gradients were set to zero in order to isolate the effect of recurrence, and
a more complex magnetic geometry was introduced to allow for the formation of
zonal flows, with q0 = 2, ŝ = 0.8, and εt = 0.16. Linear results (with adiabatic
electrons) were obtained with resolutions of Nx = 16, Nz = 16, Nµ = 8, and
Nv‖ = 64 unless specified otherwise. Note that for a stable mode (γ ≤ 0),
following the prescription for parallel dissipation as given before yields ε = 0.

5.2. Velocity Space Diffusion

5.2.1. The Impact of Resolution

The problem can be partially mitigated by increasing the velocity space resolu-
tion: as a consequence, the recurrence time increases as well, while the strength
of the re-emerging oscillations decreases, as illustrated in Fig. 5. This method,
however, is expensive in that rather high v‖ resolutions are required, making it
impractical. Instead, one can either include a physical collision term or utilize
a diffusion term to solve the problem. The latter approach – while being purely
numerical in nature in contrast with the physical basis for collisions – constitutes
the less expensive solution while additionally retaining desirable parallelization
properties. It will be described in more detail below.

5.2.2. Numerical Diffusion

Parallel (spatial) diffusion as discussed above helps to reduce the amplitude of
the oscillations, but cannot be used at liberty, for it might influence other results
(e.g., the growth rate) too strongly, especially when a physically stable system is
being considered, as is the case with linearly decaying zonal flows. Also, parallel
diffusion has a non-negligible impact on the residual level AR, since over time,
energy is removed from the system numerically. This is illustrated in the upper
half of Fig. 6, where significant parallel diffusion has to be employed in order for
the recurrence to vanish. The required values exceed those for damping high-k‖
modes that have been discussed before.
Alternatively, or additionally, a similar diffusion term can be introduced which
acts on the parallel velocity space:

D(v‖)
4 = −εv‖

(∆v‖)
4

16
∂4

v‖ . (33)

This term is inserted into the gyrokinetic Vlasov equation (see Eq. (1)) to modify
the v‖ derivative.
Here, a fourth derivative is chosen for the diffusion term to be used with the
first derivative of fourth order in the magnetic mirror term (which contains the
v‖ derivative). It solves the issue efficiently, as becomes evident from the lower
graphs in Fig. 6; compared with the spatial parallel diffusion approach, only
very little velocity diffusion is necessary to avoid practically all recurrence.
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Figure 6: Numerical damping of zonal modes; the two upper graphs show the effect of parallel
diffusion, whereas in the lower graphs, velocity space diffusion is employed. For the former,
the value of ε is increased from 0.2 to 0.4, while for the latter, the results shown here are for
values εv‖ = 0.01 and 0.05, respectively. Again, AR is the residual level.
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While clearly, the point where recurrence vanishes is not well-defined and the
necessary damping depends on the resolution, the value εv‖ = 0.05 makes for
a good starting point for the most efficient solution to the recurrence problem,
velocity space damping. Since the value is rather low and changes the (negative)
growth rate only by a factor of 10−4, there is some freedom to adjust the velocity
space diffusion to higher values, if necessary. In practice, neither recurrence nor
alteration of physical effects have been observed for εv‖ = 0.2 for a wide range
of physical scenarios.
It should be noted that while physical recurrence phenomena exist, they do not
play any role in gyrokinetic turbulence simulations. Therefore, any impact of
numerical dissipation on such modes is of little consequence in the context of
the present study.

6. An Application: the ETG Benchmark Case

6.1. Benchmark Parameters

Recently, an effort was undertaken to construct a suitable set of parameters
for benchmark purposes in the context of electron temperature gradient (ETG)
driven turbulence [19, 20]. They are almost identical to the Cyclone Base Case
parameters, with the exception of the magnetic shear, where smaller values
are required to achieve saturation in the ETG case, the basic setting being
ŝ = 0.1. Unlike in the Cyclone Base Case, however, the electrons are the
primary species, while the ions are treated adiabatically. Using this benchmark
case, the influence of parallel diffusion on the nonlinearly saturated heat flux
level is investigated, demonstrating the applicability of the results presented
above. Also, convergence studies are performed.
The resulting heat flux levels of the (nonlinear) benchmark depend on the num-
ber of ky modes that are being considered. Separate levels are reported in
Ref. [19] for Nky = 8 and Nky = 16, namely χe ≈ 3 and χe ≈ 5, respectively.
The work presented here focusses on the latter case with higher resolution.
The other resolutions are chosen as Nx = 128 (for a perpendicular box with
Lx×Ly = 100×62.8), Nz = 16, Nv‖ = 32, and Nµ = 8.

6.2. Impact of the Parallel Diffusion Term

Setting the parallel velocity space diffusion coefficient to a low but finite value of
εv‖ = 0.05, the parallel diffusion coefficient is increased. The results are shown
in Fig. 7; clearly, the ε = 0 heat diffusivity of χe = 1.2 deviates significantly
from the other values, while for higher values, a plateau at χe ≈ 5 is reached
quickly; the corresponding result for Nky = 8 is χe ≈ 3, which agrees well with
the other codes in Ref. [19].
Fig. 8 contains the parallel mode profiles for ε = 0 and 0.3. In the diffusion-less
case, zigzag-like structures appear which are clearly unphysical. This problem
is taken care of by increasing the diffusion coefficient, which is precisely what
was aimed for by introducing the diffusion term in Eq. (14).
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Figure 7: (Color online) Thermal diffusivities (upper graph) for increasing parallel diffusion ε
at Nz = 16 in the ETG benchmark case. While for ε = 0, the value is far below the physical
expectation, increasing the diffusion coefficient creates a stable plateau over most of the range
displayed (where small deviations from the plateau are due to the burst-prone nature of the
operation point, along with finite temporal statistics); for higher parallel resolution, the results
are essentially identical. The picture is corroborated by the time traces of the heat flux, as
shown in the lower graph, where the diffusion-less case (red curve) exhibits qualitatively very
different behavior from the ε = 0.3 case (black curve).
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