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In a cylindrical magnetized plasma, coherent drift wave modes are synchronized by a mode se-
lective drive of plasma currents. Nonlinear effects of the synchronization are investigated in detail.
Frequency pulling is observed over a certain frequency range. The dependence of the width of this
synchronization range on the amplitude of the driven plasma currents forms Arnold tongues. The
transition between complete and incomplete synchronization is indicated by the onset of periodic
pulling and phase slippage. Synchronization is observed for driven current amplitudes, that are
some percent of the typical value of parallel currents generated by drift waves.
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I. INTRODUCTION

The drift wave instability was intensely studied in the
framework of turbulent cross-field transport in magnetic
confinement devices [1, 2]. The fluctuations of density
and potential driven by drift waves occur either turbu-
lent or coherent. In certain plasma parameter regimes,
drift wave fluctuations are coherent and can be described
by a nonlinear oscillating system [3, 4]. Self-sustained
nonlinear oscillators generate stable oscillations with a
constant amplitude by establishing a balance between en-
ergy input and energy dissipation. At small amplitudes
the energy dissipation is smaller than the energy input
and the oscillation is amplified. At large amplitudes the
dissipation is larger and the oscillation is damped. In
phase space description stable oscillations form a limit
cycle [5]. A paradigm of self-excited oscillations is the
van der Pol oscillator [6]

ẍ− ε(1− βx2)ω0ẋ + ω2
0x = 0 , (1)

where the parameter ε determines the degree of the non-
linearity, β determines the degree of nonlinear saturation,
and ω0 is the angular frequency of the free-running oscil-
lator. Various plasma instabilities have been described
as van der Pol-like nonlinear oscillating system [7–10].
In plasma control experiments synchronization of insta-
bilities has been observed [3, 10]. Also drift waves may
be seen as a space-time oscillator system [4]. They are
driven by the radial density gradient and damped by
viscosity. Drift waves have been controlled by closed-
loop schemes using simple feedback methods with rela-

∗present address: christian.brandt@lpmi.uhp-nancy.fr

tively strong perturbations of the plasma [11, 12]. Open-
loop control schemes with predefined space-time signals
achieve synchronization of drift waves at smaller pertur-
bation amplitudes [13–15]. In the present paper synchro-
nization of drift waves is investigated using a space-time
open-loop control system. The control parameter is a
mode-selective drive of currents parallel to the magnetic
field. The driven currents match closely the drift mode
current patterns. Synchronization ranges and synchro-
nization dynamics of coherent drift waves are systemati-
cally examined.
The paper is structured as follows: Section II outlines
the experimental device and the spatiotemporal control
system. Section III presents the experimental results of
the synchronization of coherent drift waves. A brief dis-
cussion and a summery are given in Sec. IV.

II. METHODS

A. The experimental device

The experiments were done in the linear magnetized
plasma of the helicon device VINETA [16]. It consists of
a 4.5m long cylindrical chamber with a diameter of 0.4m.
A linear homogeneous magnetic field of B0 ≤ 100mT
is generated by a set of 36 magnetic field coils. Argon
plasma is produced by a helicon discharge with input
powers between 2−3 kW. The maximum densities in the
center are about 2 · 1019 m−3. In VINETA the drift wave
instability has been previously identified [13]. In the re-
gion of the maximum density gradient, azimuthally prop-
agating structures of density and potential fluctuations
are observed. These are invoked by the drift wave insta-
bility. Depending on the magnetic field B0 and plasma
density n, coherent drift waves are destabilized with typ-
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FIG. 1: (Color online) Parallel current filament structure of
the drift wave modes (a) m0 = 1, (b) m0 = 2, and (c) m0 = 3
shown in the azimuthal plane . The magnetic field created
by the currents is superimposed as arrow vector plots. The
length of the arrows correspond to the strength of the mag-
netic field.

ical frequencies of f = 1 − 20 kHz and azimuthal mode
numbers of m = 1− 16. The plasma currents parallel to
the ambient magnetic field B0 are a basic feature of the
three-dimensional dynamics of drift waves [17]. Fig. 1
shows the parallel current filament structure of the drift
modes m0 = 1− 3 at a fixed time. The parallel currents
are measured using a sensitive Ḃ-probe [18]. Typical val-
ues for the “drift wave currents” in VINETA are in the
range of j‖ ≈ 100mA/cm2 [19].

B. Spatiotemporal control system

Figure 2(a) shows the setup of the space-time open-
loop control system, the electrostatic exciter. It con-
sists of eight stainless-steel electrodes (size 5 × 20mm)
azimuthally arranged on the circumference of the plasma
column at a radius of 4.2 cm. The electrodes are con-
nected to power amplifiers driving currents densities up
to 104 mA/cm2 at frequencies f = 1 − 20 kHz. Figure
2(b) shows a photo of the electrodes, their connectors to
the amplifiers, and the mounting frame. Each electrode
is supplied with a predefined sinusoidal voltage signal

Un = Ud sin(ωdt + nδ) (2)

with ωd being the driver angular frequency. Between the
sine signal at electrode number n and electrode number
n + 1, a phase shift

δ = ±2πmd

k
(3)

is established, where md is the driver mode number and
k the number of electrodes (here k = 8). In this way
the electrostatic exciter drives an azimuthally rotating
pattern of plasma currents similar to the current filament
structure of the corresponding drift wave modes. The
driven mode numbers are limited to md ≤ 3 owing to
the Nyquist-limit md < k/2. The sign of the phase shift

FIG. 2: (Color online) (a) Schematic setup and (b) a photo
of the electrostatic octupole exciter.

determines the azimuthal propagation direction of the
control pattern. The propagation velocity is varied via
the driver frequency ωd.

III. SYNCHRONIZATION OF COHERENT
DRIFT WAVES

For synchronization of a certain coherent drift wave
mode, the exciter is driven with the same mode number
and frequency close to the drift wave frequency. Figure
3 shows the frequency spectrum and the space-time dia-
gram of a coherent m0 = 1 drift wave mode. The drift
wave frequency is f0 = 3.3 kHz. The peaks at 2f0, 3f0,
and 4f0 correspond to its higher harmonics. The fre-
quency of the electrostatic exciter is varied in the range
from 2.3 to 4.3 kHz. In one scan the propagation direc-
tion is co-rotating, i.e., in direction of drift wave propa-
gation. In a second scan it is counter-rotating, i.e., op-
posite to the drift wave propagation. Figure 4 shows the
frequency spectra of the scans plotted color coded over
the frequency mismatch (fd − f0)/f0 between driver fre-
quency fd and drift wave frequency f0. For the upper di-
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FIG. 3: (Color online) (a) Frequency spectrum and (b) space-
time diagram of a coherent m0 = 1 drift wave mode.
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FIG. 4: (Color online) Synchronization of a coherent m0 = 1
drift wave for two different current amplitudes of the elec-
trostatic exciter (jd = 79 mA/cm2 (a,b), jd = 94mA/cm2

(c,d)). The exciter is co-rotating in (a,c) and counter-rotating
in (b,d). The exciter frequency is scanned from 2.3 to 4.3 kHz
in steps of 100Hz in (a,b) and 50 Hz in (c,d).

agrams [Figs. 4(a,c)] the control signal is co-rotating and
for the lower diagrams [Figs. 4(b,d)] counter-rotating.

The driver amplitude on the left hand side of the
figure is jd = 79 mA/cm2 and on the right hand side
jd = 94mA/cm2. During the sweeps the change of the
driver frequency can be clearly seen in the shift of the
spectral peak from 2.3 to 4.3 kHz. At the beginning of
the scan [Fig. 4(b)] the drift wave is not synchronized;
it is still at its original frequency. The pronounced side-
band structure at the difference and sum frequencies re-
sult from nonlinear interaction between drift wave and
driver signal. If the driver frequency is close to the drift
wave frequency, the drift wave locks in, the sidebands
disappear and the drift wave starts to track the driver
signal. When the drift wave unlocks, the sideband struc-
ture reappears. For larger driver amplitudes [Fig. 4(c)]
the synchronization range increases. For the counter-
rotating control signal the synchronization range is sig-
nificantly smaller [14]. Only if the azimuthal rotation
direction of the driven plasma currents is parallel to the
drift wave propagation, synchronization over a relatively
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FIG. 5: (Color online) Extraction of Arnold tongues from ex-
citer frequency sweep measurements. Columnwise are shown
the frequency and mode-number spectrograms for one plasma
pulse. Measurements of the synchronization range for several
exciter amplitudes yield an Arnold tongue [Fig. 6].

large frequency range can be achieved. In other words:
If the driven current filament pattern is moving slowly or
is at rest in the wave frame of the drift mode, synchro-
nization is possible.
For a systematic investigation of the dependence of the
synchronization range on driven plasma currents, the
synchronization range was measured for different cur-

(2)

(1)

synchronization
range

(f
d
 − f

0
)/f

0
  (%)

j d (
m

A
/c

m
2 )

−15 −10 −5 0 5 10 15 20
0

100

200

FIG. 6: (Color online) Arnold tongue of a m0 = 2 drift wave
mode obtained from exciter frequency sweep measurements.
The solid lines are polynomial fits of the third order. The hor-
izontal bars indicate the statistical confidence. The dashed
lines (1) and (2) depict the measurements of the synchro-
nization range from the frequency sweeps in Figs. 5(a,b) and
5(c,d).
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rent amplitudes. The driver frequency was linearly swept
over the drift wave frequency during one discharge pulse.
Figures 5(a-d) show examples of the frequency spectro-
grams and the mode number spectra for co-rotating ex-
citer frequency sweeps at driver plasma currents jd =
150 mA/cm2 (a,b) and jd = 45 mA/cm2 (c,d). The
exciter is driven with a md = 2 mode pattern, which
matches the drift mode number. For the detection of the
synchronization range three criteria must be simultane-
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FIG. 7: (Color online) Arnold tongues extracted from fre-
quency sweep measurements for mode numbers (a) m0 = 1,
(b) m0 = 2, (c) m0 = 3. The solid lines are polynomial fits of
the third order. The red curves marked with red circles cor-
respond to Arnold tongues measured by increasing frequency
sweeps, and the curves marked with crosses are measured by
decreasing frequency sweeps. The horizontal bars indicate the
statistical confidence.
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FIG. 8: (Color online) Arnold tongues of a m0 = 2 drift
wave mode. The solid lines are polynomial fits of the third
order. Saturation of the synchronization range is observed at
higher exciter current densities. The shaded bars indicate the
statistical confidence.

ously satisfied: (1) the drift wave is completely locked
to the driver frequency (no sideband structure), (2) the
height of the frequency peak is increased, and (3) the
mode number is conserved. In this way several sweeps
have been recorded for different driver amplitudes. The
frequency change of the unperturbed drift wave during
the discharge pulse [Fig. 5(e,f)] is also taken into ac-
count. The dependence of the synchronization range on
the driver amplitude is plotted in Fig. 6. Due to the
limited frequency resolution of the frequency sweeps the
determination of the locking and unlocking frequency is
inaccurate. The horizontal error bars indicate the sta-
tistical confidence. At large driver amplitudes the errors
are usually larger, since the locking and unlocking region
broadens due to the strong nonlinear interaction between
driver signal and drift wave [Fig. 5(a)]. The observed in-
crease of the synchronization range with the driver ampli-
tude is known as Arnold tongue [20]. The widths found
in Figs. 5(a,c) are indicated by black bars. As a char-
acteristic feature of Arnold tongues both branches, high
and low frequency, are touching in one point on the fre-
quency axis at a driver amplitude jd = 0. For small driver
currents, much smaller than the plasma currents caused
by the drift waves jd ¿ j0 ≈ 100mA/cm2, the synchro-
nization range increases linearly. If the driver currents
approach the drift wave currents j0 ≈ 100mA/cm2, the
width of the Arnold tongue increases overproportionally,
which is a typical nonlinear behavior of driven oscilla-
tors [20]. The obtained Arnold tongue shows an asym-
metry towards larger frequencies at higher driver cur-
rents. Figure 7 shows measurements of Arnold tongues
for different mode numbers m = 1, 2, 3. The Arnold
tongues indicated by filled circles are measured with in-
creasing and the ones indicated by crosses with decreas-
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FIG. 9: (Color online) Phase locking during synchronization.
When the drift wave locks to the exciter frequency during the
upward frequency sweep (a), the drift wave phase is locked
(b). The locking region is framed and zoomed in (c).

ing frequency sweeps. Generally the qualitative run of
all Arnold tongues show the same tendency as discussed
above. The asymmetry towards higher frequencies seems
to be stronger for higher mode numbers. For m = 1
the lowest and highest frequency mismatch is −10% and
15 %, respectively [Fig. 7], for m = 2 from −8 % to 15 %,
and for the m = 3 mode from −2% to 15%. Distinct
hystereris effects of the synchronization range can not be
concluded from the increasing and decreasing frequency
sweeps, since the difference between them is within the
range of the statistical uncertainty. In Figs. 7(a,c) the
synchronization range seems to saturate for driver am-
plitudes higher than the drift wave currents j0. Figure
8 shows an Arnold tongue of a m = 2 drift mode mea-
sured for driven plasma currents much larger than j0.
It shows clear saturation at larger driven plasma cur-
rents to both sides of the frequency branches. It is worth

to investigate the boundaries of the Arnold tongues in
detail. Figure 9(a) shows the frequency spectrogram of
an increasing frequency sweep. The m0 = 2 drift wave
mode is present at 3.6 kHz. A md = 2 driver signal is
swept from fd = 2.5 − 5.5 kHz. The drift wave locks at
f = 3.3 kHz and unlocks at f = 4.3 kHz. Before the oc-
currence of locking and unlocking, the spectrum around
the drift wave peak broadens. The phase difference be-
tween driver signal and drift wave is shown in Fig. 9(b).
First, the phase difference increases, since the drift wave
frequency is higher than the exciter frequency. When
the drift wave locks in the phase difference stays con-
stant. When the drift wave unlocks the phase difference
decreases, since the exciter frequency is higher than the
drift wave frequency. The locking region, indicated by
the red frame in Fig. 9(b), is enlarged in Fig. 9(c). At
the boundaries of the synchronization range, phase slip-
page occurs, especially when the drift wave unlocks. For
larger frequency mismatches phase slippage occurs more
frequently. The phase slippage and the broadening of the
peak are evidence for incomplete synchronization and pe-
riodic pulling [10, 14, 21–23].

IV. SUMMARY AND CONCLUSIONS

In the present paper it has been demonstrated the
nonlinear nature of drift wave control by mode-selective
driven plasma currents. Different from previous spa-
tiotemporal control experiments on drift waves [14, 15]
the exciter setup in this paper uses much smaller elec-
trodes (5× 20mm) with respect to the total plasma size
(l = 4 m, d = 0.4m). The perturbation by the control
signal on the plasma is well localized. Several nonlinear
effects, typical for synchronization of oscillating systems,
have been found. The driven plasma current pattern is
clearly the control parameter. Frequency pulling of co-
herent drift waves is observed in a certain synchronization
range. With increasing driver currents the synchroniza-
tion range increases thereby forming Arnold tongues. At
driver currents lower than the parallel currents generated
by drift waves, the Arnold tongues have a linear run.
Above the intrinsic drift wave level the slopes develop
nonlinearly. At the boundary of the Arnold tongues, in
the transition region between uncontrolled and controlled
drift wave, periodic pulling is observed. In this region
the drift wave and the control signal coexist, but the
drift wave is not completely locked. The phase difference
between control signal and drift wave shows phase slip-
page, which has also been observed on other experiments
[14]. Drift waves represent a space-time oscillating sys-
tem, which is nonlinearly saturated by a balance between
energy input and energy dissipation. Thus, the natural
outcome of space-time control are Arnold tongues, which
are useful for predictions of synchronization capabilities
of drift wave control systems.
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