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The drift-tearing mode stability  is  studied numerically using the (reduced) two fluid

equations.  With a set of experimental data as input, the mode is found to be driven unstable by

the electron temperature gradient when the classical perpendicular electron heat conductivity is

taken into account.  In the nonlinear phase two saturation regimes are found, a small magnetic

island regime existing for an intermediate electron diamagnetic  drift  frequency and a large

island regime for a sufficiently high bootstrap current fraction.  

PACS: 52.35.Py, 52.35.Vd, 52.55.Tn, 52.35.-g
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1. Introduction 

Tearing mode instabilities are of particular importance for magnetic fusion plasmas.  In

addition to the classical tearing mode driven by an unfavorable plasma current density gradient

(a positive stability index  
���

),  the perturbed bootstrap current drives the mode growth for a

sufficiently  high  tokamak  plasma  pressure,  leading  to  neoclassical  tearing modes  (NTMs),

which have been found to limit the plasma pressure or even to cause disruptions in tokamak

experiments [1-5].  

Many NTMs observed in the experiments are triggered by additional perturbations like

sawteeth or  edge  localized  modes [3-5].   This  phenomenon agrees  with  previous  theories.

Tearing modes are predicted to be stabilized by the electron diamagnetic drift in their linear

phase even for a positive 
���

 if  
���

<( ���	� s)(Ls/LTe)2, where � s is the ion Larmor radius using the

electron temperature, and Ls   and LTe are the scale length of the magnetic shear and electron

temperature gradient, respectively [6].  The experimental values of 
���

 are usually found to be

negative  for  tearing  modes  with  poloidal  mode  number  m 
 3.   In  the  nonlinear  phase  the

diamagnetic drift effect leads to the ion polarization current model of the threshold for NTM

onset, which has attracted extensive studies [7-15].  In addition, the Glasser effect also provides

a somewhat smaller stabilizing effect [5,16,17].

In some tokamak discharges, however, NTMs grow spontaneously [18-20], indicating

that tearing modes can also be linearly unstable.  It was recently found that tearing modes can

be either  stabilized or  destabilized by  the electron  temperature  gradient,  depending  on the

values of the electron diamagnetic drift frequency � *e  and the electron heat conductivity [21].

Based  on  Ref.  [21],  a  consistent  numerical  modelling  of  the  drift-tearing  mode  is

presented here, using two fluid equations and including both the parallel and the perpendicular

transport, which allows to take into account both the bootstrap and the ion polarization current

perturbations.  With a set of the experimental data as input, the tearing mode is found to be
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driven unstable by the electron temperature gradient, providing a possible explanation for the

spontaneous growing tearing mode observed in the experiments [18].  In the nonlinear phase

two saturation regimes are found, a small island regime driven by the electron temperature

gradient and a large island regime (NTM regime) driven by the perturbed bootstrap current.

2. MODEL

The large aspect-ratio tokamak approximation is utilized here.  The magnetic field is

defined as  B=B0t-(kr/m)B0te 
 +����� et, where �  is the helical flux function, m/r and k=n/R are

the wave vectors in e
 (poloidal) and et (toroidal) direction, respectively, R is the major radius,

and the subscript 0 denotes an equilibrium quantity.  The ion velocity v=v||e||+v� , where v|| and

v � =����� et are  the  parallel  (to  the  magnetic  field)  and  the  perpendicular  velocity,

respectively. The � old ion assumption is made as in previous papers [6,7,21].

To obtain � , v||,  v� , the electron density ne and temperature Te, the electron continuity

equation,  the  generalized  Ohm's  law,  the  equation  of  motion  in  the  parallel  and  the

perpendicular  direction  (after  taking  the  operator  et� ��� ),  and the  electron energy transport

equation, are solved [6-8,21].  Normalizing the length to the minor radius a, the time t to � R, �
to aB0t,  v to a/� R, and Te and ne to their values at the magnetic axis, where a is  the  minor

radius, and � R=a2/ �  is the resistive time, these equations become 
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where  d/dt= E / E t+v� � � ,  j=� 2� -2nB0t/(mR) and jb=(r/R)1/2(ceneTe
�
+cnTene

�
)/B 
  are the plasma and

the bootstrap current density along the  et direction, respectively, B 
  is the poloidal magnetic

field, ce=1.1, cn=3.0, and the prime denotes d/dr.  FHGJIK��� 9 �MLKN�O	PRQTSRUWVXNZY[V]\$^`_aObLb�cLdO	egfih  the plasma

viscosity, j   the heat conductivity, and D the particle diffusivity.  P=neTe, the subscripts || and k
denote the parallel and the perpendicular components, respectively, and l =0.71 [6-8,21]. Sn, Sp

and E are the particle and heat source and the equilibrium electric field, respectively.

The parameters in equations (1)-(5) are given by d1=� ce/ m e, 
5 ' � ed1, Cs=[Te/mi]1/2/(a/ � R),

and S= � R/ � A,  where  � e=4n neTe/B0t
2,  ��odpqVsr$tumRpqVs_vQwOxPRQyQzUbQ{�/Ox_|^`r}�seR�zUW^~O	_Z^`r}Vsr$t�O	PRQ��c^�UKUdLbN|LW^`rRVzU

� _aQc�`�RQsrR�segf and  � A=a/vA is  the  toroidal  Alfven  time.   The  drift-tearing  mode  stability  is

determined  by  these  parameters  and  the  transport  coefficients  for  a  given  equilibrium.

Equations  (1)-(5)  have  been  used  to  study  the  tearing  mode  stability  before,  but  the

perpendicular transport has been neglected [6-8].

In equation (5)  j ||=j ||c[1+(3.16vTek||/ m e)2]1/2 is used, following previous theories [21,22],

where j ||c=3.16(vTe)2/ m e is the classical parallel electron heat conductivity, k||=B0·k/|B0|, and vTe

is the electron thermal velocity.  j || reduces to  j ||c in the limit  m e  >>vTek||, and to vTe/k|| in the

collisionless limit.

3. Numerical results

Equations (1)-(5) are solved simultaneously using the initial value code TM1, which has

been used for  modelling NTMs and drift  tearing modes  before [21,23,24].  New numerical

methods are utilized in the code to keep the numerical error at a very low level even for high

values of S and j ||/ j�� [24-26].
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3.1 Linear results

An example for a spontaneously growing m/n=3/2 tearing mode on ASDEX-Upgrade

has  been  shown  in  Ref.  [18].   The  corresponding  deuterium  plasma  has  the  following

parameters,  Te=3.25keV,  ne=1.15 � 1020m-3,  and  B0t=2T,  leading  to  S=4.27 � 108,  d1=2.7� 107,

5
=8.45� 105, Cs=1.01 � 108, and j ||c=1.11� 1013a2/ � R.  The safety factor (q) profile is monotonic

with a negative value of 
���

 for the 3/2 mode, and the 3/2 mode is therefore stable if the two

fluids  effects  are  neglected  by  taking  
5

=d1=Cs=0.   The  equilibrium  electron  temperature

gradient  length,  LTe=Te/(dTe/dr),  equals  0.541a  at  the  q=3/2  rational  surface.   The  local

equilibrium density  gradient  is  nearly  zero.   The  collisional   parameter  C=(
�

D/ � s)
9
 equals

0.0089, indicating the semi-collisional regime at C<<1 [6] , where  
�

D=( � *e/ j ||)
+�� 9

(RLq/n), and

Lq=q/(dq/dr) [6]. The above parameters provide the input data for our linear calculations except

mentioned elsewhere.  For obtaining sufficient spatial resolution, the radial grid size is 10-4a -

10-5a around the rational surface.   

In figure 1 the normalized (to � R
-1) linear growth rate �  of the 3/2 mode is shown as a

function of the parameter  
5

 by the solid curve for D � =j � =0.3a2/ � R and  h � =18.3a2/� R.   The

classical  perpendicular  electron  heat  conductivity,  j � =4.7m e(vTe/� ce)2,  leads  to  j � =0.3a2/ � R.

From equation (2) it is found that � *e=
5

m[Ln
-1+1.17(1+l )LTe

-1]a2/(rs� R), where Ln=ne/(dne/dr), rs

is the minor radius at the rational surface.  A larger  
5

 value corresponds to a larger  � *e or  �
value.  For a sufficiently small 

5
, the diamagnetic drift effect is of course not important, and

� =-2.0� 103/ � R for 
5

=0.  For a sufficiently large 
5

, corresponding to a high mode frequency, the

mode is also stable in agreement with previous theories that neglect the perpendicular transport

[6]. For intermediate values of  
5 f  5� 104<

5
<106, however, the mode becomes unstable. The

experimental value 
5

=8.45 � 105 lies in the unstable region, in agreement with the experimental

result of a spontaneous growth of the 3/2 mode.  The dotted curve in figure 1 is obtained by

taking  D � =j � =0.1a2/ � R.  The unstable region is narrower as j �  decreases.  The dashed curve in
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figure 1 shows the growth rate of the 6/4 mode, with same input parameters as those for the

solid curve.  The 6/4 mode has nearly the same unstable region as the 3/2 mode.  Only in the

small 
5

  region the 6/4 mode is more stable than the 3/2 mode, because the 
���

 value is more

negative for the 6/4 mode, and the diamagnetic drift is not important in this case.

For small magnetic islands, assuming that the electron energy transport is dominated by

the parallel and the perpendicular transport, the electron temperature perturbation in the lowest

order is  given by Te1=0.3(W/Wc)2Te0
'(r-rs) near the rational surface [26,27],  where W is the

island width, Wc=rs(j � / j ||c)1/4(� sssn/8)-1/2, s=rq'/q, � =r/R, and the subscript s refers to take value at

r=rs.  Linearizing equation (5) one finds that the perpendicular electron heat transport term is

much smaller than the dTe/dt term if the parameter

������� Wc
2/ j�� (6) 

LKNHY��R�sP�UWVs_|��Qs_�O	PRVsr�^`rRQ�f where  � ~� *e is the mode frequency.  With our input values ss=0.78,

rs=0.578a, � s=0.193, and the other parameters as mentioned above, we find Wc=1.27� 10-3a.  The

solid curve in figure 1 shows a decay of the mode for 
5 
 106, corresponding to a mode frequency

2.98 � 106/ � R or  �q� =103.  Therefore,  the decay of  the mode in  the large  
5

 region is  due to  a

sufficiently high mode frequency such that the perpendicular heat transport is not important.  In

this limit the mode becomes stable as predicted by the previous theories obtained by neglecting

the perpendicular transport [6].  When  � �  is not too large or too small, the perpendicular heat

transport leads to unstable modes [21].

In  figure  2  the  linear  growth  rate  of  the  3/2  mode  is  shown  as  a  function  of  the

normalized (to a2/ � R) perpendicular heat conductivity  j��  by the solid curve for  
5

=8.45� 105,

D� =j �  and h � =18.3a2/ � R.  For a small j �  the mode is stable, which agrees with the  previous

theoretical results obtained in the j�� =0 limit [6].  When j��  is closing to the classical electron

heat  conductivity,  j � >0.2a2/ � R,  the mode becomes  unstable.   It  is  seen that  even the small

classical perpendicular heat conductivity significantly affects the mode stability.  The dotted

�



curve is obtained with  hJ� =97a2/ � R, with the other parameters being the same as for the solid

curve.  The smaller growth rate for a larger h �  indicates the stabilizing role of plasma viscosity.

For the parameters j�� =0.1a2/ � R and h�� =18.3a2/ � R, the linear growth rate is shown as a function

of the normalized (to a2/ � R) D�  by the dashed curve in figure 2.  The growth rate �  decreases for

a larger D� , showing that the perpendicular particle transport is stabilizing.  

The  mode  stability  has  also  been  studied  by  taking  the  perpendicular  transport

coefficients  to  be  at  the  anomalous  transport  level,  j�� = h�� =150a2/ � R  (corresponding  to

j � =h � =0.5m2/s), D � =j � /6 (solid curve) and D � =j � /5 (dotted), as shown in figure 3.  ��QqVXN�NZ��Y[Q
O	PRVsO�OxPRQ�V�r$^`Y�VcU	^`��N�\$LKN|�c^�N|LdO	ewVsr$t�PRQcV�O�t�L �Z� ��N�Ld\$LdO	e�V�_vQ��cVs��N|Qct ��e[^~OxPRQs_TNZP$^`_aO�¡¢Vs\RQ£UbQ�r$�~O	P¤Y[^�t�Q{N
r$^~O�L¥rR�cUd�$t�Qct�Ldr¤^`��_¦Y[^�t�QcU 0 The mode is unstable in the intermediate 

5
 region and stable in the

small or large 
5

 region, being similar to the case shown in figure 1.  A larger value of D �  is
stabilizing, as also indicated in figure 2, and narrows the unstable region in 

5
. 

The detailed linear results had been described in Ref. [21],  in which radial profiles of

perturbations  and  the  dependence  of  the  linear  growth  rate  on  plasma  parameters  were

presented.  The mode is found to be more unstable for a smaller Cs  or a larger j ||, S and d1.  T PRQ
Ldr�NZO§V��RL	UWLdO	e�PRVXN�O§Q{V¨_|L¥r$�©S�Vs_ZLxOxegf�����O�OxPRQMªv�c^`r�NaO«V�r�O���ªHV�S�S�_�^~¬�LdY�VsOKLW^`rgf���QsL	r$�©O¥_Z�RQ � ^`_£O	PRQ¤�cUWVXN¨N�L§�{VcU
_vQXN�LKNZOKLd\RQ­O§Q{V�_aL¥r$��Y[^�t�Q�fRL®NTr$^~O�\RVcU	LWt¯L � O	PRQ t~LWVsY�Vc�`rRQsOKLb� t`_|L � O � _vQz�`�RQsrR�seyLbNTr$^~O¦OK^�^wNZY�VzUWU 0y° rMO	P�L®N
�{VXN|Q�O	PRQ±PRQzUWLb�cVcU � Ud��¬¢S�Q²_aOx��_³��V/ObLW^`r�PRV{NTV � VXNZOJ�sPRVsr$��Q�Vi��_a^�NvN´O	PRQ�N|L¥r$�`�$UbVs_�UbV�eRQs_ 1 B¦- , 0¢µ his mode is

driven unstable by the equilibrium electron temperature gradient and can be found only when

both  the  parallel  and  the  perpendicular  heat  diffusion  are  taken  into  account.    The

perpendicular heat diffusion is usually neglected in previous tX_|L � O§IbO§Q{Vs_�Ldr$�¶Y[^�t�Q theories [6-8] 0
· ^�_´V£NZ� �Z� Lb�cLWQsr�OKU¥e[N mall j � , the mode is found to be stable in agreement with previous results of

the drift-tearing mode obtained in the j � =0 limit [6].
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3.2 Nonlinear results

In  order  to  look  into  the  nonlinear  evolution  of  the  mode,  much  more  Fourier

components are required to ensure numerical convergence, especially for larger values of j ||/ j �
and S [24-26], leading to much longer calculation time.  Due to the computational limit, the

nonlinear calculation results presented in this section are obtained with a less realistic set of

input parameters.  The linear results obtained with these input data  Vs_vQ�P$^`¡¢Qs\RQ�_ � ^`��r$tyOb^w��Q
N|L¥Y[L	UbVs_JOK^�OxP$^�N²Q£NZP$^`¡�r¶L�r�¹RQ{�/ObLW^`r C 0 - Vsr$t Vs_|Q�O	PRQs_vQ � ^`_vQ±r$^~O�S�_vQXN|Qsr�O§Qzt 0

The nonlinear time evolution of the normalized island width, W/a, is shown in figure 4,

with S=5 � 106, d1=1.0� 105, Cs=1.0 � 106a/ � R,  j ||=5.0 � 108a2/ � R, j�� =hº� =10a2/� R, and D� =j�� /5. The

other inputs are kept unchanged.  ° O�¡�LWUdUJ��Q¶N³P$^`¡�ryU§V²O§Q�_]O	PRVsO the value of � �  covers about the

same range as Fig.  1.   When the bootstrap current  density  fraction at  the rational  surface,

fb � [jb/j]|(r=rs), is 0 (dotted curves), the island decays for 
5¢»

2� 103 but grows and saturates for

5
=4 � 103 and 6 � 103.  The local electron temperature gradient is decreased by the island, which

in turn leads to the mode saturation.  The  r$^`_®Y�VcU	L	¼�Qct½LW^`r�IZN|^`��r$t½¾¿V²_³Y[^`_¢_vVct�L¥��N²f´� s

:
V ,  equals

2.8 � 10-3, 4.0� 10-3 and 4.9 � 10-3 for 
5

=2� 103, 4 � 103 and 6� 103, respectively.  For fb=0.1 (solid

curves),  the  mode  further  develops  into  the  NTM  and  saturates  at  a  larger  amplitude  for

5
=2 � 103 and 4� 103.   For  

5 G 6� 103 the saturated island width becomes  comparable to that

obtained with fb=0, indicating that  the diamagnetic  drift  dominates the  nonlinear saturation

amplitude in this case.  

 In some parameter space the nonlinear saturation level is found to be affected by the

initial island width W0  at t=0 given by the input data.  The time evolution of the normalized

island width is shown in figure 5 for different values of W0, with fb=0.1, 
5

=6 � 103 and the other

input parameters being the same as those for figure 4.  The value of � s

:
V equals 4.9 � 10-3.  Two

nonlinear  saturation  regimes  are seen.   The  island saturates  at  a  low level  for  W0<0.062a

(W0<1.7Wc) but develops into the NTM regime in the opposite limit.  Such a threshold for the
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onset of NTMs is often seen in tokamak experiments [2-5].

Corresponding to  figure 5,  the time evolution of  the normalized mode frequency is

shown in figure 6.  The mode frequency approaches a higher (lower) value for the smaller

(larger) island case.  The island drifts in the electron diamagnetic drift direction as expected

[15].  The mode frequency and the diamagnetic drift frequency Ldr O¥PRQ]UWLdrRQcVs_�S�PRVXNvQqV�_�Q£N³P$^`¡�r ��e
O	PRQ�P$^`_|L	¼{^`r�O§VcU�t�^~OdOKQ�t�Vsr$t¢t�VXNZPRQct¢U	LdrRQXN 0

In figure 7 the corresponding local radial electron temperature profiles are shown.  The

solid and dotted curves are for the large and the small island case in figure 5, and the dashed

curve shows the original equilibrium temperature profile.  Due to the fast parallel transport in

the island region, the local temperature profile is more flattening for a larger island [26,27],

leading to a corresponding lower mode frequency than that of a smaller island as seen in figure

6.  The smaller local temperature gradient results in a weaker effect of the diamagnetic drift, so

that the mode develops into the NTM regime with a larger initial island width as shown in

figure 5.

The normalized saturated island width is shown in figure 8 as a function of  
5

.  The

value of  � s

:
V changes from 2.8� 10-3 to 8.9� 10-3 with increasing  

5
 from 2� 103 to 2 � 104,  as

� s

:
V{Á 5 1/2 when other parameters are unchanged.  The solid curve is obtained with fb=0.  In this

case the island saturates at a lower amplitude of the order of Wc (Wc=0.037a) for intermediate

values  of  
5

 ( � *e).   For  fb=0.1  and  a  small  W0 (dotted),  the  saturated  island  width  are

characterized by two regimes.  For 
5¢»

4 � 103, the bootstrap current perturbation leads to large

islands, corresponding to the NTM regime.  For a higher 
5

, the island width is approximately

the same as that obtained with fb=0, showing the important role of the electron diamagnetic

drift (ion polarization current) in determining the nonlinear saturation level for a sufficiently

large 
5

.  For fb=0.1 and a large W0 (dashed), the NTM regime extends to a larger 
5

 value than

that with a small W0.  When 
5

 is high enough (
5

>2 � 104), the island decays even for fb=0.1.  

Â



For  more  realistic  input  parameters,  S=1.4 � 107,  d1=8.5� 105,  j ||c=7.4 � 109a2/� R,  and

j � =h � =3.1a2/ � R, the normalized saturated island width is shown in figure 9 as a function of 
5

by the solid curve for fb=0.  The value of � s

:
V changes from 4.2� 10-3 to 1.3 � 10-2 with increasing

5
 from 4� 103 to 4 � 104.  The dotted curve in figure 9 is the same as the solid curve in figure 8,

shown here for comparison.  It is seen that for larger values of S, d1 and j ||c, the island width is

smaller because of a smaller Wc (Wc=0.014a in this case), and the island exists in a larger 
5

regime.  In terms of the normalized parameter ���  defined by equation (6), the unstable region

exists for 5.0< � � <70, while the unstable region extends over 5.2<� � <103 and 6.7<� � <54 for

the solid curves in figures 1 and 8, respectively.  The lower limits of �q�  for the unstable region

are about the same for these three cases.  The upper limit is somewhat larger with higher input

values of S, d1 and j ||.

Using the classical transport coefficients, one finds from equation (6) that

�q� =2.1(m/n)(R/rs)(Lq/LTe)[LTe/Ln+1.17(1+l )]. (7)

For figure 1 the unstable region is in 5.2< � � <103, corresponding to 

1.2 < (m/n)(R/rs)(Lq/LTe) < 25 (8)

for Ln >>LTe.   Assuming m/n=3/2 and Lq=rs, (8) is simplified to 

0.8 < R/LTe < 16.7,

suggesting that small islands with their saturation width to be about Wc could exist in tokamak

plasmas, if LTe  is not too small or too large.

The time evolution of the normalized island width is shown in figure 10 for a constant

5
,  
5

=6 � 103,  but  with  different  bootstrap current  density  fractions  at  the  rational  surface:

fb=0.1, 0.14, 0.15 and 0.2.   The other input data are the same as those for Figure 5.  The island

saturates at a lower amplitude and has about the same width for fb<0.15.  A larger fb  ( 
 0.15)

drives the island into the NTM regime.  In this regime the saturated island width is larger for a

higher fb  as expected [24].  The island width oscillates in time for the case fb=0.14, being just

��Ã



below the critical value of fb for transition to the NTM regime.  

Above results show that, the island tends to develop into the large island (NTM) regime

for a larger fb , while for a larger value of 
5

(�q� ) the island tends to saturate at a small width or

even to become stable, indicating the different role of the perturbed bootstrap current and the

diamagnetic drift (ion polarization current) in determining the nonlinear saturation level.  

When  keeping  the  other  input  parameters  unchanged,  both  fb  and  � �  increase  with

increasing electron temperature gradient.  In the following results the values of fb and �q�  are

chosen for a constant

cb� fb/ � � , (9)  

with the other parameters being the same as in figure 8.  This allows us to see the competition

between  the  effects  from the  perturbed  bootstrap  current  and  from  the  diamagnetic  drift.

Depending  on  experimental  parameters,  for  ASDEX-U H-mode  plasmas the  value of  fb is

usually in the range of 0.1-0.3, while  �q�  approximately ranges from 10 to 100 according to

equation (7), leading to the value of cb to be the range of 10-3-3� 10-2.

The  time  evolution  of  the  normalized  island  width  is  shown  in  figure  11  with

cb=6.2 � 10-3 for  three  cases:  (1)  fb=0.05  ( � � =8.0,  � s

:
VzG 3.7� 10-3),  (2)  fb=0.15  (� � =24,

� s

:
V{G 6.0� 10-3) and (3) fb=0.3 ( � � =48, � s

:
V{G 8.5� 10-3), with the other input data being the same

as those for figure 8.  The solid (dotted) curve is obtained with a small (large) W0.  For case (1)

with a small fb, fb=0.05, the island always saturates at a small width, no matter what value is

taken for W0.  For case (2) with fb=0.15, the island saturates at a small width for a small W0  but

at a large amplitude for a large W0.  For case (3) with fb=0.3 the island always develops into the

NTM since fb is high enough.

With a smaller cb,  cb=4.7 � 10-3,  the time evolution of the normalized island width is

shown  in  figure  12  with  (1)  fb=0.175  ( � � =38  � s

:
V/G 7.5 � 10-3)  and  (2)  fb=0.225  (� � =48,

� s

:
V{G 8.5� 10-3). For case (1) with fb=0.175, the island fluctuates at a small width.  For case (2)

���



with fb=0.225, the island also fluctuates at a small width for a small W0  but saturates at a large

amplitude for a large W0.  

In figure 13 the normalized saturated island width is shown as a function of  
5

.  The

corresponding value of � �  is given by � � =2.67 � 10-35 .  The value of � s

:
V changes from 2.8 � 10-3

to  8.9 � 10-3 with  increasing  
5

 from  2 � 103 to  2 � 104.   The  curve  with  circles  (squares)

corresponds to  cb=4.7 � 10-3 (6.2� 10-3).   The solid  (dotted) curves are obtained with a  small

(large) W0. With cb= 4.7 � 10-3, the NTM regime is seen only for a large W0 in the large 
5

(fb)

region.   While for a small W0   only the small island regime is found.  For the case with

cb=6.2 � 10-3, with increasing 
5

(fb) the island first saturates at a small width and then increases

to a large one once a certain value of 
5

(fb) is reached, corresponding to the onset of NTMs.  A

larger value of  W0 extends the NTM regime to  a  smaller  
5

(fb)  value.   It  is  seen that the

nonlinear saturation level of the drift-tearing mode is determined by three parameters: 
5

( ��� ),
fb and W0.

4. Discussion and summary 

It is shown in the present paper that, the drift-tearing mode stability depends on the

parameter  � � =� *eWc
2/ j � .   When  � �  is  not  too small  or  too large,  the equilibrium electron

temperature gradient drives the mode to grow even for a negative value of 
���

 and zero bootstrap

current.  Using the experimental values as the input data, the mode is found to be unstable in

agreement with the experimental observations [18].  Since the 6/4 mode is found to have nearly

the same unstable region in  
5

 as the 3/2 mode, the parameter  
���

 is  not very important in

determining the linear mode stability for a sufficient high � *e value.  

Our nonlinear results indicate that, the nonlinear growth of the drift-tearing mode is

determined by three parameters: � � , fb and W0.  The ion polarization current resulting from the

diamagnetic drift could play either a stabilizing or a destabilizing role, depending on the values

� �



of ��� .  In the case of fb=0, this current drives the island to saturate at a small width about Wc for

an intermediate value of � � .  While for a sufficiently high � � , the mode is stabilized by the ion

polarization current as seen in Figure 8. In the case with a finite fb, both the bootstrap current

and the ion polarization current determine the island saturation level.  As the bootstrap current

perturbation is larger for a higher fb, while the ion polarization current is weaker for a smaller

�q� ,  a sufficiently high  fb and low ���  are favorable for the mode to saturate at a higher level

(NTM regime).   The drift-tearing mode  can spontaneously grow into the NTM only for  a

sufficiently high value of fb/ � *e (fb/� � ).  The effect of W0 (initial perturbation amplitude) results

from the change of the electron temperature gradient around the rational surface by the island.

Due to the fast parallel transport in the island region, the local temperature profile is  more

flattening for a larger island (Figure 7), leading to a weaker effect of the diamagnetic drift (ion

polarization current), so that the bootstrap current density perturbation could drive the mode

into the NTM regime more easily for a larger value of W0,  as shown in Figure 5.  The NTM

regime is therefore extended for a large W0.  It is seen that the nonlinear growth and saturation

of the  island are affected by the heat  transport  in  the island region,  as which changes the

electron diamagnetic drift frequency (ion polarization current) in the nonlinear phase. Although

these  nonlinear  results  are  obtained  for  the parameters  being lower  than  existing  tokamak

experimental  values,  they  have  shown  the  different  behaviors  of  NTMs  observed  in  the

experiments [1-5, 18-20].   For higher input parameters like those for figures 1-3, one could

expect from figure 9 that the saturated island width is smaller in the small island regime due to

the smaller value of Wc.

In  existing  theories  of  the  ion  polarization  current  perturbation,  the  effect  of  the

perpendicular electron heat diffusion is not considered, so that the effect of  �q�  and the small

island regime are not found there [5-15].  Another feature of our numerical results is that the

mode frequency due to the diamagnetic drift is self-consistently calculated, and the island is

found  to  rotate  in  the  electron  diamagnetic  drift  direction  as  expected  [15].   It  should be

� @



mentioned  that  the  value  of  �q�  is  subject  to  uncertainty  due  to  the  uncertainty  in  the

perpendicular electron heat transport.  When taking into account the anomalous perpendicular

electron heat transport due to the electrostatic turbulence, Eq, (7) is modified to 

� � =2.1j�Ä (m/n)(R/rs)(Lq/LTe)[LTe/Ln+1.17(1+l )], (10)

where jºÄ =( j � c/ j�Å )1/2 is the ratio between the classical and the anomalous perpendicular electron

heat diffusivity.  When j�Å >> j � c, � �  is smaller, and the mode can more easily develop into the

NTM regim, especially for a higher  �  plasma for which fb  and cb  are larger.  A smaller local

magnetic shear at the rational surface, however, leads to a lager � �  and therefore tends to keep

the mode in the small island regime.

The small island regime found here is different from the micro tearing mode[6,28,29].

The micro tearing mode results from the inclusion of the energy dependence of the Coulomb

collision frequency using drift kinetic equation, but such an effect has not been included in the

equations used here.  The parameter  regime of the unstable mode is also different from that of

the micro tearing mode [6,28,29].  The conditions for the onset of the micro tearing mode are

dln(Te)/dln(n)>0.3 and  Æ e/ � *e<3 [28].  However, both the micro tearing mode and the mode

studied here have the same energy source, the electron temperature gradient.  The small island

regime found here is also different from the work in Ref. [30], in which O	PRQ�Y¤G - _vQXN¨L	NaObLd\RQ£Ç$L¥r�Ç
Y[^�t�Q�LKNÈNZO	�$t�LWQctÉLdrÊOxPRQËS�_vQXNvQ�rR�{QÌ^ � O¥PRQÍt�LbVsY[Vc�`rRQ/OKLW�Ít`_aL � O«f�����O¤�R^~O	PÎOxPRQÈS�Vs_vVzUWUbQzU©Vsr$t�OxPRQ
S�Qs_³S�Q�r$t�Lb�s�$UWV²_¦PRQ{VsO�t�L �Z� ��N|L	^`rgfi��QsL	r$�­QXNvNvQzr�OKLWVcU � ^X_Ï^`��_¦_vQ{NZ�$UxO§N²f~Vs_|Q±rRQc��UbQ{�sO§QctÐOxPRQs_vQ 0

Since the modes with high mode numbers can also be destabilized even for a classical

electron heat diffusivity, they will change the local temperature gradient and contribute to the

anomalous transport once they are unstable.  In figure 14 the normalized (to � R) linear �X_|^`¡�O	P
_vV/OWQ¢Vsr$t � _vQc�`�RQsrR��ewVs_vQ­N³P$^`¡�rwVXN]V � ��rR�cOKLd^`rM^ � SR^�Ud^�L	t�V�URY¤^�t�Q£r���Y���Qs_¿¡­LdO	P D � =j � =1.6a2/ � R and

h � =96.9a2/ � R. The other input parameters are the same as those for Figure 1, and � s/r=2.17 � 10-3.

It is seen that t PRQ���r�NaOKV��RUbQq_vQc�~L	^`r[^ � O	PRQ�Y[^�t�Q�Q/¬�O§Q�r$t�N´OK^HP$L	�`P�YÉ\RVcUd�RQ{N ) Y¶Á -/Ñ�Ñ ( f`��QcLdr$�¶N|LdY¤LWUWVs_

� �



OK^¤^~OxPRQs_�N³P$^`_aOº¡­Vs\RQ­UbQsr$�~OxP¤Y[^�t�QXNqNZO	�$t�LWQct¤Ldr�Ò�Q � 0 1 CJ- , 0 Future nonlinear studies using realistic

tokamak plasma parameters are needed for a better understanding.

In summary,  the drift-tearing modes is investigated using two fluid equations under the

large aspect-ratio and the cold ion assumptions.   It  is found that  with experimental data as

input, the drift-tearing modes are driven unstable by the electron temperature gradient when the

classical perpendicular electron heat conductivity is taken into account, providing a possible

explanation for the spontaneous growing tearing mode observed in the experiments.  In the

nonlinear stage two saturation regimes are found.  For a lower � *e and/or a high fraction of the

bootstrap current density, the mode develops into NTMs.  In the opposite limit the saturated

island width is essentially the same as that obtained without the bootstrap current perturbation,

and  the  diamagnetic  drift  dominates  the  nonlinear  saturation.  A  larger  initial  perturbation

extends the NTM regime to the region with a lower bootstrap current density fraction or a

higher � *e.
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Caption

Figure 1 The normalized (to � R
-1

,) linear growth rate �  versus 
5

.  The solid (dotted) curve

is for the 3/2 mode with D � =j�� =0.3a2/ � R  (0.1a2/ � R). The dashed curve is for the 6/4 mode with

same input parameters as those of the solid one.

Figure 2 The normalized linear growth rate ��� R of the 3/2 mode versus the normalized (to

a2/� R) j��  for 
5

=8.45� 105, D � =j�� , hJ� =18.3a2/ � R (solid curve) and  hJ� = 97.0a2/ � R (dotted).  The

dashed curve shows �  versus the normalized (to a2/� R) D�  for j � =0.1a2/ � R and h � =18.3a2/� R. 

Figure 3 The normalized (to  � R
-1

,) linear growth rate  �  versus  
5

for the 3/2 mode with

j � =h =150a2/ � R.  The solid (dotted) curve is for D � =j � /6 (D� =j � /5).

Figure 4 The nonlinear time evolution of the normalized island width, W/a, for 
5

=2 � 103,

4 � 103 and 6 � 103, with  fb=0.1 (solid curve) and fb=0 (dotted). 

Figure 5 The time evolution of the normalized island width with different initial island

width W0 for fb=0.1 and 
5

=6 � 103.  The island saturates at a low level for W0<0.062a (=1.7Wc).

In the opposite limit the island develops into the NTM.  

Figure 6 Corresponding to figure 5, the time evolution of the normalized mode frequency.

The mode frequency approaches a larger (smaller) value for the smaller (larger) island case.

The  island  drifts  in  the  electron  diamagnetic  drift  direction.  The  mode  frequency  and  the

diamagnetic drift frequency LdrMO	PRQ­UdLdrRQ�V¨_TS�PRV{NvQ�V�_vQ NZP$^`¡�r���eMO	PRQ�P$^�_�L	¼X^`r�OKVcU¦t�^~OWOKQct[Vzr$t¤t�VXNZPRQXt
UWL�rRQiN 0
Figure 7 The  solid  (dotted)  curve  is  the  local  radial  temperature  profile  for  the  large

(small) island case at  nonlinear saturation in  figure 5,  and the dashed curve is  the original

equilibrium temperature profile.  The local temperature profile is more (less) flattening for a

larger (smaller) island.
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Figure 8 The normalized saturated island width versus  
5

for fb=0 (solid curve) and for

fb=0.1 with a small (dotted) and a large W0  (dashed).  The NTM regime extends to a larger 
5

value with a large W0.  When 
5

 is high enough (
5

>2 � 104), the island decays even for fb=0.1.  

Figure 9 The normalized saturated island width versus 
5

 for fb=0.  The solid curves is for

S=1.4 � 107, d1=8.5 � 105, j ||c=7.4 � 109a2/ � R, and j�� =hJ� =3.1a2/ � R.  The dotted curve is the same as

the solid curve in figure 8 shown here fore comparison.

Figure 10 The time evolution of the normalized island width for  
5

=6 � 103 with  fb=0.1,

0.14, 0.15 and 0.2.  A sufficiently large bootstrap current density fraction drives the saturated

island from a low amplitude to a large one.

Figure 11 The time evolution of the normalized island width with cb= 6.2� 10-3 for  (1)

fb=0.05 ( ��� =8.0),  (2)  fb=0.15  (�q� =24)  and (3)  fb=0.3  ( ��� =48).  The  solid  (dotted)  curve  is

obtained with a small (large) W0.

Figure 12 The  time  evolution  of  the  normalized  island width  with  cb=4.7 � 10-3 for  (1)

fb=0.175 (� � =38) and (2) fb=0.225 ( � � =48) starting from two different W0, 

Figure 13 The normalized saturated island width versus 
5

.  The corresponding value of � �
is given by � � =2.67 � 10-3 5 .  The solid (dotted) curve is obtained with a small (large) W0. The

curve with circles (squares) corresponds to cb=4.7 � 10-3 (6.2 � 10-3).   The nonlinear saturation

level is determined by three parameters: 
5

(� � ), fb and W0.

Figure 14 The normalized (to � R) linear �`_|^`¡�O	P¢_vV²O§QqVsr$t � _vQz�`�RQsrR�se¶VXN¿V � ��rR�sOKLW^`r¢^ � SR^�UW^�LWt�VsU
Y[^�t�Qqr���Y���Qs_T¡�LxO	P D� =j � =1.6a2/� R and h � =96.9a2/� R. The other input parameters are the same

as those for Figure 1, and � s/r=2.17 � 10-3.  T PRQ­��r�NZO§V��RUWQH_|Qc��LW^`rM^ � O	PRQ�Y¤^�t�Q Qs¬�O§Qsr$t�N±Ob^¤P$L	�`PMY
\RVcU¥�RQXN ) Y¶Á -/Ñ�Ñ ( f{��QzLdr$��N|L¥Y[LWUWVs_�Ob^¢^~O	PRQ¨_�NZP$^`_aO�¡¢V�\RQ]UbQsr$�~OxP Y¤^�t�QXN¿VXN¿NZP$^`¡�r¶L¥r¢Ò�Q � 0 1 CJ- , 0
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