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Abstract—Turbulence in magnetised plasmas, with particle
gyroradii that are small compared to the device size, consists
of 2-D dynamically incompressible fluidlike turbulence in planes
perpendicular to the magnetic field and of compressible wave-
like dynamics parallel to it. A strong anisotropy between the
perpendicular and parallel scales of motion results. The natural
coordinates are, therefore, those which follow the field lines. The
deformational issues which result from the magnetic shear and
variation of the distance between the magnetic flux surfaces
with position are treated by judicious choices of coordinate
representation. We elucidate the methods by which, in turn,
the deformation induced by shear and, then, by the shaping is
remedied. Both the physical and the computational considerations
are treated since grid isotropicity best represents the small scale
turbulence and, at the same time, facilitates multigrid solution
of the elliptic equations which are part of the overall system. We
present the details of the conformal coordinate system and its
implementation, together with an example of its calculation for
a realistic tokamak equilibrium case.

Index Terms—Tokamak, turbulence, simulations, geometry,
deformation

I. INTRODUCTION

URBULENCE is a fundamental problem in magnetically

confined plasmas. The physical understanding of the
resulting transport properties relies upon large scale direct
numerical simulation efforts. Turbulence in a magnetised
plasma, with particle gyroradii that are small compared to
the device size, consists of 2-D dynamically incompressible
turbulent advection due to E x B drifting flows in the
plane perpendicular to the magnetic field and of compressible
electromagnetic electron wave dynamics parallel to it. A space
scale separation between perpendicular and parallel dynamics
results. The natural coordinates are therefore those which
follow the background magnetic field lines in a Clebsch
representation [1], wherein the magnetic field is given as

B =Vy x V¢ (1)

with x denoting any function of the poloidal flux and &
denoting an anglelike quantity. y and £ become natural choices
for perpendicular coordinates which define a field-aligned
system in which both B - Vx and B - V¢ vanish. This can
be used on either closed or open magnetic flux surfaces. An
exactly aligned computational grid is advantageous in that it
allows high resolution of the perpendicular spatial dimensions,
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where the smallest scales occur, while leaving a coarser mesh
for the parallel dimension, populated with larger spatial scales
(21, (3], [4]. [5]-

The continuous radial variation of the helicity of the mag-
netic field lines, denominated as the magnetic shear, results
in severe deformation of the Clebsch coordinate metric, ex-
pressed as a secular variation in the off-diagonal elements with
the position along the field line. This grid deformation can
strongly affect the results as a consequence of the difficulty
in representing the details of the nonlinear vorticity dynamics
at finite resolution. Restoring local orthogonality by using a
different globally-valid field-aligned system which is locally
orthogonal on each perpendicular plane, is a helpful counter-
measure [6]. We revisit the mathematics of this re-mapping
treatment, which in the simplified geometry of circular, high-
aspect ratio torii solves the problem efficiently. However,
we will show that in shaped geometry, with non-circular
torii of intermediate aspect ratio, the Clebsch representation
is necessarily problematic, as the perpendicular coordinate
volume element is typically more slowly varying along a
field line than the metric elements themselves. The variation
of inter-surface distance with poloidal position due to the
magnetic flux expansion then causes the grid cells to deform
in a stretch/squeeze way. Turbulence, on the other hand, tends
toward isotropicity at small scales for high enough Reynolds
number, generally for a neutral fluid [7], or in the perpendic-
ular plane for magnetised plasmas in either 2-D [8] or 3-D
[9] models. We describe a solution for this problem in terms
of conformal coordinates in the poloidal plane, constructed
to yield a slowly varying ratio of the corresponding metric
elements with the position along the field line, and barring
exceptional cases, is always within a factor of two of unity.
Naturally, in doing so, the straight field line property, which
is needed for an efficient parallel dynamics representation,
is lost. The wavelike parallel responses are still treated with
a straight field line coordinate system which can be cast in
terms of a Clebsch representation. The ability to map between
both coordinate systems using one-to-one and onto shifts in
the angles allows the perpendicular and parallel dynamics
to interact in a most natural way, providing for maximally
efficient computation. A side benefit is that the conformal
property enables the simplest and fastest form of multigrid
treatments in solving the elliptic field equations that are part
of the model.

This work is organised as follows. Section II gives an
overview of the definition of straight field line coordinate sys-
tems, proving the equivalence of the Clebsch angle definition
among different such coordinate systems, and discussing the



IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 38, ISSUE 8, AUGUST 2010

deformation issues bound to such formulation of the coor-
dinates. Section III introduces the concept of the conformal
coordinates constructed to keep the deformation low, and
shows the map between these and a field aligned system to
be used for the wave dynamics. Section IV presents numerical
calculations of both coordinate systems for tokamak magneto-
hydro-dynamic (MHD) equilibria, analysing the resulting grids
and their deformation. The section V provides a summary of
the subject presented as well as an outlook. An analytical
result is presented in the appendix A to illustrate in a simple
way the differences between conformal and straight field line
coordinates in light of the grid deformation.

II. STRAIGHT FIELD LINE GEOMETRY
A. Magnetic field pitch and the field alignment

There is an intrinsic relation between the magnetic field
pitch and the ability of the coordinates to be cast in a form in
which one of them perfectly aligns to the magnetic field. This
can only happen if the field lines are straight when represented
against the angle coordinates, yielding the field pitch as a
function solely of the magnetic flux. To show this we start
by introducing a general coordinate system (x,,¢), which
is constructed by specifying which properties it should obey.
Assuming nested flux surfaces, with y as a magnetic flux label
and ¢ and ( as angle coordinates, they should fulfil

BXx=0 B=B-Vd B =B-V(=¢B" (2

with the Jacobian given by

1
Vx x VY .-V(=—. 3)
v
Here, g denotes the local pitch of the field lines. Using Eqgs.
(2-3), we express the background tokamak magnetic field as

B = B%/gVxxVd—-B’/gVxx V¢
= B\ /gVx x (¢V¥ — V() “4)
and add and subtract the term ¥B”,/g Vx x Vq to obtain
B=B"/gVxxV(qg—¢)—9IB"\/gVx xVqg (5

The second term vanishes, enabling the expression to be in a
Clebsch form, if and only if ¢ = q(x) is a flux function, or
label. As a flux function, ¢ measures the number of toroidal
turns made by a field line in one complete poloidal turn, and
is denominated as the magnetic field pitch parameter or safety
factor. If ¢ = ¢(x) it is constant on a magnetic flux surface,
which implies that the field lines are straight. This can be seen
using its definition Eq. (2) and writing the field line equation

oA
B-VJ|. B-V(

’ X X

In this case, introducing the so called field line label angle-like
coordinate, also sometimes designated by Clebsch angle [2],

§=q0—C¢
re-expresses Eq. (5) as

B =B"/gVyx x V¢ (6)

which is the Clebsch representation of the magnetic field. In
(x,9,€) coordinates, of all the contravariant components of
the magnetic field, only B” # 0, which defines ¥ as the
field following coordinate. This is evident when the parallel
gradient operator is expressed in this coordinate system

B B? 9
V”EE-szf. (7)

So, only ¥ is involved in the parallel wave dynamics, which
is what allows for a coarser, and hence more computationally
efficient, mesh in this direction. Also noteworthy is the fact
that the divergence-free and axisymmetry properties of the
magnetic field carried out to the generalised coordinates

1 0
=7 %(\@Bﬂ) g

imply that the quantity \/§B’9 must be a flux function. This
allows to recast Eq. (4) as

B =V x V[h(4)(q(¢)0 = O] ©)

where 1 is the poloidal magnetic flux divided by —27 and
h(y) = (8x/0)BY,/g is an arbitrary flux function. For a
given representation, both B and @ must be invariant of the
particular choice of generalised angles ¥ and (. This proves
that the field line label angle £ is the same for all straight field
line coordinate systems, up to addition or multiplication by a
flux function (this means choice of origin and normalisation,
respectively; the requirement that & be differentiable leads
to a requirement that the choice of origin or branch cut be
continuous across flux surfaces).

As a last point, it is useful that the choice on which of the
straight field line angle-like coordinates is used to describe the
parallel dimension is arbitrary. So far, we used the generalised
poloidal angle ¥ for that purpose, but we can also choose to use
the generalised toroidal angle ¢ as the field aligned coordinate.
It is trivial to show that, if we recast Eq. (4) as

V-B =0 )

B = B%\/g Vx x (W—ch) (10)
and define the field line label angle as
f=v-° ()
q
this yields
B = B%\/g Vx x VE&. (12)

In this case BS # 0 is the only non-vanishing contravariant
component of the magnetic field, such that it is ¢ which
follows the wave dynamics

B _ B9

IS5 V=Fa (13)

While the formulation in Eq. (6) is the standard choice for
flux tube geometries, in this work we shall use the one of
Egs. (10-13). In general, coordinate systems which have the
properties discussed above are designated field aligned or
Clebsch representations.
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Fig. 1. Illustration of the perpendicular grid-cell deformation along the field
lines due to magnetic shear (black). In red, its remedy: the shifted metric
procedure to restore locally the perpendicular orthogonality. Here, this is
applied at the position { = (i

B. Shear deformation

Independently of the choice for parallel coordinate, Clebsch
coordinates possess common characteristics which can be
problematic in terms of numerical computations of turbu-
lence. One of such is related to the relation between non-
orthogonality and the magnetic shear, which measures the
rate of change of the field pitch across flux surfaces. In a
tokamak, the latter is finite, such that the non-orthogonality
of the perpendicular Clebsch coordinates, measured by the
corresponding off-diagonal metric elements reads

& = vx-vgzvxv(ﬁ—g)

gx q
= gxﬁ _ p _~_<q729xx‘

(14)

The first two terms are a measure of the non-orthogonality of
the underlying straight field line coordinates (,, (), which
typically is not very large. The last term arises from the global
magnetic shear since it involves quantity ¢’ = dq/J, and it
has a secular dependence with the field following (parallel)
coordinate, in this case, the generalised toroidal angle (. We
introduce the following quantity to measure the degree of
deformation
gxﬁ
d=2_

== (15)

whose effect due to the shear is illustrated by the black grid
cells along the flux tube depicted in Fig. 1. This secular
increase of deformation along the field lines can strongly
impact the results, especially in cases where the statistical
properties of the vorticity nonlinear dynamics underly the
dynamical character [6]. Edge turbulence depends centrally
on this physics [9], [10], and the aim is to represent it in the

most economical way. The perpendicular laplacian operator is
9 0

given by 5
_ 1 ij
L /g oai (ﬁgl- 8xj)

where the tensor g; = g — bb denotes the perpendicular
projection. Although the eigenvalues are independent of rep-
resentation, the additional demand of finite resolution leads to
a degraded ability to represent dynamical processes where the
metric elements are larger. Hence we desire a representation
in which the deformation d is not too large, which means
minimisation of the size of the ¢X¢ metric element.

The first step is the use of a different coordinate system
on each perpendicular plane (each position along the field
lines) where terms involving these processes (including the
magnetic drifts) are computed. This is called the shifted
metric procedure [6]. It consists of application of a rigid shift
(independent of the straight field line angles) to the field line
label coordinate ¢ so as to yield gX¢ = 0. In its simplest form,
the shift does not cancel completely gX¢ but rather its global
shear dependent part only, given by the last term of Eq. (14).
This is illustrated by the red cell in the middle poloidal plane
of Fig. 1 corresponding to the position { = (. Such a shift
is just x/q, and the new Clebsch angle becomes

¢ —Ck
=9 - .
&k .

(16)

From Fig. 1, it is also clear that to obtain the same effect at a
different toroidal (parallel) position, a different shift is to be
used. Since different coordinate systems are used at different
positions along the field lines, the corresponding shifts need
to be taken into account when calculating parallel derivatives,
and the branch cut boundary conditions along the field lines
are affected (Eqs. 46-50 of Ref. [6]).

C. Flux expansion deformation

There is, secondly, an additional cause of strong coordinate
cell deformation when the flux surfaced are shaped, inherent
to any Clebsch representation. The best way to illustrate it
is to express the squared amplitude of the magnetic field
in such coordinates, which is inversely proportional to the
perpendicular coordinate volume element

B2 (\/534)2 [gxxg§£ _ (gxﬁ)ﬂ
(VaB)? [t
where the shifted metric procedure described in the previous
section was used in the last approximate equality. If one of the
contravariant metric elements involved varies faster along the
field lines than B2, then the remaining one varies inversely. It
is convenient to introduce a quantity to measure the ratio of
the length of both sides of a perpendicular grid cell, which we
denominate by conformal ratio. Using Eq. (17), we can write
C = xx ~ f (X) 2°
9 (9
where f(x) = 1/(,/gB¢)% In the form cast here, we im-

mediately see that this ratio depends strongly on the inter-
space distance between flux surfaces (measured by gXX), the

Q

a7

(18)
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so called flux expansion. If this varies considerably along the
magnetic field, then the perpendicular grid cells will deform
in the stretch/squeeze manner illustrated in Fig. 2. In practice,

Grid
Deformation

Fig. 2. Tllustration of conformal (stretch/compress) deformation of Clebsch
coordinates due to magnetic flux expansion. Computationally, the ratio be-
tween the metric elements should stay as constant as possible, and that is not
the case for strongly shaped geometry.

since the corresponding wavenumbers are

2T
ky = ./gxxr ke = ggff (19)
X

e’
this deformation shifts the spectra in both perpendicular di-
rections with respect to each other. If the flux expansion
is large enough, as it typically is in the edge of a shaped
tokamak equilibrium, specially when features like the X-
point are present, then this variation of the perpendicular
anisotropy along the magnetic field can cause non-convergence
of simulations done within the resolution allowed by available
computational cost [11]. This happens because the turbulence,
which tends to be isotropic at small scales [7], [9], can not
be resolved everywhere along the field lines. The solution to
this problem is what is presented in the remaining part of this

paper.

III. CONFORMAL TREATMENT OF THE GEOMETRY

The main idea behind the solution to the conformal defor-
mation that is bound to all globally field aligned coordinate
systems is to use those only for what they are best suited for,
namely, the wave dynamics along the field lines. To treat the
turbulent motion that occurs in the plane perpendicular to it,
we devise another coordinate system which is built, not to be
globally aligned with the magnetic field, but rather to keep
the conformal ratio defined previously in Eq. (18) as constant
as possible everywhere on the perpendicular mesh. The one-
to-one and onto map between the two coordinates’ systems
is established through shifts in their angle-like coordinates,
allowing a natural interaction between parallel and perpen-
dicular motions in the most efficient possible way in terms
of computational cost. The following subsections detail such

a treatment, starting from the appropriate choice of Clebsch
coordinates, then proving the map to a novel conformal
coordinate system, whose construction is also presented.

A. Symmetry coordinates

The parallel wave dynamics, is to be solved on a Clebsch
coordinate system on the grounds that they allow a computa-
tionally efficient coarser parallel mesh. The particular choice
made here uses the so called symmetry flux coordinate system
(U,0,( = ¢), a standard choice in texts [12], sometimes
also referred to as PEST coordinates [13]. 1) is the toroidal
component of the magnetic vector potential (also the poloidal
flux ¥ divided by —2m), ¢ is the geometrical toroidal angle,
and 6 is a generalised poloidal angle coordinate, defined in a
manner to yield a straight representation of the field lines in
the angles (recall Sec. II-A).

The standard representation of the tokamak axisymmetric
magnetic field is

B=1IVp+ VY xVop (20)

in cylindrical (polar) coordinates (R, Z, ¢), where I = I(%))
is a measure of the poloidal current, and ¢ and ¢ are defined
above. From this expression, the symmetry magnetic field
contravariant components can be found by contraction with
the respective coordinate gradients

1
B¢:B-V¢:ﬁzq3‘9 .
The last equality defines what the generalised poloidal angle
should be to ensure a constant field pitch, ¢(v)) = B?/B?,
within a magnetic flux surface. The Jacobian for these coor-
dinates follows directly, by noting that, from Eq. (20)

BY =0 (1)

1
B=B.-VO=V¢ xVep-VO=—.
v
Invoking the general tensor transformation rules, one can re-
express the poloidal contravariant component of the magnetic
field in terms of the poloidal parametric variable n, which can
be identified for instance, with the geometrical poloidal angle

(22)

00 00 00
- » B-Vip. (23)
My,

The partial derivative with respect to 7 is the only non-
vanishing term due to (i) axisymmetry, and (ii) BY = 0.
Substituting in Eq. (23) the expression for BY from Eq. (21)
and integrating, one obtains

_ 1)

~ q(v)

The normalisation requirement that the generalised poloidal
symmetry angle coordinate has a period of 27 defines the
pitch parameter

dnp 1
B-VnR2'

(24)

1(¥)
2w

dn 1
B-VnR2"'

q(¢) = (25)
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Lastly, one should note that the symmetry coordinates fulfil
trivially the divergence-free property of the magnetic field

1 0 0 BY
V B=—_— m—pl_ = _
B - (VgB") =B 50 B 0

for which the expression for the Jacobian (22) has been used
together with the axisymmetry property, and z* € {1, 0, ¢}.

To avoid secular poloidal dependence of the anisotropy due
to the magnetic shear, the shifted metric procedure is applied
in its simplest form, as discussed in Sec. II-A. Hereby, a rigid
poloidal shift ¢ /q(1)) is applied, such that the final shifted
field aligned symmetry coordinates become

X=19
C=¢

B. One-to one and onto map to conformal coordinates

As part of the process of defining the conformal coordinate
system, it is appropriate to start by analysing some general
coordinate mapping properties. First, we postulate that both
symmetry and conformal coordinates’ systems use the geo-
metrical toroidal angle ¢ for the toroidal coordinate, but they
differ on the definition of the flux label coordinate, which
is proportional to poloidal magnetic flux ¥ = —27¢) in the
former, and given by a not yet specified function of it () in
the latter. Also the poloidal angle-like coordinate differ, and we
shall keep the notation € for the symmetry system, and use 6,
for the conformal one. Now, we note that the volume element
is a scalar function and hence invariant under coordinate
transformations. Hence, we have the following relation for the
volume element expressed in these two coordinate systems,
which is valid by hypothesis

AV = |/gdydfde| =

Ox
au}@c&ﬁd&dqﬁ‘ —av, @D

and which is equivalent to

V9df = f(¥)\/gcdb. (28)
where
Oz
f) = 9 (29)

The last expression establishes the transformation rule for
the flux label coordinate on both coordinate systems. Next,
we need to do the same for the generalised poloidal angles,
and for that we first note the relation between the poloidal
contravariant component of the magnetic field and the Jacobian

B =B-V0=VixVe-V0=(/5)

B =B -V, =V x V¢ V.= (f(¥)/9c)
for symmetry and conformal coordinates, respectively, ob-
tained from the standard expression for the tokamak axisym-
metric magnetic field Eq. (20). Gathering Egs. (28) and (30),
we obtain the needed relation which provides the map between
both poloidal angles, namely

do.
BYe

_1, (30)

9
= 5o
, B

€29

P

with ¢ and ¢ held fixed, that is, along a poloidal contour of a
given flux surface. From this transformation rule, all we need
to do to construct §. from its symmetry counterpart €, is to
specify what is the contravariant component B% . This is done
in the following section.

C. Conformal coordinates

Just as the symmetry poloidal angle-like coordinate was ob-
tained from the expression for the corresponding contravariant
component of the magnetic field, the same is done now for the
conformal counterpart. In this case, it is not the condition that
the field pitch must be a flux function which defines BYe,
but rather we specify its expression directly. Based in the
requirement that the (perpendicular) coordinate cells (¢, 6,.)
should not distort their shape as a field line is followed,
we require the volume element to compensate the changes
in the distance between flux surfaces, which vary inversely
proportional to |V)|. Hence, we want

AV, = /ge dedfudé = g%dxdecdqs, (32)

where the factor R appears to balance the toroidicity effects.
This defines the Jacobian as

Lo_g™ (02 g _ 8™
Ve R \oy R R
where the chain rule was applied together with Eq. (29) to

transform the contravariant radial metric component. From this
equation together with Eq. (30), we find directly

(33)

gww
W) 5
An immediate consequence of this choice is that the field
lines are no longer straight in this coordinate system, since
the field pitch defined as B?/B? = a(i,1) # q(1) in these
coordinates is no longer a flux function. Hence, as shown in
Sec. II-A, it is not possible to construct one globally aligned
coordinate with the magnetic field (no Clebsch representation
of the magnetic field is possible). Nevertheless, we already
showed in Eq. (31) that there is a one-to-one and onto map
between 6. and 6. To find the expression for 6. we substitute
the expressions (21) and (34) into the field equation (31).

Hence,
db. _ JW)a(¥)
df » 1()

and integrating over the symmetry poloidal angle € leads to
f(W)a(¥) /
0. = ——"L | dORg¥Y.
1(¥)

The flux label function f(v)) is responsible for the 27 normal-
isation of the poloidal conformal angle 6., so it must be given
by

Bb = (34)

B
= 3o
» B

Rg"¥ (35)

(36)

-1

o (s fon)

from which, together with Eq. (29), the conformal radial
coordinate integral can be found, namely

() = — / Ay (w).

(37)

(38)
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It is important to note that while the map 6 <> 6. exists on
each flux surface, the radial derivative 96./0v at constant 0
does not vanish. This has consequences for the construction
of metric elements as shown below.

Finally, it is easy to check that the conformal coordinate
system also verifies the divergence free property of the back-
ground magnetic field

V'B:i 9

9 w900 (1N _
T VB = T g (7)<
where the axisymmetry and the expressions for the conformal
Jacobian Eq. (33) and magnetic field poloidal contravariant
component Eq. (34) have all been used with z* € {x, 0., ¢}.

For the sake of the notation, we re-label the conformal
angle 0. as y, simply to have poloidal plane described by
(z,y). We already know the expression for the Jacobian, given
in Eq. (33). From this we can find also ¢** since g¥¥ is
known from the symmetry coordinate system. To find the
off-diagonal contravariant metric element ¢g*¥, we invoke the
tensor transformation rules and apply them with respect to the
symmetry coordinates, 2" € {1, 0, ¢}, namely

Ty _

(39)

Using the definition Eq. (29) and the orthogonality relations
g¥? = g% = 0, we obtain

oy 00c o  08c 4
g y——f(w)(%gw + 559 w)-
With the expressions for 1/,/gc, g**, ¢*¥ and g% =
1 /R2 at hand, we can now obtain the expression for the
only remaining non-vanishing contravariant metric component,
namely, g¥¥. To do so, compare the definition Eq. (33) to the
determinant of the Jacobian matrix to obtain

(40)

Tx Ty
(9”)2 _ zzy zyy 8 _ 97" - (g™)?
R 0 0 1/R? R
(9"") + (g™)?
gre :
From the previous expression it has become clear why the
particular choice for B in Eq. (34) was made. The 1/R
factor cancels the one appearing in the RHS due to toroidicity,
and the term ¢g¥¥, which leads to the ¢*® in the LHS, cancels
the one appearing in the RHS, such that the conformal ratio
defined in Eq. (18) reduces to

vy Ty \ 2
Rczg:1+(g > =1+d%

g

= g¥¥ = (41)

(42)

where d is the non orthogonal deformation defined in Eq. (15).
For this system it is given by

g*’
gor !
This shows that the conformal coordinate system yields an
unitary conformal ratio plus a correction due to its underlying
nonorthogonality. Provided the latter is small, which means
d < 1, the system behaves well, without the loss of physical

d

representation associated with the strong magnetic field shap-
ing typical of tokamaks. This shall be illustrated in following
section, where this quantity is calculated for an actual tokamak
MHD equilibrium.

A final consideration is in order, namely, regarding the
drawbacks of using the symmetry/conformal geometry com-
bination present herein. The numerical cost/complexity of
implementing this treatment is similar to one of the standard
field aligned treatment. The only price to pay is the loss
of the axisymmetry being connected to a single coordinate,
like happens in the flux-tube formulation (with poloidal as
parallel). In this paper, the toroidal angle is the parallel
coordinate, so that a purely toroidal derivative involves both of
the angle coordinates. The consequence is that the truncation
in the toroidal domain is disallowed, so that the entire flux
surface must be carried in computations, leading to a higher
cost. Nevertheless, the gains obtained from its relation to the
conformal coordinates of which can handle MHD equilibria
shaping in a much more robust way, fully justifies it. Moreover,
current work is moving in the direction of global models any-
way as computational resources make possible investigation of
the interaction between the microturbulence and the dynamics
at intermediate MHD scales. A last point refers to our plans for
future generalisation of this treatment to 3-D MHD equilibria
of either stellarators or tokamaks with magnetic ripple. For
those, there is no toroidal axisymmetry, and a conformal
treatment would represent no practical disadvantage, since the
full flux surface must be carried anyway.

IV. RESULTS

In this section we apply the definitions of the coordinates
introduced so far to an JET MHD equilibrium calculated
with the CLISTE MHD solver [14]. We discuss the non-
orthogonality deformation, measured by d, and the variation
in the conformal ratio R.. The plot in Fig. 3a shows the
equidistant perpendicular grid obtained for equidistant field
aligned symmetry coordinates Eq. (26). Just by looking at the
grid, its already clear that the robustness of this coordinate
system close to the separatrix breaks down. This is expected
since at the X-point the straight field poloidal angle is not
defined (recall the definition Eq. (24) and that there is no
poloidal component of the magnetic field there). Moreover, its
is also evident that the conformal deformation defined in Eq.
(18) is also severe in that region. As the X-point proximity
(bottom of the plots) causes flux expansion to occur with
the resulting grid cell stretching in the radial direction, the
property explained in Eq. (17) causes grid cell compression in
the poloidal direction. The opposite happens on the outboard
mid plane, where the flux compression due to the Shafranov
shift causes the poloidal size of the grid cells to increase. This
is quantified in the plot on the right side of the same figure.
Note that, for clarity of the figure, the same color is used for
values larger than 10. We see that one does not need to be very
close to the separatrix to experience conformal deformation of
the grid, with R, varying between values smaller than unity
to one order of magnitude higher along one poloidal turn on
the flux surface. The middle plot (Fig. 3b) shows the non-
orthogonality deformation d which, except in close vicinity
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of the separatrix, behaves in a much sounder manner, with
variations within the range 1. This is the result of the use
of shifted metric procedure [6], without which values of large
magnitude would be found. Fig. 4 shows the corresponding
plots for the case of conformal coordinate system. In general is
clear that these coordinates, as expected, are much more robust
against the deformation issues which plague the standard field
aligned coordinates, especially near the separatrix. From the
equidistant grid [see Fig. 4a], we can see immediately the
decrease in the radial grid spacing towards the center of the
tokamak, which goes together with the natural decrease in
poloidal spacing (see Appendix A). Note that, now, the non-
orthogonal deformation, plotted in the middle, stays always

within £1, even very close to the separatrix. More importantly,
the conformal coordinates yield a conformal ratio which is
everywhere within a factor of two of unity (note the different
color scales between Figs. 3b-3c and 4b-4c, respectively).

As discussed in Sec. II-C around Eq. (19), the isotropy
of the turbulence at small scales [7], [9] is the physical
reason to require grids which are close to isotropical. Since
the minimum resolution common to both perpendicular co-
ordinates is what matters, any resolution increase in one of
them only is essentially wasted effort. The large values of
grid anisotropy measured by the large variation of R, in
symmetry coordinates indicates that this coordinate system has
reduced practical applicability for the description of turbulent
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motions in the perpendicular plane in the edge of a shaped
tokamak equilibrium, such as the one used here. Compared
to the mostly isotropic conformal counterpart (which yields
R. =~ 1 everywhere), the symmetry coordinate system re-
quires a resolution in the perpendicular coordinates which
is higher by a factor of the order of its R, to solve the
same problem. Especially near the separatrix this is severe
enough (R, > 10) to render the computation non-converged
for reasonable (affordable) grid resolutions — e.g. of a typical
ASDEX Upgrade edge simulation grid count of 64x4094x16
in (x,yg, (). Therefore, the symmetry coordinates should be
used only for the parallel wave dynamics due to its global
field alignment properties, while the perpendicular plane is to
be handled by the conformal coordinates (x,y). The latter can
ensure the necessary degree of isotropy in the computational
domain to resolve properly the turbulence at small scales at
much less computational cost.

V. SUMMARY AND OUTLOOK

A novel geometrical treatment has been introduced. It uses
the combination of two coordinate systems in such a way to
make the most out of their strengths. They are related by a
one-to-one and onto map on the poloidal angles, which makes
the treatment consistent.

Conformal coordinates make possible a computational
model for tokamak turbulence which is isotropic in the per-
pendicular plane at the grid spacing level, best representing its
physical properties. An additional development presents itself:
initial computations using this system with a multigrid method
to solve equations of the form (a—bV? )¢ = S has found that
deformation impacts convergence only if the conformal ratio
R, defined in Eq. (42) is more than a factor of two either
way from unity. Typical shaped tokamak equilibria have been
found to violate this only in small spatial regions, so that at
the coarser grid levels the effect is averaged out. We have
found that the conventional multigrid Poisson solvers using
Cartesian geometry are adequate to the task, as the overall
inhomogeneity factor ¢g”* /R is sufficiently slowly varying so
as not to cause problems on the finer grids. Hence, the use
of conformal coordinates presents an ideal choice for global
turbulence computation in realistic flux surface geometry.

Our future plans include performing gyrofluid simulations
comparing flux tube and conformal geometries, both in sim-
plified and realistic geometry, to make a quantitative assess-
ment of the limits of both treatments. Although the latter is
constructed to cope with stronger magnetic field shaping and,
therefore, has a limit of applicability well beyond the former,
it still depends on the usage of a Clebsch coordinate system
to handle the parallel wave dynamics, which by definition
is not defined at the X-point. This implies that interpolation
errors will become significant in the close vicinity to the X-
point, where the map between both coordinate systems has
a singularity. Addressing this issue is left for future work.
The conformal geometry described in this paper is being
implemented in both gyrofluid and gyrokinetic models for
turbulence computations [15]. Future generalisations to 3-D
MHD equilibria are foreseen.

APPENDIX
CYLINDER LIMIT CASE

This section is devoted to the illustration of the differences
between poloidal plane representations of the both symmetry
(straight field line) and conformal coordinates, as defined in
Secs. III-A and III-C, respectively. To do so, we are going to
use a simplified circular problem within the large aspect ratio
limit

GE%<<1 Y =1(r),

which reduces the problem to a cylindrical equilibrium by
leaving out all toroidicity effects. In this case, since the field
lines are by definition straight, it is easy see that the symmetry
poloidal angle coincides with the geometrical one. To prove so
mathematically, we need to calculate the geometrical poloidal
contravariant component of the magnetic field by contracting
Eq. (20) with the gradient of that coordinate

R — Ry

/
B":B-Vnsz/)xVWqu:—;%

where (r,7) are the geometrical polar coordinates in the
poloidal plane, whose Jacobian is (rR)~! and . = ¢ /0r.
The local magnetic field pitch for the polar coordinates is a
flux function within the large aspect ratio limit

B¢ ekl ’I"I
o= —= —— — =q(r) .
Yl Ro a(r)

= o
where B® = I/R?. Substituting this into the symmetry
poloidal angle Eq. (21) yields

I P!
Bl = —_ = _1r
qR? TR
and hence Eq. (24) reduces to

BG
9:/dnﬁ:/dn:n.

If we further approximate ¢’ = 1, for the sake of simplicity of
the illustration , we reach the result that the symmetry coor-
dinates for our problem reduce to the geometrical cylindrical
coordinates

(43)

(r,m,9) .

Now we calculate the conformal coordinates for the same
reduced problem. To find the poloidal conformal angle, we
combine Eqgs. (36) and (37)

Y
0. = M (44)
§ dORgv¥
and use
Rg"" =% Rolyl(r))? (45)

to obtain directly
0.=0=mn.

For the remaining conformal coordinate x, all we need to do
is to find the expression for f(¢)) using Egs. (37) and (45),

namely,
1

;.

flr) = (46)
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Fig. 5.

(b)

(a) Ilustration of the grid-cell deformation due to poloidal arc length radial dependence in symmetry (polar) coordinates. (b) Illustration of equivalent

conformal grid, where the deformation problem has been corrected by including a radial dependence on the radial length.

and compare it to the definition of = in Eq. (29) to obtain
or 1

o
Hence, within the ¢ < 1 limit, the circular equilibrium
conformal coordinate system is

(Inr,n, ) .

The above analysis showed us that the only difference
between both symmetry and conformal systems is the flux
label coordinate. The point to note is that, the conformal one
now leads to an extra factor of r in the expression for the
radial length element, as compared to the symmetry (polar)
one

dly, = +v/¢**dx = rdr dl. =+/g™"dr =dr .

This factor of r compensates the one in poloidal arc length

dlg = dlec = dln = /g"dn = rdn .

Hence, for symmetry coordinates, only one dimension
(poloidal) expands with 7, causing the grid cells to stretch in
the poloidal direction as r increases, as illustrated in Fig.5a. On
the other hand, in the conformal coordinates, both dimensions
expand such that the ratio of the grid cell sides length is kept
constant. This is illustrated in Fig.5b.
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