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Abstract

The transmission of high-power millimeter waves for electron cyclotron
resonace heating of plasmas is a well developed field which has reached
a mature level over the years [1]. The design goals are low transmission
losses, high mode purity and arbitrary polarization adjustment with low
cross polarization. Quasi-optical and waveguide techniques are at hand
for the design of transmission lines which in most cases are a combination
of both approaches. This article discusses the efficient numerical pro-
cessing of paraxial beams and fields in oversized corrugated waveguides
including polarization, and how these methods can be used for the anal-
ysis, synthesis and modeling of the RF fields from the gyrotron cavity to
the plasma.

1 Introduction

In transmission lines there is usually only a unidirectional interaction between
optical elements, i.e. there are no resonating or backscattering structures. In
most cases it is therefore not necessary to make use of selfconsistent calculations
like the method of moments or Fox-Li iterations, which basically correspond
to a Born approximation of high order. The main goal in transmission line
calculations is simply to speed up the diffraction integral from one aperture to
the next, either in free space or in a waveguide. Hence, with n optical elements,
a Born approximation of n-th order is sufficient for a correct calculation of the
field in the whole transmission line.

Paraxial beams in millimeter wave transmission lines are commonly repre-
sented as Gauss-Hermite or Gauss-Laguerre modes. They are called “modes”
because they where first observed as eigenmodes of Laser resonators. In trans-
mission systems, however, they are actually used as a set of orthonormal basis
functions to represent a wave beam which ideally consists only of the funda-
mental “mode”. This is a simple and powerful approach for the handling of
such systems due to the virtually finite support of these functions and the fact
that only two parameters change along the optical axis, namely the beam ra-
dius and wavefront curvature. These basis functions, however, are inexpedient
when it comes to the numerical processing of realistic arbitrary field profiles as
there is an infinite number of basis functions the contribution of which has to
be determined with a two-dimensional integral. Therefore a common method is
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to substitute the the actual beam with the best fit of a fundamental Gaussian
beam.

Another possible set of basis functions which at first glance seems to be
inappropriate are plane waves. They have an infinite support, and there are
as many changing parameters along the optical axis as there are plane waves,
which may be millions. Nevertheless, there is one advantage: The fast Fourier
transform (FFT) can be used to decompose and propagate a numerically given
field efficiently. In the following sections simple formulas will be introduced for
the efficient calculation of the propagation of real field profiles in transmission
lines consisting of mirrors and corrugated waveguides. This makes the imple-
mentation of a number of iterative algorithms for the analysis and synthesis of
components possible which will be briefly summarized in section 4.

2 Field Propagation in Free Space and Corru-
gated Waveguides

2.1 Free Space

The calculation of the electromagnetic field is greatly simplified for our purposes
by the introduction of the electric vector potential F. Equivalently, we could
use the magnetic Hertzian potential Πh with the relation jωΠh = c2F. With
the Lorentz gauge we obtain

E = −∇× F/ε0 (1)
H = −jωF− jc2∇(∇ · F)/ω. (2)

Throughout the paper a harmonic time dependency of e+jωt with j2 = −1 is
assumed. Bold symbols are vectors and bold symbols with a bar are dyadic
tensors.

Although the field extends over three dimensions, it is usually only calcu-
lated on planes, called apertures, which are positioned arbitrarily in the three-
dimensional space. This eliminates, for wave beams, the redundancy of a three-
dimensional representation and makes the numerical effort feasible. We can
reduce the problem to the solution of the scalar wave equation by using the
ansatz

F(x, y, 0) = u(x, y)F0 (3)

where u is a scalar function of the aperture coordinates, and F0 is a constant
three-dimensional complex vector. This scalar ansatz leads to considerable sav-
ings in CPU time and memory but still provides a fully qualified solution of the
Maxwell equations. F0 usually is perpendicular to the beam axis, it can thus
represent a paraxial beam through the aperture with an arbitrary and possibly
elliptical polarization. The beam axis is not necessarily perpendicular to the
aperture. An ansatz with a constant E0 or H0 would not be correct as the ratio
of their components can not be constant. It would nonetheless be possible to
solve e.g for Hy only while requiring Ey = 0. The other field components can
then be derived from Hy via the Maxwell equations. Nevertheless, the use of
the electric vector potential F is more convenient for our purposes.

The kernel of the diffraction integral between two parallel apertures depends
only on the difference of their local coordinates, and therefore represents a two-

2



dimensional convolution. Here we can easily make use of the FFT by translating
the numerically expensive convolution in the location domain into a simpler
multiplication in the wave number domain. This is known as the plane wave
decomposition. For non-parallel apertures, the operation in the spectral domain
is no longer a mere multiplication:

Fut(kx, ky) = (4)
1
kz
Fus([S̄T T̄k]x, [S̄T T̄k]y)β([S̄T T̄k]z)e−j[T̄k]zd

Here, Fut,s are the Fourier transforms of u in the target and the source aperture.
The Fourier transform is usually defined for the spatial frequency f as

Fu(fx, fy) =
∫∫ ∞
−∞

u(x, y)e−j2π(fxx+fyy) dx dy. (5)

Nevertheless we will use the more intuitive wave number k = −2πf with
k = (kx, ky,

√
k2

0 − k2
x − k2

y)T , β is the ramp function and d is the distance

between the centers of the apertures. T̄ and S̄ are the rotation tensors which
transform the local coordinates of the target and source apertures into a canon-
ical coordinate system. Hence, their columns are the base vectors of the local
systems expressed in terms of the canonical system and they are orthonormal,
i.e. D̄−1 = D̄T . Both aperture centers lie on the z-axis of the canonical system.
The optical elements in a real application with mirrors, vacuum windows and
waveguides are usually not on the z-axis of a canonical system. Instead, there
is a conveniently chosen global coordinate system in which the locations of the
target and source apertures are t and s. Now a third tensor R̄ is chosen to
render R̄(t− s) = (0, 0, d)T . This tensor is used to obtain

T̄ = R̄T̄′

S̄ = R̄S̄′ (6)

where the columns of T̄′ and S̄′ represent the base vectors of the local coordinate
systems in terms of the global system. The easiest way to calculate R̄ is to
take (t − s)/d as the third column of R̄−1. The unit length vector product
with another freely chosen vector provides the first column. Finally, the second
column is the vector product of the third and first column. Now R̄−1 can be
inverted (i.e. transposed because of the orthonormality). For a derivation of (4)
the reader is referred to [2].

Equation (4) is a generalization of the plane wave decomposition. As the
arguments of Fut and Fus are generally not identical, this operation is not a
2D convolution anymore (i.e. an interpolation is necessary in a computer code).
However, if both apertures have the same orientation (but are not necessarily
perpendicular to the optical axis), S̄T T̄ results in the unity tensor and we again
have a convolution. If both apertures are perpendicular to the optical axis,
(4) is reduced to the well kown formula for the plane wave decomposition. This
formula can be used for the backward transform of a given field by simply taking
a negative distance to the source aperture. Equation (4) has the same property
when ut, us, T̄ and S̄ are interchanged accordingly while keeping d positive.
The only condition that must be fulfilled is that the scalar product between
both local z-axes is kept positive. If the target aperture is positioned in the
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positive-z-half-space of the source aperture, we have a forward transform. If it
is in its negative half-space, we have a backward transform (see [2] for details).
Therefore similar to the plane wave decomposition there is no difference between
the forward and the backward propagator.

An approximate solution to the tilted-aperture problem is the use of virtual
apertures that are perpendicular to the optical axis with a scaling of the tilted
transverse coordinate in accordance with the cosine of the tilt angle [3]. In
addition, the longitudinal phase shift along this coordinate has to be imposed.
However, this method neglects the beam diffraction over the longitudinal extent
of the tilted aperture. For a diverging or converging fundamental Gaussian beam
for example, the field takes the shape of an ellipse with this method, whereas
with (4) it looks like a conic section due to the beam divergence.

When using this propagator, the laws of the multi-dimensional Fourier trans-
form have to be kept in mind (see e.g. [4]). The discretization in the wave number
domain leads to a periodification in the location domain. This means that the
required aperture size must be achieved with a small enough sampling distance
in the wavenumber domain. The sampling distance in the location domain, on
the other hand, must be small enough to fulfill the Nyquist theorem. Both re-
strictions together determine the total number of sampling points. However, the
Nyquist theorem must be fulfilled only for the transverse wavenumber which is
much smaller than k0 (this is actually the definition of a paraxial beam). This
fact is helpful for large d which let the phase term in (4) oscillate quickly and
require thus a small sampling distance. As the amplitude distribution in the
wave number domain does not change, it is now possible to concentrate the cal-
culation area around the “mass center” of the beam in the wave number domain
in order to decrease the sampling distance. This enlarges the aperture in the lo-
cation domain without increasing the required number of sampling points. The
same can be done e.g. for a focus in the location domain which would require a
smaller sampling distance there. By accounting for these principles it is possible
to handle even large setups with a feasible numerical effort [5].

2.2 Corrugated Waveguides

The plane wave decomposition in the above section uses a finite number of basis
functions or “modes” to represent the field in free space. This is equivalent to
considering the free space as an extremely overmoded waveguide with a very
dense mode spectrum in which the walls are at a sufficient distance from the
paraxial beam. If they come too close we can observe “reflections” from these
virtual waveguide walls, which is nothing other than aliasing from the above
mentioned periodification.

Whereas this is a limiting factor for the free space model, we can harness this
effect for the propagation in oversized corrugated waveguides. The corrugation
on their inner wall basically leads to an anisotropic surface impedance that
creates so-called artificially soft boundary conditions [6]. This term is borrowed
from acoustics and stresses the polarisation-independent reflection coefficient for
a low-grazing-angle reflection. Transverse corrugations represent soft boundary
conditions (E⊥ = E‖ = 0), whereas longitudinal corrugations lead to hard
boundary conditions with surface waves and ∂E⊥/∂n = ∂E‖/∂n = 0. The
latter have higher losses, which is the reason why they are rarely used in high-
power applications.
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Because of the low Brillouin angle of modes far from cutoff, the assumption
of ideally soft boundary conditions is justified for strongly overmoded corrugated
waveguides [6], [7]. A rigorous treatment of modes without this restriction can
be found in [8].

TE modes in a smooth waveguide can be derived by solving the scalar
Helmholtz equation for an F that has only a longtitudinal component. Due
to the assumption of soft boundary conditions, we can now make use of (3)
where F has only a transverse component. Different to the Neumann boundary
conditions for the TE modes, we now have to choose Dirichlet (soft) boundary
conditions for this ansatz. This gives a set of transverse modes in the corrugated
waveguides that has a high coupling to the Gauss-Hermite basis functions for
rectangular waveguides and to the Gauss-Laguerre functions for circular waveg-
uides. It is therefore justified to consider these modes as “captured” waist fields
of Gauss-Hermite/Laguerre beams.

In order to use the plane wave decomposition in a rectangular corrugated
waveguide we just propagate the modes which fulfill the boundary conditions
according to their transverse wavenumber. This is simple and trivial. However,
rectangular corrugated waveguides are only used if imaging characteristics are
required, e.g. for remote steering antennas [9] or beam splitters [10].

For the commonly used circular corrugated waveguides the Helmholtz equa-
tion must be solved in cylindrical coordinates. This leads to the well known set
of orthonormal cylindrical modes

u(r, ϕ) =
M∑

m=−M

N(M)∑
n=1

Amnumn(r, ϕ) (7)

umn(r, ϕ) =
J|m|

(χ|m|n
a r

)
ejmϕ

a
√
π|J|m|+1(χ|m|n)|

(8)

where a is the waveguide radius, χ|m|n is the n-th root of J|m| and Amn are
the mode amplitudes to be calculated and to be multiplied by the phasor

e
−jz

q
k2
0−χ2

|m|n/a
2

. Now a fast cylindrical wave decomposition is needed instead
of the plane wave decomposition. A straight forward approach would obtain the
Amn by calculating the scalar product of the field with the corresponding basis
functions. For a wavegide with thousands of propagating modes this would be
numerically expensive. However, it is possible to obtain the Amn efficiently even
without an evaluation of the Bessel functions. First, the spectrum has to be rep-
resented in polar coordinates by interpolating U(kr, φ) = (Fu)(kr cosφ, kr sinφ)
where Fu is calculated via the FFT. Now the spectrum is again decomposed
into circular harmonics with a series of one-dimensional FFTs:

Um(kr) =
1

2π

∫ 2π

0

U(kr, φ)e−jmφdφ. (9)

Note that the number of harmonics increases with kr, as the circular sampling
also has to fulfill the Nyquist theorem. When the unknown Um(kr) are found
we can obtain the mode amplitudes

Amn =
jmUm(χ|m|n/a)

2aπ3/2|J|m|+1(χ|m|n)|
. (10)
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The J|m|+1(χ|m|n) can be taken from a table, see [2] for a derivation of (10).
The remaining problem is the recomposition of the propagated modes. An

unbound normal mode (7) is a Dirac ring in the wavenumber domain which is
easy to represent numerically. But the field in a waveguide is limited by the
waveguide walls which blurs the δ-ring1. The calculation of such a blurred ring
would be a convolution of the δ-ring with the spectrum of the waveguide cross
section, a so-called Sombrero-function. This is certainly too expensive, as it has
to be done for every mode. For this reason the recomposition is approached in
a different way. First, the circular harmonics have to be calculated for every
sampled value of r:

um(r) =
∑
n

Amn
a
√
π|J|m|+1(χ|m|n)

J|m|

(χ|m|n
a

r
)

(11)

Then (7) can be calculated by a number of one-dimensional FFTs:

u(r, ϕ) =
M∑

m=−M
um(r)ejmϕ. (12)

Finally u(x, y) is obtained with another interpolation of u(r, ϕ). Generally, we
could also use this technique for paraxial beams in free space, similar to the plane
wave decomposition. However, this would be inappropriate as (4) is faster and
simpler. In a transmission line simulation, the field can now easily be handed
over from the free-space propagator to the waveguide propagator and vice versa,
in accordance with the transmission path.

The decomposition and propagation of cylindrical modes can be applied to
straight waveguides, where the computational effort does not depend on the
waveguide length. However, if there are wall perturbations or curvature, this
method is no longer applicable. The classical solution to this problem would be
the coupled mode technique [8],[11]. But we can also successively calculate the
diffraction integral from the waveguide wall to itself. The price of this approach
is that the diffraction integral has to be solved as often as the Brillouin length of
the highest order mode fits into the waveguide length (i.e. a Born approximation
of n-th order is calculated). The Brillouin length is the longitudinal distance
between two bounces of a ray in the geometrical optics model of a cylindrical
mode.

It can easily be verified that the kernel of the diffraction integral from a
circular waveguide wall to itself is location-independent, i.e. it depends only on
∆ϕ and ∆z. This corresponds to a linear time-independent system in signal
theory, and hence we can carry out the convolution in the spectral domain by
means of the FFT. The wall discontinuities can then act as a phase corrector
if all modes have a similar k⊥. Another approach which describes the same
physics is the utilization of the fact that cylindrical modes are longitudinally
and azimuthally harmonic. This can be used for a fast mode (de)composition
via a 2D FFT over the waveguide wall. This approach is decribed in [12],[13].

1A sharp δ-ring would require an infinitesimally small sampling distance anyway.
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3 Representation of the Field Quantities

3.1 Integration with Full-Wave Codes

The starting point for the numerical model of a transmission line is the source
field. In ECRH transmission lines it emanates from a helically cut waveg-
uide with wall perturbations that is driven by a rotating high-order TE mode
[11],[13]. The field which is radiated from the helical cut can be calculated with
the coupled mode approach [11] or with the scalar diffraction integral [13]. Nev-
ertheless, the most accurate results are achieved by the direct numerical solution
of Maxwell’s equations with a MoM code [14] where the complete geometry can
be modeled and no approximations are made except from the discretization.
However, the calculation of the complete transmission line up to the plasma
with such a code is more or less unfeasible due to the very large structures
compared to the wavelength.

The aforementioned scalar approach can handle the large structures effi-
ciently, but it requires the field in a vector potential representation. Therefore
an interface from the full-wave code to the scalar code is required. This involves
the “inverse” problem of finding a vector potential that results in the numeri-
cally given field. Moreover, (3) must be able to represent this vector potential.
This is the case when we can find an aperture where the E-field has a negligible
z-component in its local coordinate system (TE waves). The aperture does not
necessarily have to be perpendicular to the direction of propagation. In our
case this happens to be in a plane perpendicular to the gyrotron axis and at a
short distance above the quasi-elliptical mirror2 where the field can be calcu-
lated with a commercial MoM code (e.g. [14]). In this plane E has a vanishing
z-component. Because of (1) we can now define F = [0, 0, u(x, y)]T in the local
coordinate system.

The scalar function u(x, y) can be found with a variational approach. We
look for a best solution as per the definition of the vector potential by making
the functional

I(u) =
∫∫ (∣∣∣∣−Ex − ∂u

∂y

∣∣∣∣2 +
∣∣∣∣Ey − ∂u

∂x

∣∣∣∣2
)
dx dy (13)

stationary. Here we can again make use of the FFT. When Ex, Ey and u are
represented as a Fourier series, setting δI = 0 gives the Fourier coefficients cik
of u in terms of the Fourier coefficients aik of Ex and bik of Ey:

cik =
ibik − kaik
j(i2 + k2)

. (14)

With a Fourier backtransform we obtain the field F = u(x, y)ez according to
(3). See [15] for an example.

After the traversal through all the mirrors, waveguides and polarizers, the
result can be converted back to the field quantities E and H e.g. to integrate
with a full-wave plasma physics code. This rather trivial conversion will be
discussed in section 3.4.

2. . . or the last deep mirror if there are several.
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3.2 Beam Reflection on Mirrors and Polarizers

The remaining shallow mirrors inside and outside the gyrotron can be regarded
as plane phase correctors that permit the field representation in plane apertures.
They are considered as a thin lens that applies only a phase shift to the field
distribution. This phase shift is the optical retardation caused by the shallow
height modulation ∆z of the surface:

unew(x, y) = uold(x, y) · ej4π∆z cos(θ)/λ. (15)

Here, θ is the angle between the “mass center” of the paraxial beam in the
wavenumber domain, and the z-axis of the aperture.

The height modulation of a mirror does not only introduce a phase shift,
but generally also cross-polarization. However, as the mirror surface is shallow,
the mirror can be considered as a plane surface for the alteration of F0 after
the reflection. The ansatz (3) is based on this assumption. The electric field of
a plane wave on the (at first plane) mirror surface is according to (1)

E0(r) =
−j
ε0

 0 kz −ky
−kz 0 kx
ky −kx 0

F0e
−jk·r. (16)

When we express the incident and the reflected dominating plane wave by (16)
and impose E‖ = 0 as for a perfect electric conductor we can find F0 and
the wave vector of the reflected wave by a comparison of coefficients: kr =
(kix, k

i
y,−kiz)T and Fr0 = (F i0x, F

i
0y,−F i0z)T .

This is handled in a so-called “reflection” operation which turns a mirror
surface into a source that previously was a target. This operation takes care
of the mentioned constraint regarding the position of the target and source
aperture in their local coordinate systems. A paraxial beam in an aperture
originates from z < 0 and emanates into z > 0 in its local coordinate system
according to section 2.1. In order to model a reflection on a shallow mirror,
the beam is first propagated to its aperture via (4) where the local F0 is set by
transforming the F0 of the source aperture into the global coordinate system,
and from there into the local coodinate system of the target. This is achieved
with the tensors S̄′ and T̄′ (6). Then the local coordinate system is rotated by
180◦ around its y-axis so that the local z axis (and hence the z-component of
the beam axis) points into the opposite direction. Note that u(x, y) := u(−x, y)
has to be imposed too because the aperture field in the global coordinate sytem
should not change due to this rotation. For the same reason we let F0x := −F0x

but not F0z := −F0z, as the direction reversal of F0z is intended to fulfill the
boundary conditions. Now we can apply (15) which completes the reflection
operation for a shallow mirror.

For polarizers, the recalculation of F0 must be handled differently. Here
we employ the Jones matrix formalism which is widely used in optics. In this
approach the reflected electrical field is obtained by a multiplication of the
incident field with the 3D Jones matrix [16]:

Er =


f 0 0

−fkykx

k2
y+k2

z

−sk2
z

k2
y+k2

z

−skykz

k2
y+k2

z

−fkzkx

k2
y+k2

z

skykz

k2
y+k2

z

sk2
y

k2
y+k2

z

Ei (17)

8



Figure 1: A Deep Mirror Modeled with Staggered Apertures

In this equation k stands for the dominant plane wave vector in the local coor-
dinate system where kz is always positive, before and after the rotation. The
phasors s and f account for the slow and fast polarization (E-field perpendicular
or parallel to the grooves):

f = −e2jkzd (18)

s =
w
√
k2
y + k2

z tan
(
d
√
k2
y + k2

z

)
+ jpkz

w
√
k2
y + k2

z tan
(
d
√
k2
y + k2

z

)
− jpkz

· f (19)

These equations hold for rectangular grooves along the local x-axis with a groove
width of w, a depth of d and a period of p. The reference plane z = 0 is at
the bottom of the grooves. It can be easily verified that (17)-(19) results in
the boundary conditions for a smooth surface when d = 0 and it yields the
appropriate phase shift for perpendicular beams in fast and slow polarization for
ideal grooves (w = p). Other than our model, most high-power polarizers have
sinusoidal grooves. However, with a least squares fit to a full-wave calculation or
a measurement it is possible to obtain an “effective” rectangular groove depth
which shows the same characteristics as the sinusoidal grooves [16]. Therefore
we can use this simple model in transmission calculations.

In order to obtain Fr0, Ei is first calculated via (16). Then Er is obtained
with (17). Unfortunately we cannot simply invert the matrix in (16) to calculate
Fr0, as it is of rank 2. This is only natural because (1) is not bijective. We
can overcome this problem by introducing a reasonable constraint on Fr0. By
requiring Fr0 ·kr0 = 0 we force the beam to have no cross polarization in the outer
regions, which is reasonable for our purposes. We therefore first transform Er

into a coordinate system where the dominant plane wave of the reflected beam
kr has only a z-component. This eliminates the third row and the tird column
in (16). In this coordinate system Erz is negligible or zero as we have TEM
waves. Due to the above constraint F r0z also vanishes in this coordinate system,
which reduces (16) to two independent equations for F0x and F0y. The resulting
Fr0 can now be transformed back to the local coordinate system of the aperture
which completes the recalculation of F0 for a polarizer.

A mirror can not be modeled as a mere phase corrector if the amplitude
distribution of the incident beam changes significantly over its longitudinal ex-
tent. In this case we can still model the reflection with a set of staggered phase
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correctors at zk as shown in Figure 1. In this scheme each aperture consid-
ers points with z > zk − ∆z/2 as belonging to the k-th aperture where ∆z is
the distance between the apertures. Except from e−jki·r, the field distribution
should not change significantly over ∆z. Now the reflected beam in aperture n
can be calculated with the following scheme:

1. Initialize k to zero.

2. Calculate the phase-corrected reflected beam on the k-th aperture.

3. Replace the field for points not belonging to the k-th aperture with the
field from the temporary aperture3.

4. Place the temporary aperture at position k+ 1 and propagate the field to
it.

5. If k < n: increment k and go back to step 2.

In the first run of this loop the error will be quite large, but it becomes smaller
with every iteration until k = n is reached. Now the reflected beam is available
in the aperture at zn. It should be mentioned again that (3) is not always
suitable for deep mirrors because of the introduction of cross polarization on
deep mirrors in general. Nevertheless, it is posible to use this method for the
deep mirror(s) in front of the gyrotron launcher, as the direction of F0 relative
to the surface does not change in this case. Due to the FFT, the computing
time for this approach is O(N logN) as compared to O(N2) for the straight
forward convolution. This speed advantage is of the same order as that of a fast
multipole method. Nevertheless, the above scheme fits better in our framework,
and it is less complex in its implementation. In the fast multipole approach, the
approximation is in the series expansion of the Green function, whereas in our
approach the thin lens approximation has to be taken into account. However,
a concise comparison has not been done up to now.

3.3 Longitudinal Projection

During the analysis of a transmission line it is often helpful to see a longitudinal
projection or “X-ray image” of a beam as depicted in Figure 1, e.g for the
identification of side lobes. The field in an aperture contains the complete
information about a beam, and can be used to produce such an image. Here
we can apply the projection-slice theorem which is the basis of tomographic
image reconstruction. It relates the one-dimensional Fourier transform of the
projection

p(x) =
∫ ∞
−∞

u(x, y) dy (20)

to the two-dimensional spectrum of u(x, y). The identity

Fx,yu(kx, 0) = Fxp(kx) (21)

becomes evident by writing down the two-dimensional Fourier integral for u(x, y)
and setting ky = 0. We can now calulate such a longitudinal projection effi-
ciently by first placing an aperture so that its local x-z-plane is the desired

3Note that all points belong to the zero-th aperture where the temporary aperture is still
undefined.
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projection plane. Now we calculate Fxp(kx) via (21). The actual projection in
the x-z-plane is then obtained by a one-dimensional inverse FFT for each z:

p(x, z) = F−1
x

(
Fxp(kx, 0)e−j

√
k2
0−k2

xz
)
. (22)

We can easily see that this is a one-dimensional plane wave decomposition for
p(x).

3.4 Spill-Over and Screening

One of the most common tasks in the evaluation of a transmission line is the
determination of the spill-over on a mirror or the screening due to the limited
area of a vacuum window. The framework described here does not allow the
proper modeling of edge diffraction effects but we can obtain the fraction of
power that misses (or hits) a certain area on an aperture. In this way we can
obtain the spill-over or screening losses for our purposes.

As E and H are proportional to F according to (1)-(3), we might be tempted
to just calculate |u(x, y)|2 and to find out the fraction that falls into the area
of interest. But this is only a rough approximation that neglects the curvature
of the wavefront. Especially in high-power applications where 1% of the total
power can already have severe effects, we must include the contribution of the
curvature. Therefore we have to calculate the longitudinal component of the
Poynting vector

S‖ =
1
2
<{(E×H∗) · ez} (23)

in order to obtain the power distribution. In fact there will be no imaginary
part because we consider propagating waves only. First we have to obtain E
and H which is also required if we want to interface with other codes (see
section 3.1). Now it would be possible but not wise to use finite differences to
calculate E and H from (1)-(3). As the field propagation is done in the spectral
domain anyway, we can compute the derivative more efficiently by making use of
F(∂u/∂[x, y, z]) = j2πf[x,y,z]Fu = −jk[x,y,z]Fu. From (1)-(3) we finally obtain

E(x, y) = F−1−jFu(kx, ky)
ε0

 0 kz −ky
−kz 0 kx
ky −kx 0

F0 (24)

and

H(x, y) = F−1−jcFu(kx, ky)
k0

(25)

·


(k2

0 − k2
x) −kxky −kxkz

−kxky (k2
0 − k2

y) −kykz
−kxkz −kykz (k2

0 − k2
z)

F0

with kz =
√
k2

0 − k2
x − k2

y. Now we can simply calculate S‖ via (23) and deter-
mine the fraction of the total power that hits the mirror or vacuum window. Of
course, we also enforce u(x, y) = 0 outside the mirror or window surface which
leads to side lobes in the emanating beam if there is a significant field at the
edges.
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4 Iterative Algorithms

In the analysis and synthesis of field distributions in millimeter wave transmis-
sion systems we have more degrees of freedom than compared to the “conven-
tional” RF engineering, as the structures are much larger than the wavelength.
Although classical methods of non-linear optimization have been successfully
applied to oversized components [17], [18], these algorithms are challenged by
an increasing number of optimization parameters.

More than half a century ago the basis was formed [19]-[22] for several itera-
tive algorithms which are now commonly used for millimeter wave transmission
systems. These algorithms resemble Picard’s method for the solution of Fred-
holm integral equations of the second kind. They rely on the repetitive numeri-
cal solution of the diffraction integral, which is why they were somewhat ahead
of the times then. When cheap computing power and fast numerical propaga-
tors became available these algorithms were refined and brought into practical
use mainly by Russian scientists [3], [7], [12], [13], [26], [31], [32], [33]. The
idea behind these algorithms is the Picard-like solution of the wave equation
by propagating the field back and forth between some input and output. As
the solution of the wave equation is not uniqe, the algorithm is “reminded” of
the known (analysis) or desired (synthesis) field properties in every iteration.
This is also known as error reduction scheme. In view of an optimization we
have as many free parameters as there are sampling points with these methods.
Therefore the CPU time depending on the number of parameters scales like that
of the propagator (the FFT in our case).

There is yet another approach: the method of irradiance moments [23]-[25].
It relies on the fact that the moments of n-th order of the amplitude distribution
of a beam can be propagated on the basis of a simple equation. The beam
radius of a fundamental gaussian beam corresponds e.g. to the moment of second
order. This method has also been successfully applied to high-power microwave
components. It is as suitable for the analysis and synthesis of paraxial beams,
and it also represents a true synthesis method in contrast to a classical parameter
optimization. This method will be compared to the iterative algorithms below.

4.1 Field Analysis

It is relatively simple to measure the amplitude distribution of paraxial millime-
ter wave beams, whereas it is more difficult to measure the phase distribution.
Nevertheless, both entities are required to characterize a beam. Apart from
holographic methods which require a known phase-locked reference beam, we
can obtain the phase distribution iteratively with an error reduction scheme
described in [20],[21],[22]. The algorithm calculates a source phase distribu-
tion which produces the known target amplitude distribution together with the
known source amplitude distribution:

1. Initialize the source phase distribution with a reasonable guess.

2. Apply the calculated source phase distribution to the measured source
amplitude distribution.

3. Propagate the field to the target aperture.
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Figure 2: Thermographic Measurement of |S|.

4. End the iteration if the calculated target amplitude distribution is close
enough to the measured one.

5. Apply the calculated target phase distribution to the measured target
amplitude distribution.

6. Propagate the field back to the source aperture and go back to step 2.

The agreement in step 4 is usually judged by the normalized scalar product of
both distributions. A realistic application to millimeter wave beams was first
published in [26]. As the solution of the phase retrieval problem is not necessarily
unique for two apertures, the authors have extended the above scheme to three
(or more) apertures.

The measurement of the amplitude distribution in high-power transmission
lines is usually done with infrared images of a thin dielectric target placed in
the beam. For the temperature rise of the target we then have ∆T ∝ |S| ∝ |u|2.
As the infrared camera has to be placed outside the beam, the image has to be
rectified if the target is perpendicular to the optical axis. However, by using
(4) we can place the target perpendicular to the camera, see Figure 2. This
eliminates the need of an image rectification which is a potential error source.

There are plenty of variations of this phase retrieval algorithm. In case of
space constraints it is conceivable to make measurements in different sections of
the transmission line with an arbitrary number of (shaped) mirrors in between.
It is even possible to leave the target stationary. As a mere revolution of the
aperture around an axis other than ez provides additional information about
the beam, we can reconstruct the phase with a target rotation only, i.e. d = 0
in (4). See [27] for an example.

As an application example Figure 3 shows such a reconstructed beam back-
propagated to the gyrotron window on the left side and the same beam at the
torus window on the right side. There are 7 single-beam mirrors, 7 multi-beam
mirrors and two polarizers between both apertures. The total optical path is
58m, see [5] for details. The imaging properties of the transmission line are
confirmed by the little side lobe that can be recognized on both pictures.

In [7] the phase reconstruction was applied to the field in a circular corruated
waveguide. Here we can make use of the fast cylindrical mode decomposition
(10). Another option would be the retrieval the phase of the free space beam
from the open ended waveguide and the application of (10) after a backpropa-
gation to the waveguide end.

13



Figure 3: Reconstructed Beam at the Gyrotron Window (left) and at the Torus
Window (right)

In [28] a variant of the above algorithm is discussed where the source and
target apertures are of cylindrical shape. This is well suited for the phase
reconstruction of the output of a helically cut waveguide antenna which trans-
forms the operating mode of the gyrotron into a beam with high divergence in
the azimuthal direction and little divergence in the longitudinal direction. Its
wavefront has the shape of a spiral with a small slope. Therefore a cylindri-
cal aperture can cover the whole beam with little overhead. Additionally, when
measuring the field with a pick-up probe it is important to have the horn always
at about the same angle with respect to the wavefront. Due to the directional
characteristic of the probe, its signal is generally not proportional to |u|2. A
fast spectral domain propagator for this setup is also presented in [28].

A phase reconstruction for plane apertures that are perpendicular to the
beam can also be achieved with the method of irradiance moments [24]. It relies
on the Fresnel approximation of the diffraction integral, which is justified if the
apertures are not too close to each other. The phase distribution of the beam
is represented as a low-order polynomial. The unknown polynomial coefficients
are obtained by a linear system of equations which is why this is actually not
an iterative method. If the phase polynomial is of nth order, n+1 measurement
planes will be necessary. The main advantage of this method is its resilience
against transverse displacements of the different target positions. On the other
hand it should be used only if the phase front can be represented with sufficient
accuracy with a low order polynomial. This is e.g. not the case for unsymmetric
Gauss-Laguerre modes or beams with phase residuals (see below).

4.2 Field Synthesis

The problems of phase retrieval and phase corrector synthesis are equivalent
when taking the desired target amplitude distribution instead of the distribution
which results from the given phase at the source. If there is a physical solution,
the above algorithm will find a source phase distribution which produces the
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desired target amplitude pattern, e.g. it should not violate Liouville’s theorem.
In case of a non-physical desired target amplitude, the achieved pattern will
be only close to the desired one. The difference between the synthesized and
the given source phase distribution is compensated by a phase corrector. The
difference between the achieved and the desired target phase distribution is
compensated by a second phase corrector. This results in a pair of matching
mirrors or lenses for paraxial beams [3].

In order to produce a lens or a mirror, a phase corrector has to be translated
into a height modulation according to section 3.2. This height modulation has
to be smooth to keep the stray radiation level low. For the phase corrector
ϕ(x, y) the task is to find a function ψ(x, y) = ϕ(x, y) + 2πn(x, y) where n is
an integer and |∇ψ| is always finite. We call this procedure unwrapping. This
two-dimensional problem is generally not solvable for numerically given phase
distributions or unsymmetric Gauss-Laguerre beams. There usually remain
residual points which are similar to screw displacements in crystals. The one-
dimensional unwrapping along a closed path around the residual point results
in a step of n2π at the start/end point. Although this is not a step in the phase
distribution, it represents an undesired step in the height modulation. There
are many path-dependent and pathless algorithms to treat this problem, see
e.g. [29].

Now the actual task is to produce a smooth height modulation with a low
phase error at positions where the amplitude is high. A proven method which
follows this principle is discussed in [28]. The synthesized smooth mirrors will
generally produce a field which is only close to that of the ideal phase correctors.
If the result is not satisfactory it is possible to place two (or more) “auxiliary”
phase correctors recursively inbetween the original source and target [30].

For mirrors that change the wavefront significanly, it is possible to apply the
synthesis algorithm to deep mirrors as described in section 3.2. Here we use a
predefined deep but smooth mirror as an initial guess. During the synthesis we
use only the valid points in each slice for the replacement of the amplitude distri-
bution. For the unwrapping the phase distribution is flattened by substracting
the phase shift that corresponds to the initial guess. Then the resulting phase
corrector is just a tiny perturbation on top of the initial guess. Note that the
problem of cross-polarization generally arises for such mirrors.

The method of irradiance moments is also suitable for the synthesis of mirrors
[25]. The second phase corrector of a mirror pair is a 2D polynomial of low
order. This has the inherent advantage that the mirror is smooth and has no
residual points, i.e. it needs no unwrapping. The coefficients of the polynomial
are the solution of a nonlinear system of equations. Again, this is actually
not an iterative method, although the equations are finally solved with the
Newton method. The target distribution must be Gaussian to provide analytic
expressions for the backpropagated moments. These are rather large expressions
which can nevertheless be handled by a computer algebra system. Like the
field analysis, this method relies on the Fresnel approximation of the diffraction
integral. Depending on the order of the polynomial and the incoming wavefront,
the first mirror will also be smooth but it needs unwrapping and can have
residual points.

A waveguide wall can also be regarded as a recursive mirror. This approach
leads to methods for the shaping of the waveguide wall in such a way that a
desired field can be synthesized at the wave guide end [12], [13]. These methods
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are basically variations of the error reduction scheme as described above. The
difference between the forward propagated given field and the backward prop-
agated desired field becomes smaller in each iteration through a perturbation
of waveguide wall according to their phase difference. Finally the forward and
backward propagated fields will converge. This phase corrector approach is ap-
plicable as long as the mode spectrum is narrow. This is the same assumption
as for the shallow mirrors in section 3.2.

Another concept that follows the error reduction scheme decomposes the
given and the desired field into cylindrical modes which are coupled due to
wall perturbations [31], [32]. The coupled modes are described by a system of
ordinary linear differential equations that can be solved forward for the given
field at the waveguide input and backward for the desired field at the waveguide
output. The coupling coefficients for the modes and hence the wall perturbations
are modified in each longitudinal position so that the difference between the
backward and forward field becomes smaller in every iteration. However, the
wall perturbations must be small enough to ensure the validity of the coupled
mode equations.

The above methods usually reduce the error reduction algorithm to a scalar
problem like (3). This is not the case for the most general variant of this scheme
which is proposed in [33]. It relies on the forward and backward solution of the
field by a general purpose electromagnetics code. With the advent of fast mul-
tipole techniques and more powerful computing clusters this method has a high
potential for a broad variety of synthesis problems despite the requirement of
larger computing ressources. The applications range from overmoded waveg-
uides to deep mirrors. Depending on the electromagnetic solver, this method
does not rely on approximations concerning the validity of the field solution.
Therefore large deformations can also be synthesized and cross polarization can
be a concern. However, convergence is not guaranteed, and the magnitude and
spatial filtering of the conducting walls in each iteration have to be carefully
adjusted.

5 Conclusion

A framework for the numerical calculation of high power millimeter wave trans-
mission lines has been discussed. It permits the treatment of larger systems
with a feasible numerical effort while still preserving the complete field quanti-
ties. This can be useful for the characterization and design of transmission lines,
as well as for the delivery of a real-world input to full-wave plasma physics codes.

A brief overview over iterative algorithms was provided for which fast prop-
agators are essential. The phase reconstruction and synthesis methods have
become state of the art, and have proven their practical applicability. Due to
the large number of free parameters, the direct synthesis has turned out to be
more than competitive to the classical approach of non-linear optimization.

The design of broadband components—which is beyond the scope of this
article—is currently a very active field. Most of the above synthesis algorithms
have been extended to broadband variants, and the develpoment is still ongoing.
Due to the computational efficiency of the propagators, the analysis for a number
of frequencies is still a feasible task.

A very recent field are resonant beam switches and combiners. Their behav-
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ior is controlled additionally by the input frequency which offers a wide range of
applications, see [34] for details. Due to their resonant behavior, we no longer
have just a forward propagation in the analysis. Nevertheless, such components
can be integrated in the overall model via Fox-Li iterations or self-consistent
EM solvers by means of the given interface techniques.
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