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Abstract

The emission of plasma waves by a conducting body orbiting the ionosphere is con-

sidered. The case of an infinitely long and infinitely thin tether is discussed and the

use of the appropriate form of the wave dispersion relation in the frequency regime of

interest is shown to reconcile existing results in the literature. A compact formula for

the radiation resistance of the tether is provided.

1 Introduction

The interest in studying the wave emission by a conducting body orbiting the ionosphere was
sparked by the preparation of the Tether Satellite System (TSS) project [Colombo et al.(1974)],
a joint venture between NASA and the Italian Space Agency (ASI) that was developed in the
seventies and eighties and launched in a first mission in 1992 [Dobrowolny and Melchioni(1993)].
Despite of the failure of the first mission due to engineering problems, other missions were per-
formed following the original TSS idea (see, for instance [Stone, Raitt, and Wright(1999)]),
and brand-new projects proposed, using different system configurations (see, for instance,
the AcME project [Biancalani, Ceccherini and Pegoraro(2008)]). The first formal studies
on plasma wave emission for the TSS problem, were performed by Belcastro, Dobrowolny
and Veltri [Belcastro, Veltri and Dobrowolny(1982)] (hereafter BVD) using a radiation re-
sistance theory for an infinitely long and infinitely thin conducting tether, and in later
works [Dobrowolny and Veltri(1986), Barnett and Olbert(1986)], for finite size satellites.

In this Brief Report we revisit the theoretical formalism of the radiation resistance with
the aim of clarifying apparent disagreements between previous articles and give an approxi-
mated formula for the radiation resistance of an infinitely long and infinitely thin tether. In
particular, we consider the derivation of [Barnett and Olbert(1986)] (hereafter BO) and that
of BVD. We show that these results can be reconciled if an approximation of the wave
dispersion relation adopted in BO is not used. In fact this approximated dispersion relation
neglects a wave branch of the emission spectrum. The contribution of such waves is essential
for the evaluation of the power emitted by a source constituted by an infinitely long and
infinitely thin conducting tether. The different results in BO and BVD originate from the
approximation of the wave dispersion relation and from the choice of current distribution in
the orbiting conductor. Here we are not interested in modeling the current exchange at the
conductor’s ends but in reassessing the validity of the theoretical formalism. Thus we limit our
investigation to the geometry of an infinitely long tether that was discussed in both papers.
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The implementation of this theoretical formalism to a realistic satellite system configuration
lies outside the scope of this report.

Except for the choice of the form of the dispersion relation, the evaluation of the wave
emission is performed in BO using the same theoretical formalism as in BVD that is sum-
marized as follows. The current in the conductor is treated as a source in the Maxwell wave
equation, and travels in a static ionospheric plasma with an orbital velocity perpendicular
to the earth magnetic field. The currents induced in the surrounding plasma are treated
implicitly with the dielectric tensor. The Maxwell wave equation is solved to find the electro-
magnetic fields, and the conditions that the waves must obey the dispersion relation in the
plasma and respect the Cherenkov emission law are imposed. Finally, the power emitted in
the waves is evaluated by using the Poynting theorem. The radiation resistance is defined by
dividing the power radiated by the square of the current.

The scheme of this report is as follows. In Section 2 we give a derivation of the theoretical
formalism from first principles and discuss the validity regimes of the dispersion relation. We
show how the approximation for the dispersion relation used in BO leads, in the case of an
infinitely long tether, to zero power being emitted in the frequency range of interest between
the electron and the ion cyclotron frequencies. In Section 3 we give the general formulation
of the radiation resistance. In Section 4 we show how the general results obtained in BO lead,
when using the full dispersion relation, to the same results as those of BVD, just written in a
different form and notation. In addition we provide a compact form of the radiation resistance
of an infinitely long and infinitely thin tether obtained using consistent approximations of the
dispersion relation. Finally, Section 5 is devoted to a summary of the conclusions.

2 Full and Approximate Dispersion Relation

We consider the same environment plasma as in BO, namely a magnetized ionospheric plasma.
We focus on the wave emission of a source current Js, flowing through a straight 1-D tether,
which orbits with an equatorial Keplerian velocity in the direction x1 and is aligned along x2,
where x2 is perpendicular to x1 and to the environment magnetic field, directed along x3: in a
compact form Js = (0, Js, 0). This model allows us to study the general theoretical formalism
of the wave emission via the Cherenkov effect, without tackling the issue of current exchange
at the tether ends. Here, we use the same mathematical notation as in BO. The electric
field produced by this current Js and by the currents induced in the plasma, is expressed by
E(k, ω) = −(4πiω/c2)T̃−1 ·Js(k, ω), with T̃ = −k2Ĩ +kk+(ω2/c2)K̃. Here K̃ is the dieletric
tensor. The operator T̃ , can be written in a compact form as T̃−1

ij = Cji/DT , where Cij are

the cofactors of T̃ij and DT is the determinant of T̃ij . In summary: Et ∝ CtjJsj.
Consider now the most fundamental definition of the dispersion relation, that is given by

imposing the determinant DT to zero:

DT =
ω2

c2
P (k2

3
− Λ1)(k

2

3
+ Λ2) = 0 (1)
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The roots of the dispersion relation solved for the variable k2

3
, are Λ1 and −Λ2:

Λ1 =
ω2

c2
S − k2

⊥

S

P
+

1

2
k2

⊥

(

1 − S

P

)

(
√

1 + ε − 1) (2)

Λ2 = −ω2

c2
S + k2

⊥
+

1

2
k2

⊥

(

1 − S

P

)

(
√

1 + ε − 1) (3)

where ε = 4ω2PD2(ω2P − c2k2

⊥
)/[c4k4

⊥
(S − P )2], where k3 and k⊥ are respectively the wave-

vector components in the direction and perpendicular to the environment magnetic field,
directed along x3. Here, S = (ω2 − ω2

LH)(ω2 − ω2

UH)/[(ω2 − Ω2

i )(ω
2 − Ω2

e)], P = 1 − ω2

p/ω
2,

and D = −ωω2

pΩe/[(ω2 − Ω2

i )(ω
2 − Ω2

e)], where ωp, Ωi, Ωe, ωLH , and ωUH are respectively
the plasma, ion cyclotron, electron cyclotron, lower hybrid and upper hybrid frequencies.
We focus here on the frequency range between Ωi and Ωe. This is because, for the typical
ionospheric plasma regimes, both BO and BVD recognize that the emission is peaked there.
At the same time, for the typical ionospheric plasma regimes, the only waves propagating in
this frequency range are those belonging to the whistler branch, described by Λ1. The waves
described by Λ2 are evanescent, and therefore are not considered here. Now we write Λ1 as
Λ1 = Λ1,52+δΛ1, where Λ1,52 is Λ1 approximated as in Eq. (BO-52), Λ1,52 = (Pω2/c2−k2

⊥
)S/P ,

and δΛ1 = k2

⊥
(1 − S/P )(

√
1 + ε − 1)/2.

The radiated power Prad, averaged in time, can be calculated from the Poynting theorem in
either of the equivalent forms:

P̄rad = − lim
T→∞

1

T

∫ T

−T
dt

∫

d3xJs · E = lim
T→∞

1

T

c

4π

∫ T

−T
dt

∫

d2xE ×B (4)

namely projecting the source current on the perturbed electric field, or integrating the vector
product of the perturbed electric and magnetic fields in a surface enclosing the source. For a
source directed along x2, the electric field polarization is expressed in terms of the operator
Cij as: Ej ∝ C2jJ2. In the same way, the first form of the Poynting theorem yields P̄rad ∝
− ∫

Js2E2 ∝ ∫

J2

s2C22 ∝ C22. Because of the translational symmetry along x2, an infinitely
long and infinitely thin tether emits waves with k2 = 0, and therefore k⊥ = k1. The dispersion
relation approximated as Λ1 ≃ Λ1,52 yields:

C22 =
ω4

c4

(

SP − c2

ω2
Sk2

1
− c2

ω2
Pk2

3

)

= 0 (5)

Using Λ1 ≃ Λ1,52, i.e,. neglecting δΛ1, we have C22 = 0. Thus the approximation used in
BO would lead to the conclusion that an infinitely long and infinitely thin conducting tether,
having k2 = 0, has no wave emission at all. On the contrary, in BVD the full dispersion
relation is used in its whole form, yielding a non zero power emission.

3 Result of the General Dispersion Relation

Here we use the full dispersion relation, without making any approximations, and derive the
general result. The dispersion relation in its general form is given by DT = 0, and the root
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of propagating waves is k2

3
= Λ1. The current distribution fs(k) of a tether can be calculated

from that of a cylinder, in the limit of bk ≪ 1 and Lk ≫ 1, where b and L are the cylinder

radius and length, obtaining fs =
√

π/2 b2 δ(k2). The current density therefore reads, in the
frame of reference of the static ionospheric plasma:

Js(k, ω) = −Iδ(k2)δ(ω − k1V ) x̂2 (6)

Here δ is the Dirac Delta function and expresses the fact that an infinitely long tether orbiting
the ionosphere emits only waves with k2 = 0 and that obey the Cherenkov condition ω = k·V.
The current intensity I is left in an implicit form and does not affect the value of the radiation
resistance. The electric field can be written as Ej(k, ω) = −(4πiω/c2)Js C2j/DT . Therefore,
the electric field polarization of such a source is proportional to C2j , as discussed in Sec. 2.
We now derive the radiation power using the first form of Poynting theorem, transforming
the integral over d3x dt into an integral over d3k dω, and using the expressions for the current
density and the electric field obtained above. The radiation resistance is calculated dividing
the radiation power by I2:

Zrad =
P̄rad

I2
=

L

c2

∫ π

0

dθ
∫

∞

0

dω ω
|C22|

| 1

2k
∂DT

∂k
|δ(ω − kV sin θ) (7)

Here the integral in d3k has been evaluated using cylindrical coordinates, where θ is the angle
between k and the background magnetic field B, and using the Plemelj formula for determining
the contribute of the pole DT , which is zero for the waves of our interest:

∫

dxf(x)/(x− a) =
−πif(a). The squared delta function has been expressed as [δ(x)]2 = limτ→∞(τ/(2π))δ(x),
where τ is the normalization value of the Fourier conjugate variable: L for k2 and T for ω. The
factor C22 at the numerator describes the electric field polarization in the direction x2, and
vanishes if the dispersion relation is approximated as in Eq. (BO-52), as discussed in Sec. 2.
The expression at the denominator under the integral sign, is intended to be evaluated for
k = k(ω, θ), as prescribed by the dispersion relation condition.

Performing the integral in dθ, we obtain the radiation resistance as an integral over the
frequency spectrum. We obtain

Zrad =
L

V

∫

∞

0

dω
|C22|

ω|P |
√

Λ1 (Λ1 + Λ2)
(8)

where we have re-expressed the δ function using the usual formula: δ(g(θ)) = δ(θ)/|∂g/∂θ|.
Naturally, the second form of the Poynting theorem yields the same result. In obtain to have
a direct comparison with Eq. (BO-88), one can easily cast this integral in dω as an integral
in dk1 = dω/V , and dk2, the latter being trivial for the choice of our source. We can write
the radiation resistance in a compact form as Zrad = A−2

∫

f 2

s Qdk1dk2, where k1 and k2 are
the wave-vector components along x1 and x2 and A plays the role of the conductor’s section.
In this notation our result is summarized in Q = 4π2C22/(ω|P |

√
Λ1 (Λ1 + Λ2)).
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4 Comparison with Previous Work

Here we show that the results obtained in the previous section, using the full dispersion
relation, are consistent with those of BVD and we put the radiation resistance in a compact
form, using an approximation of the dispersion relation that is consistent with electric field
polarization of the emitted waves. To this extent, we consider Eq. (7), that corresponds
identically to Eq. (BVD-3.23). This can be easily seen with a change of notation, defining
ǫ1 = S, ǫ3 = P , and G and F as follows:

G =
c4

ω4
|C22| = |ǫ1ǫ3 − n2ǫ1 sin2 θ − n2ǫ3 cos2 θ| (9)

F =
c4

ω4

∣

∣

∣

1

2k

∂DT

∂k

∣

∣

∣ =
∣

∣

∣

∂Λ

∂n2

∣

∣

∣ (10)

where n = kc/ω is the refraction index and Λ = (c6/ω6)DT . We now perform the integration
in dω as prescribed in BVD, in order to obtain a differential radiation resistance in θ. The
result for the radiation resistance per unit length of tether r, is:

r =
Zrad

L
=

1

c2

∫ π

0

dθ ωc(θ)
G

F |1 − (V/c) sin θ[n + ω(∂n/∂ω)]| (11)

We want to give now a compact form of the radiation resistance, using approximations which
are consistent with the polarization of the waves, for the range of frequencies where the
emission is peaked. This range of frequency is the whistler branch with frequency above the
lower hybrid frequency ωLH =

√
ΩiΩe. In this range of frequencies we can approximate G and

F as: G = ω4

p cos θ/(ω3Ωe), F = 2G. On the other hand, the dispersion relation is written in
its most compact form as:

n2 =
c2

ω2

Λ1

cos2 θ
≃ 2ω2

p

Ω2
e cos2 θ + ω2

LH − ω2
(12)

This approximated form is correct even for waves propagating in a direction very close to the
direction of the orbiting velocity, unlike Eq. (BVD-4.22). We use these approximations, and
note the leading term in the expression with absolute value at the denominator of Eq. (11)
of our paper is (V/c) sin θ ω(∂n/∂ω). The frequency value can be obtained by imposing the
Cherenkov condition, n2 = c2/(v2 sin2 θ). We finally obtain

r ≃ Ωi

c2

V 2

v2

A

∫ π

0

dθ
sin2 θ

√

cos2 θ + 1/M
≃ 11.1

Ωi

c2

V 2

v2

A

(13)

where, in performing the integration in θ, we have used the value of the ion to electron mass
ratio as chosen in BVD, namely M = mi/me ≃ 29400. Substituting the values of Ωi = 210
Hz, V/c = 2.6 · 10−5 and the Alfvén velocity vA = 270km/s, as in BVD, we obtain a value of
the radiation resistance of r ≃ 2 · 10−4Ohm/km. This approximated value is consistent with
the estimation of BVD: r = 2.6 · 10−4Ohm/km.
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5 Conclusions

The emission of plasma waves by a conductor orbiting the ionosphere is discussed here in
relation to the treatment given in [Barnett and Olbert(1986)], and an approximated formula
for the radiation resistance is given. Here, we are not interested in modeling the current
exchange at the conductor ends, but in validating the theoretical formalism, therefore we
have considered an infinitely long tether, which does not present current exchanges with the
surrounding plasma. The emission of such a source was studied in both BO and BVD. The
dispersion relation used in BO is shown to be based on an approximation that neglects the
contribution of an important wave branch in the emission spectrum. In the case of an in-
finitely long tether, this is the contribution of the electric field component along the tether
direction. Except for the choice of the dispersion relation, the theoretical formalism is proven
to be the same, even if expressed in a different notation, and therefore leading to the same re-
sults. This reconciles an apparent disagreement between published results that has remained
unclear for two decades, and enforces the validity of the theory, and of its applications to
problems of practical interest, such as the study of the wave emission of satellites orbiting the
ionosphere. Obviously, when studying the emission of realistic satellites, appropriate models
of current exchange with the surrounding plasma must be considered.
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