

Nicolay J. Hammer, Roman Hatzky, HLST Core Team

Combining Runge-Kutta discontinous Galerkin methods with
Various limiting methods

IPP 5/124
Oktober, 2010

Combining Runge-Kutta discontinuous

Galerkin methods with various limiting

methods

Nicolay J. Hammer ∗

Roman Hatzky †

HLST Core Team

Max-Planck-Institut für Plasmaphysik

March 25, 2010

∗tel.: +49 (0)89 3299 3529 , email: nicolay.hammer@ipp.mpg.de
†tel.: +49 (0)89 3299 1707 , email: roman.hatzky@ipp.mpg.de

1

Contents

1 Introduction 3

2 The linear Advection Equation in 1D 3

3 Using Legendre polynomials as base functions 3

4 Discretising space using a discontinuous Galerkin method with
Legendre polynomials 5
4.1 Discretising the spatial dimension using the ”strong” form given

by Warburton and Hesthaven . 5
4.2 Discretising the spatial dimension using the weak form 8

5 Explicit 3rd order TVD-Runge-Kutta scheme 10

6 Solving the equation system using an implicit time discretisa-
tion 10

7 Implicit Runge-Kutta schemes 12
7.1 Multi-stage Gauss-Legendre type scheme of order 2s 12
7.2 Multi-stage Radau type scheme of order (2s− 1) 14
7.3 Multi-stage SDIRK scheme of 4th order 14
7.4 Solving the IRK equation system by matrix inversion 15
7.5 Efficiency of implicit Runge Kutta schemes 15

8 Limiting methods 19
8.1 A TVDM minmod slope limiter 19
8.2 A simple moment limiter . 19
8.3 A generalised moment limiter . 19
8.4 A flux limited centred (FLIC) flux 22

References 24

2

1 Introduction

The aims of this report are to summarise the basics of the discontinuous Galerkin
finite element method (DG-FEM) and to provide building blocks, e.g. time
integration schemes or limiting methods, to deal with associated challenges.

The basic idea of the Galerkin finite element method is to discretise the
differential equation by so-called finite elements which got their name from their
finite support.

In contrast to the continuous Galerkin finite element method (CG-FEM) the
finite elements of the DG-FEM method are discontinuous and not continuous
at their boundaries. As a consequence numerical fluxes evolve over the finite
element boundaries which lead to additional terms in the numerical discreti-
sation of the scheme. Therefore, DG-FEM methods have a hybrid character
which places them in between finite volume schemes on the one hand and finite
element schemes on the other hand.

The advantages are that DG-FEM methods can be applied to complicated
geometries and boundary conditions while they are closely linked to the control
volume approach of finite volume methods.

2 The linear Advection Equation in 1D

In this report we will discuss the spatial discretisation of a partial differential
equation (PDE) using a DG-FEM. As an elementary example of a PDE we will
use the linear Advection Equation in one spatial dimension.

The advection equation in one spatial dimension reads, when neglecting
source terms, as

∂

∂t
f(x, t) + a

∂

∂x
f(x, t) = 0 . (1)

Here t denotes the time, x the spatial coordinate and a the advection velocity.

3 Using Legendre polynomials as base functions

A suitable choice for the base functions used for our discontinuous Galerkin
finite element method (DG-FEM) are the well known Legendre polynomials.
They have a lot of convenient characteristics which we will describe briefly in
this section.

First of all, they can be calculated in an easy and stable way by using the
zeroth and the first Legendre polynomial

P0(x) = 1 and P1(x) = x (2)

and the following recursion formula

Pn(x) =
2n− 1
n

Pn−1(x)− n− 1
n

Pn−2(x) , (3)

where (n = 2, 3, ...) and x ∈ [−1,+1].
If we take a look at the Hilbert space V := L2([−1,+1],R) we see that the

Legendre polynomials are forming a complete orthogonal system∫ +1

−1

Pn(x)Pm(x) dx =
2

2n− 1
δnm (4)

3

Figure 1: Plot showing the Legendre polynomials Pn(x) for (n = 0, ..., 5).

where the completeness tells us that any sufficiently smooth function f ∈ V can
be expanded in a series using Legendre polynomials

f(x) =
∞∑

m=0

umPm(x) . (5)

Then the expansion coefficients can be derived in the following way:

un =
2n− 1

2

∫ +1

−1

f(x)Pn(x) dx . (6)

At last we define the Vandermonde matrix

Vnm = Pm(xn) (7)

which will be useful for calculating Legendre expansion coefficients for discrete
problems.

Note that, discrete Legendre polynomials are represented on inter-nodal
points, i.e. grid points inside each finite element. The higher the order of the
used polynomials is, the more of these inter-nodal points have to be used. This
results in maximal CFL numbers for explicit schemes which are significantly
smaller than 1.0 (see e.g. Figure 1).

4

4 Discretising space using a discontinuous Galerkin
method with Legendre polynomials

4.1 Discretising the spatial dimension using the ”strong”
form given by Warburton and Hesthaven

The way to derive the ”strong” form of Eq. (1) summarised here is described
in Ref. [1], p. 20 ff. Note that quantities denoted by i are residing on the finite
element i which is located on the coordinate interval [xi− 1

2
, xi+ 1

2
] (compare

Figure 2).
We start with the residual

ξi(x, t) =
∂fi

∂t
+ a

∂fi

∂x
(8)

which shall be orthogonal to every test function ν(x) ∈ V p(xi− 1
2
, xi+ 1

2
):∫ x

i+ 1
2

x
i− 1

2

ν(x) ξi(x, t) dx =
∫ x

i+ 1
2

x
i− 1

2

ν

(
∂fi

∂t
+ a

∂fi

∂x

)
dx = 0 . (9)

Performing an integration by parts on the second term gives us∫ x
i+ 1

2

x
i− 1

2

(
ν(x)

∂fi(x)
∂t

− a∂ν(x)
∂x

fi(x)
)

dx = −
[
ν(x)afi(x)

]x
i+ 1

2

x
i− 1

2

. (10)

If we have a closer look at the interfaces we see that the solution there is defined
by the left and the right hand side state. From a physical point of view we can
define the right hand side by introducing a numerical flux {af}∗i (x). Then
Eq. (10) reads∫ x

i+ 1
2

x
i− 1

2

(
ν(x)

∂fi(x)
∂t

− a
∂ν(x)
∂x

fi(x)
)

dx (11)

= −
[
ν(x){af}∗i (x)

]x
i+ 1

2

x
i− 1

2

.

Performing the integration by parts on the second term, once more, we end up
with ∫ x

i+ 1
2

x
i− 1

2

(
ν(x)

∂fi(x)
∂t

+ a
∂fi(x)
∂x

ν(x)
)

dx (12)

=
[
ν(x)

(
afi(x)− {af}∗i (x)

)]x
i+ 1

2

x
i− 1

2

which is the ”strong” form of Eq. (1) after Ref. [1], p. 22. Applying the inte-
gration limits to the right hand side term we get∫ x

i+ 1
2

x
i− 1

2

(
ν(x)

∂fi(x)
∂t

+ a
∂fi(x)
∂x

ν(x)
)

dx (13)

= ν(xi+ 1
2
)
(
afi(xi+ 1

2
)− {af}∗i (xi+ 1

2
)
)

− ν(xi− 1
2
)
(
afi(xi− 1

2
)− {af}∗i (xi− 1

2
)
)

.

5

Finally, we have to specify the numerical flux {af}∗i (x). In our case we will use
upwind fluxes, i.e. information is propagating only in down stream direction,
which are defined as

{af}∗i (xi+ 1
2
) =

{
afi(xi+ 1

2
) a ≥ 0

afi+1(xi+ 1
2
) a < 0 . (14)

This is the flux at the right element interface, the upwind flux at the left element
interface can be derived by decrementing the index i by one.

From now on, we will refer to the case of a positive advection velocity (a ≥ 0),
hence the first right hand side term in Eq. (13) cancels and we are left with∫ x

i+ 1
2

x
i− 1

2

(
ν(x)

∂fi(x)
∂t

+ a
∂fi(x)
∂x

ν(x)
)

dx (15)

= ν(xi− 1
2
)a
(
fi−1(xi− 1

2
)− fi(xi− 1

2
)
)

.

Now, using Eq. (6), we have to find un ∈ V p(xi− 1
2
, xi+ 1

2
) such that ∀ν ∈

V p(xi− 1
2
, xi+ 1

2
) the following equation is fulfilled∫ x

i+ 1
2

x
i− 1

2

ν

(
∂ui

∂t
+ a

∂ui

∂x

)
dx = ν(xi− 1

2
)a
(
ui−1(xi− 1

2
)− ui(xi− 1

2
)
)

(16)

which is Eq. (15) expressed in Legendre coefficients. Here p denotes the maxi-
mum polynomial order used for this scheme. Using the coordinate transforma-
tion

x̃ =
2x− (xi+ 1

2
+ xi− 1

2
)

(xi+ 1
2
− xi− 1

2
)

,
dx̃
dx

=
2

(xi+ 1
2
− xi− 1

2
)

(17)

we can write Eq. (16) as

p∑
m=0

{(∫ +1

−1

Pn(x̃)Pm(x̃)
dx
dx̃

dx̃
)

d~ui,m

dt

}

+ a

p∑
m=0

{(∫ +1

−1

Pn(x̃)
d

dx
Pm(x̃)

dx
dx̃

dx̃
)
~ui,m

}
(18)

= aPn(−1)
p∑

m=0

Pm(1)ui−1,m − aPn(−1)
p∑

m=0

Pm(−1)ui,m .

We introduce the definition of the Mass matrix Mnm and the Stiffness ma-
trix Dnm

Mnm :=
dx
dx̃

∫ +1

−1

Pn(x̃)Pm(x̃) dx̃ (19)

D̃nm :=
dx
dx̃

∫ +1

−1

Pn(x̃)
d

dx
Pm(x̃) dx̃ , (20)

as well as the definitions of the flux matrices

F̃+
nm := Pn(−1)Pm(1) (21)
F̃−nm := Pn(−1)Pm(−1) . (22)

6

Then we can write the flux terms as

a F̃+~ui−1 = aPn(−1)
p∑

m=0

Pm(1)ui−1,m (23)

a F̃−~ui = aPn(−1)
p∑

m=0

Pm(−1)ui,m (24)

Now we have to compute the Mass matrixMnm, the Stiffness matrix D̃nm and
the matrices for the flux terms F̃+

nm and F̃−nm. We will see that this can be done
quite easily, using a few adjuvant mathematical relations.

First of all, to compute the Mass matrixMnm [Eq. (19)] we use Eq. (4). We
simply get

Mnm =
(xi+1 − xi)

2
2

2n− 1
δnm (25)

=
∆+xi

2
2

2n− 1
Inm

where ∆+xi denotes the difference operator ∆+xi := xi+1 − xi.
To see how to compute the Stiffness matrix D̃nm we have to go a bit more

into details. If we expand Eq. (5) up to order p (m = 0, .., p) and derive it, we
get

dfi(x)
dx

=
p∑

m=0

u
(1)
i,mPm(x) , (26)

where u(1)
m is given by

u
(1)
i,m = (2m+ 1)

p∑
n=0

[(n+m) mod 2]ui,n . (27)

This can be written in matrix notation

~u
(1)
i = ˆ̃D~ui , (28)

by defining the coefficient differentiation matrix (CDM)

ˆ̃Dnm =
{

(2m+ 1) if m > n and n+m odd
0 otherwise . (29)

Therewith, we can calculate the Stiffness matrix in a rather simple way. Using
Eqs. (19) and (20) and a change of the differentiation variable, we get the
following expression for the Stiffness matrix

D̃nm =
∫ +1

−1

Pn(x̃)
d

dx̃
Pm(x̃) dx̃

=
p∑

l=0

Mnl
ˆ̃Dlm (30)

=
2

2n+ 1
ˆ̃Dlm .

7

−

−

+
+

i+1/2

U

UU

U

i−1

i−1/2

i−1/2

i+1/2

UUU i i+1

ii−1 i+1

o

o

o

o

o

o

XXX

Figure 2: Sketch showing the left and right hand side of both of the left and
right element interface, respectively.

At last we may use a property of Legendre polynomials, namely

Pn(±1) = (±1)n . (31)

Therewith, the matrices in Eqs. (21) and (22) read as

F̃+
nm = (−1)n (32)
F̃−nm = (−1)n+m (33)

Finally, using Eqs. (23) and (24), we can write Eq. (16) in the compact form

M d~ui

dt
= −a

[
D̃~ui −

(
F̃+~ui−1 − F̃−~ui

)]
. (34)

4.2 Discretising the spatial dimension using the weak form

We start with Eq. (10) which is the weak form of Eq. (1). Inserting the inte-
gration limits on the right hand side we can see that [ν(xi− 1

2
)afi(xi− 1

2
)] and

[ν(xi+ 1
2
)afi(xi+ 1

2
)] denote the flux terms through the left and right boundary of

the finite element, respectively. The flux depends on both the left and right hand
side state of the element interface (Figure 2). To allow for this we introduce the
flux functions

ĥi− 1
2
(f−, f+) := ĥ(f−(xi− 1

2
), f+(xi− 1

2
)) (35)

ĥi+ 1
2
(f−, f+) := ĥ(f−(xi+ 1

2
), f+(xi+ 1

2
)) . (36)

8

Therewith, Eq. (10) reads∫ x
i+ 1

2

x
i− 1

2

(
ν(x)

∂fi(x)
∂t

− a
∂ν(x)
∂x

fi(x)
)

dx = (37)

−
(
ν(xi+ 1

2
)ĥi+ 1

2
(f−, f+)− ν(xi− 1

2
)ĥi− 1

2
(f−, f+)

)
.

In the most simplest case, the upwind case, i.e. information is propagating only
in down stream direction, the flux function reads

ĥi− 1
2
(f−, f+) =

{
a f−i−1(xi− 1

2
) a ≥ 0

a f+
i (xi− 1

2
) a < 0

(38)

ĥi+ 1
2
(f−, f+) =

{
a f−i (xi+ 1

2
) a ≥ 0

a f+
i+1(xi+ 1

2
) a < 0

. (39)

However, to simplify matters, from now on we will refer to the upwind case
corresponding to a ≥ 0.

Now, using again the coordinate transformation [Eq. (17)], the expansion of
function fi(x) in Legendre polynomials [Eq. (5)], and choosing the test function
to be an element of the polynomial Hilbert space ν(x) ∈ V p(xi− 1

2
, xi+ 1

2
), we get

p∑
m=0

{(∫ +1

−1

Pn(x̃)Pm(x̃)
dx
dx̃

dx̃
)

d~ui,m

dt

}

− a

p∑
m=0

{(∫ +1

−1

d
dx
Pn(x̃)Pm(x̃)

dx
dx̃

dx̃
)
~ui,m

}
(40)

= −

(
aPn(1)

p∑
m=0

Pm(1)ui,m − aPn(−1)
p∑

m=0

Pm(1)ui−1,m

)
.

We introduce the definition of the Mass matrix Mnm and the Stiffness ma-
trix Dnm:

Mnm =
dx
dx̃

∫ +1

−1

Pn(x̃)Pm(x̃) dx̃ (41)

Dnm =
dx
dx̃

∫ +1

−1

d
dx
Pn(x̃)Pm(x̃) dx̃ (42)

To calculate the Mass and the Stiffness matrix as well as the flux matrices
we may use the similarities to the scheme from Ref. [1] (see Subsection 4.1).
One can easily see, that both schemes have the same Mass matrix and we can
use the result of Eq. (25).

In case of the Stiffness matrix we use the results of Eqs. (29) and (30).
However, from Eq. (42) it can be seen that the partial derivative was shifted to
the test function’s base polynomial and thus, the CDM is the transposed matrix
of the CDM in Warburton’s case. It has the following form

D̂nm =
{

(2m+ 1) if m < n and n+m odd
0 otherwise . (43)

9

Using this CDM we get the following Stiffness matrix

Dnm =
2

2m+ 1
D̂nm . (44)

Last but not least, we can define the flux matrices similarly to the Eqs. (32)
and (33)

F+
nm = (−1)n (45)
F−nm = 1 . (46)

Finally, using Eqs. (40) – (46) we can write the scheme in short notation [com-
pare Eq. (34)]

M d~ui

dt
= a

[
D~ui +

(
F+~ui−1 −F−~ui

)]
. (47)

5 Explicit 3rd order TVD-Runge-Kutta scheme

Explicit Runge-Kutta (ERK) time integration schemes preserve the total varia-
tion diminishing (TVD) character of a spatial discretisation method, if they are
convex with respect to their intermediate steps and are at least of order p + 1
with respect to the order of the spatial discretisation method.

The TVD-Runge-Kutta scheme of third order in Ref. [7] as given in Ref. [8],
looks the following way

~u (1) = ~un + ∆t L(~un) (48)

~u (2) =
3
4
~un +

1
4
~u (1) +

1
4

∆t L(~u (1)) (49)

~un+1 =
1
3
~un +

2
3
~u (2) +

2
3

∆t L(~u (2)) . (50)

In the case of a simple Eulerian forward time discretisation for the ODE given
in Eq. (47), we get

~u
(1)
i = ~un

i + ∆tM−1a
[
D~un

i +
(
F+~un

i−1 −F−~un
i

)]
(51)

~u
(2)
i =

3
4
~un

i +
1
4
~u

(1)
i +

1
4

∆tM−1a
[
D~u (1)

i +
(
F+~u

(1)
i−1 −F

−~u
(1)
i

)]
(52)

~un+1
i =

1
3
~un

i +
2
3
~u

(2)
i +

2
3

∆tM−1a
[
D~u (2)

i +
(
F+~u

(2)
i−1 −F

−~u
(2)
i

)]
.(53)

6 Solving the equation system using an implicit
time discretisation

We start with Eq. (47) which is an ODE in time. Using an implicit (Eulerian
backward) time discretisation and generalising the result for arbitrary upwind
directions, we get

M
(
~un+1

i − ~un
i

∆t

)
= aD~un+1

i +
a+ |a|

2
(
Fr+~un+1

i−1 −F
r−~un+1

i

)
(54)

+
a− |a|

2
(
F l+~un+1

i −F l−~un+1
i+1

)
. (55)

10

Sorting all terms depending on time step n + 1 to the left hand side and all
terms depending on time step n to the right hand side gives ∗

~un+1
i −∆tM−1

[
aD~un+1

i +
a+ |a|

2
(
Fr+~un+1

i−1 −F
r−~un+1

i

)
(56)

+
a− |a|

2
(
F l+~un+1

i −F l−~un+1
i+1

)]
= ~un

i .(57)

Eq. (56) can be written in matrix form as follows

(I − Q) ~un+1 = ~un (58)

where the matrix Q of dimension I × J is defined as

Q =

B C 0 · · · A
A B C 0 · · · 0
0 A B C 0 · · · 0
...

.
...

0 · · · 0 A B C 0
0 · · · 0 A B C
C 0 · · · 0 A B

(59)

with the following block matrix elements

Anm =
a+ |a|

2
∆t

p∑
l=0

M−1
nl F

r+
lm (60)

Bnm = ∆t
p∑

l=0

M−1
nl

(
aDlm +

a− |a|
2
F l+

lm −
a+ |a|

2
Fr−

lm

)
(61)

Cnm = −a− |a|
2

∆t
p∑

l=0

M−1
nl F

l−
lm . (62)

Here I, J = (p+ 1) ·Nx where p and Nx denote the order of polynomial approx-
imation and the number of grid points in spatial x direction, respectively. We
also use the definition of the mass matrix Mnm [Eq. (41)], the stiffness matrix
Dnm [Eq. (42)]. The flux matrices Fr+

nm and Fr−
nm are defined as

Fr+
nm = (−1)n (63)
Fr−

nm = 1 (64)
F l+

nm = (−1)n+m (65)
F l−

nm = (−1)m . (66)

Note that, the first and the last row ofQ indicates periodic boundary conditions.
Moreover, we may then generalise Eq. (59) towards a generalised Crank–

Nicholson (CR) time discretisation

[I − θQ] ~un+1 = [I + (1− θ)Q] ~un . (67)

∗Compare the explicit time discretisation [Eqs. (51) – (53)].

11

The generalised CR is a centred time differencing scheme, hence it is second
order accurate. Note that Eq. (67) includes three “special” cases. First in case
of θ = 0 a fully explicit scheme. Secondly, a fully implicit scheme for θ = 1. And
finally, if θ = 1/2 then Eq. (67) resembles the “classical” CR time discretisation
scheme.

Finally, Eqs. (58) and (67) can be solved by inverting the left hand side
matrix using a sparse matrix solver.

7 Implicit Runge-Kutta schemes

7.1 Multi-stage Gauss-Legendre type scheme of order 2s

In this section a multi-stage implicit Runge-Kutta (IRK) scheme of Gauss-
Legendre type will be given (see e.g. Refs. [9],[10]). Generally, implicit Runge-
Kutta schemes of s stages are 2s order accurate, therefore the four stage IRK
given below is 8th order accurate.

In general notation the s-stage implicit Runge-Kutta scheme reads

~u (1) = f

(
tn + c1∆t, ~un +

s∑
k=1

a1k∆t~u (k)

)
(68)

~u (2) = f

(
tn + c2∆t, ~un +

s∑
k=1

a2k∆t~u (k)

)
(69)

...

~u (s) = f

(
tn + cs∆t, ~un +

s∑
k=1

ask∆t~u (k)

)
(70)

~un+1 = f

(
tn + ∆t, ~un +

s∑
k=1

a(s+1)k∆t~u (k)

)
(71)

Eqs. (68) – (71) can be written as

~u (1) = ~un +
s∑

k=1

a1k∆tL(~u (k)) (72)

~u (2) = ~un +
s∑

k=1

a2k∆tL(~u (k)) (73)

...

~u (s) = ~un +
s∑

k=1

ask∆tL(~u (k)) (74)

~un+1 = ~un +
s∑

k=1

a(s+1)k∆tL(~u (k)) (75)

where L(~u) denotes the usual differential operator [compare Eqs. (48) – (50)].
The coefficients of the Runge-Kutta scheme can be given in the Butcher’s

12

array, as follows
c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...
cs as1 as2 · · · ass

at1 at2 · · · ats

. (76)

Note that here t denotes t = s+ 1.
Generally, for a nonlinear differential operator L, the coupled Runge-Kutta

equation system given in Eqs. (72) – (75) is solved by making use of iterative
methods. We tried a fixed point iteration (e.g. see http://en.wikipedia.
org/wiki/Fixed_point_iteration). However, in the linear case discussed in
this report, the Runge-Kutta equation system can be solved directly by matrix
inversion as well (Subsection 7.1).

All coefficients listed below can be found in Refs. [9], [10]. First of all, we
will give the Butcher’s array of the four stage Gauss-Legendre IRK of eighth
order (i.e. s = 4)

1
2 − ω2 ω1 ω′1 − ω3 + ω′4 ω′1 − ω3 − ω′4 ω1 − ω5
1
2 − ω

′
2 ω1 − ω′3 + ω4 ω′1 ω′1 − ω′5 ω1 − ω′3 − ω4

1
2 + ω′2 ω1 + ω′3 + ω4 ω′1 + ω′5 ω′1 ω1 + ω′3 − ω4
1
2 + ω2 ω1 + ω5 ω′1 + ω3 + ω′4 ω′1 + ω3 − ω′4 ω1

2ω1 2ω′1 2ω′1 2ω1

(77)

where the omegas are defined as follows

ω1 =
18−

√
30

144
, ω′1 =

18 +
√

30
144

ω2 =
1
2

(
15 + 2

√
30

35

) 1
2

, ω′2 =
1
2

(
15− 2

√
30

35

) 1
2

ω3 = ω2

(
4 +
√

30
24

)
, ω′3 = ω′2

(
4−
√

30
24

)
(78)

ω4 = ω2

(
8 + 5

√
30

168

)
, ω′4 = ω′2

(
8− 5

√
30

168

)
ω5 = ω2 − 2ω3 , ω′5 = ω′2 − 2ω′3

The Butcher’s array of the three stage Gauss-Legendre IRK of sixth order
(i.e. s = 3) is determined by

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30

1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18

, (79)

whereas those of the two stage, fourth order (i.e. s = 2) and one stage, second
order (i.e. s = 1) IRK are determined by

13

http://en.wikipedia.org/wiki/Fixed_point_iteration
http://en.wikipedia.org/wiki/Fixed_point_iteration

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

, (80)
1
2

1
2

1
, (81)

respectively.

7.2 Multi-stage Radau type scheme of order (2s− 1)

In this section a multi-stage implicit Runge-Kutta scheme of Radau type will
be given (see e.g. Ref. [10]). Implicit Runge-Kutta schemes of this type with s
stages are (2s − 1) order accurate, therefore the three stage IRK given here is
5th order accurate.

The Radau type scheme is identical to the Gauss-Legendre type scheme
[Eq. (75) – Eq. (75)], however, it uses differently chosen coefficients. Therefore,
in this sub-section we will give only the Butcher’s arrays. All coefficients listed
below can be found in Ref. [10].

The Butcher’s array of the three stage IRK of fifth order (i.e. s = 3) is de-
termined by

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

, (82)

and the two stage, third order (i.e. s = 2) is given by

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

. (83)

7.3 Multi-stage SDIRK scheme of 4th order

Another family of multi-stage implicit Runge-Kutta schemes which is known
to be strongly stable and monotonic, are the singly-diagonally-implicit Runge-
Kutta (SDIRK) schemes (see e.g. Ref. [11]).

The SDIRK scheme is identical to the Gauss-Legendre type scheme [Eq. (75)
– Eq. (75)], however, it uses differently chosen coefficients which are identical
to zero above the diagonal of its Butcher’s array. Below, we will give only
the Butcher’s arrays which can be found in Ref. [11]. Note that, because the
coefficients of this method cannot be expressed analytically, the time coefficients
in the first column are not given.

The Butcher’s array of a four stage SDIRK of fourth order (s = 4) is deter-
mined by

14

0.097961082941

0.262318069183 0.097961082941

0.230169419019 0.294466719347 0.097961082941

0.210562684389 0.269382888280 0.307008634881 0.097961082941

0.222119403264 0.282060762166 0.236881213175 0.258938621395

. (84)

7.4 Solving the IRK equation system by matrix inversion

In case of a linear differential operator L, Eqs. (72) – (75) can be solved directly
by inverting the matrix of the equation system.

Applying the general implicit Runge-Kutta methods [Eqs. (72) – (75)] to the
implicit time discretisation of linear advection equation given in Eq. (58) leads
to the equation system

[I −R] ~uLHS = ~uRHS . (85)

which can be expressed using the block matrix

R =

a11Q a12Q · · · a1sQ 0
a21Q a22Q · · · a2sQ 0

...
...

. . .
...

...
as1Q as2Q · · · assQ 0
at1Q at2Q · · · atsQ 0

 . (86)

Here, the matrix blocks of R are defined as product of the Runge-Kutta co-
efficients [Eq. (76)] and the matrix of the implicit time discretisation scheme
[Eq. (59)].

The right hand side state vector is assembled by s + 1 times the coefficient
vector ~un at time step n

~uRHS = (~un, ~un, · · · , ~un, ~un)T (87)

and the left hand side state vector by the coefficient vectors of all intermediate
Runge-Kutta integration steps 1, · · · , s and the coefficient vector ~un+1 at new
time step n+ 1

~uLHS =
(
~u(1), ~u(2), · · · , ~u(s), ~un+1

)T

. (88)

Eq. (85) can be solved by inverting the left hand side matrix [I −R]. Then
the coefficient vector ~un+1 at new time step n+ 1 can be directly derived from
the left hand side state vector

~uLHS = [I −R]−1
~uRHS . (89)

7.5 Efficiency of implicit Runge Kutta schemes

The implicit Runge-Kutta schemes which are listed in Subsects. 7.1 – 7.3 have
undergone an extensive testing in combination with specific options of the DG-
FEM-IMPLICIT solver.

15

The various IRK schemes turned out, to be not unconditionally stable when
the solution was obtained using an iterative method. In contrast to that, some
of the IRK schemes, namely the fully implicit Gauss-Legendre and Radau IRK
schemes, are stable with very large time steps when the solution was obtained
directly. Note that, fully implicit denotes, that every equation depends on
every other equation. Moreover, with increasing number of stages of the IRK
scheme and increasing time step, the number of iteration steps for the fixed
point iteration is increasing drastically. Furthermore, even though solving the
IRK equation system directly is more efficient than using an iterative method,
these schemes are still numerically inefficient, compared to an explicit time
discretisation scheme.

Nevertheless, all of them showed growing spurious oscillations with increas-
ing time step. It turned out, that this phenomena can be controlled to a certain
extent, using the moment limiter methods listed above. However, with increas-
ing time step the artefacts grow stronger and eventually the limiting method
fails to suppress the wiggles.

These facts set an effective upper limit to the time step when using higher
order implicit methods, depending on the order and type of IRK in combination
with the order of the DG-FEM scheme used. Generally, the higher the order of
the IRK scheme compared to the order of the DG-FEM scheme, the larger the
size of the time step that can be reached without developing spurious artefacts
when using a moment limiter. This can be seen in Figs. 3 and 4. Furthermore,
the higher the order p of the DG-FEM scheme, the better the artefacts seem to
be controlled by the moment limiter.

The observation described above raises the question about the numerical
efficiency. Even though, some of the higher order implicit schemes tested, were
able to produce equivalent accurate results compared to higher order explicit
schemes, they were numerically much more expensive (up to a factor of ten),
independent whether the IRK equation system was solved directly or using an
iterative method.

From the performance point of view the SDIRK schemes yield the most
promising results. Because this method is singly implicit only a small number of
iterations, i.e. typically around two, have to be performed to solve the Runge-
Kutta equation system. Here singly implicit denotes, that only neighbouring
equations are depending on each other. In this case solving the IRK equation
system using an iterative method is much faster than solving directly. However,
the maximum time step reachable is not very large, since the implemented
SDIRK scheme (Subsection 7.3) is only fourth order accurate.

Contrary to that, the IRK schemes of Gauss-Legendre type deliver very good
accuracy, since the order of these IRK schemes is twice the number of stages
employed. Therefore much larger time steps can be achieved. However, due
to the fully implicit IRK equation system, the equation systemhas to be solved
directly which makes these schemes numerically very costly.

It remains to be explored whether other IRK schemes perform better. There
exist a whole variety of IRK schemes which could, from similar considera-
tions as above, be suitable, e.g. explicit singly-diagonally implicit Runge-Kutta
(ESDIRK) schemes or other members of the diagonally implicit Runge-Kutta
(DIRK) family, and so on.

16

Figure 3: Solution of the advection equation using an 6th order implicit Runge-
Kutta scheme of Gauss-Legendre type (Subsection 7.1) in combination with a
DG-FEM scheme of order p = 2. Upper row correponds to CFL number 1.25
and lower row to 2.5. At the same time the right column shows solutions with
limiting, whereas the left column without limiting.

17

Figure 4: Solution of the advection equation using a 4 stage 4th order singly-
diagonally implicit Runge-Kutta (SDIRK) scheme (Subsection 7.3) in combina-
tion with a DG-FEM scheme of order p = 2. Upper row correponds to CFL
number 1.25 and lower row to 0.5. At the same time the right column shows
solutions with limiting, the left column without limiting. Note that, without
limiter the scheme is unstable for large CFL numbers (upper left), hence, the
calculations was stopped at a time of 0.1

18

8 Limiting methods

First we define the so called minmod function used several times in the limiting
methods discussed in this section

minmod(a1, a2, ..., an) =

 s ·min1≤i≤n|ai| if s = sign(a1) = · · ·
· · · = sign(an)

0 otherwise
. (90)

It picks the argument with the smallest absolute value from a set of arguments
with the same sign. In case of different argument signs, it assumes an extremum
and returns the value zero.

8.1 A TVDM minmod slope limiter

This is a slope limiter method based on the minmod function [Eq. (90)] acting
on the flux terms Ref. [2], p. 94. It limits the higher order part of the flux terms
by using the difference quotients of the zeroth order terms. Then the modified
flux function reads

ĥlim(u) = ĥ(u0
i + û1

i,mod) (91)

û1
i,mod = minmod

(
u1

i , u
0
i+1 − u0

i , u
0
i − u0

i−1

)
. (92)

Note that this limiter is preserving the total variation diminishing in the mean
(TVDM) character of a scheme, however, it generates some severe artefacts
in the numerical solution (Figure 5 and 6, lower right panel). Local extrema
within smooth parts of the solution are suffering from clipping and distortion.
Consequently, this may not be a preferable limiting method.

8.2 A simple moment limiter

The slope limiter given here is a simple case of a so called moment limiter given
in Ref. [3]. This limiter uses the difference quotients to limit the slope of the
next higher order. Therefore, this moment limiter realises a convex limiter.

The limiter can be written in short form as

un+1
i = minmod

(
un+1

i ,
un

i+1 − un
i

2n+ 1
,
un

i − un
i−1

2n+ 1

)
(93)

using the minmod function defined in Eq. (90).
This limiter yields comparable results to the TVDM minmod slope limiter

(Subsection 8.1). However, methods using this limiter are simply total variation
bound (TVB). And moreover, this limiting method also suffers from clipping
and distortion of local extrema (Figure 5 and 6, upper left panel).

8.3 A generalised moment limiter

This generalised moment limiter was developed in Ref. [4] and is based on the
more simple moment limiter given in Ref. [3] which was described in Subsec-
tion 8.2.

19

Figure 5: Solution of the advection equation using a square function plus a
sine wake as initial condition. The x-axis indicates the time and the y-axis in-
dicates the function Value. Red curves show the solution at t = 10, whereas
green curves give the initial state. The calculations used 200 spatial grid points,
polynomial approximation of order p = 1, CFL number of 0.2, a 3rd order
TVD-ERK scheme (Section 5), and 1st order upwind fluxes. Lower left panel:
without limiting. Lower right panel: using a TVDM minmod slope limiter (Sub-
section 8.1). Upper left panel: using a simple moment limiter (Subsection 8.2).
Upper right panel: using a generalised moment limiter (Subsection 8.3).

20

Figure 6: Same as Figure 5, however, using a polynomial approximation of
order p = 2. Lower left panel: without limiting. Lower right panel: using
a TVDM minmod slope limiter (Subsection 8.1). Upper left panel: using a
simple moment limiter (Subsection 8.2). Upper right panel: using a generalised
moment limiter (Subsection 8.3).

21

The limiter can be written in short form as

un+1
i =

{
un+1

i if |un+1
i | ≤Mn+1h

2

minmod
(
un+1

i ,
un

i+1−un
i

2n+1 ,
un

i −un
i−1

2n+1

)
if |un+1

i | ≥Mn+1h
2 (94)

where Mk ∈ [0,∞] denotes an upper limit for the limiting and h = (xi+1 − xi)
denotes the size of the current finite element. Note that for Mk = ∞ there is
no limiting at all and for Mk = 0 the generalised moment limiter resembles the
moment limiter given in Subsection 8.2.

In our opinion this limiter yields the best results of all deployed methods
and probably is the preferable method of choice. The limited solution does
not suffer from clipping at all. Moreover, due to the flexible upper bound of
limiting this limiter can preserve more fine structured details of the solution,
especially when combined with higher order methods (p > 1). However, there
is no mathematical proof of its TVB properties, although it originates from the
simple moment limiter given in Subsection 8.2.

Note that a very similar limiter can be found in Ref. [5].

8.4 A flux limited centred (FLIC) flux

The flux limited centred (FLIC) flux is a general flux limiter approach given in
Ref. [6], using the first order centred (FORCE) flux as a monotone low order
flux and the second order Richtmyer (RM) flux as high order flux.

ĥFLIC
i+ 1

2
(u−, u+) = ĥFORCE

i+ 1
2

(u−, u+) (95)

+ φi+ 1
2

[
ĥRM

i+ 1
2
(u−, u+)− ĥFORCE

i+ 1
2

(u−, u+)
]

where the FORCE flux is given by

ĥFORCE
i+ 1

2
(u−, u+) =

1
2

[
ĥLF

i+ 1
2
(u−, u+) + ĥRM

i+ 1
2
(u−, u+)

]
(96)

and the RM flux by

ĥRM
i+ 1

2
(u−, u+) = ĥ(u∗) (97)

u∗ =
1
2

[
(u− + u+)− ∆t

∆x

(
ĥ(u−)− ĥ(u+)

)]
.

Note that LF in Eq. (96) denotes the common Lax-Friedrich numerical flux
which is defined as

ĥLF
i+ 1

2
(u−, u+) =

1
2

[
ĥ(u−) + ĥ(u+)− C(u−+ u+)

]
(98)

with C = |h′(u)| which is the eigenvalue of the Jacobian in the one dimensional
case.

The limiting function in Eq. (95) is defined as

φi+ 1
2

= min
[
φ(r−

i+ 1
2
), φ(r+

i+ 1
2
)
]

(99)

22

Figure 7: Same as Figure 5. Lower left panel: Polynomial approximation of
order p = 1 using upwind fluxes. Lower right panel: Same as lower left panel,
but using a generalised flux limiter approach and Sweby’s flux limiter function.
Upper left panel: Polynomial approximation of order p = 2 using upwind fluxes.
Upper right panel: Same as upper left panel, but using the same flux limiter as
in panel 2.

23

with the left and right hand side slope given by

r−
i+ 1

2
=
u0

i − u0
i−1

u0
i+1 − u0

i

, r+
i+ 1

2
=
u0

i+2 − u0
i+1

u0
i+1 − u0

i

, (100)

respectively.
We used Sweby’s limiter function

φ(r) =

 0 βr ≤ 0
βr 0 ≤ βr ≤ 1
1 βr ≥ 1

. (101)

This limiter function yields a TVDM method for β ∈ [1, 2]. Note that Ref. [6]
used the minbee limiter, which is included in the Sweby limiter as a special
case where β = 1. Furthermore, this limiting method can be combined with a
whole bunch of well known limiter functions (e.g. see http://en.wikipedia.
org/wiki/Flux_limiters)

The flux limiter method is not capable of eliminating spurious oscillations
in the numerical solution of the advection equation when using higher order
RKDG schemes (p > 0, compare Figure 7). The blended flux provided by this
method has in either case a lower or equal viscosity than the upwind flux. Hence,
wiggles will be less efficiently suppressed compared to the standard DG method
using the upwind flux.

24

http://en.wikipedia.org/wiki/Flux_limiters
http://en.wikipedia.org/wiki/Flux_limiters

References

[1] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin
Methods, volume 54 of Texts in Applied Mathematics, Springer New York,
2008.

[2] B. Cockburn, Discontinuous Galerkin Methods for Convection-
Dominated Problems, in High-Order Methods for Computational Physiscs,
volume 9, pp. 69–224, Springer-Verlag Berlin Heidelberg New York, 1999.

[3] R. Biswas, K. D. Devine, and J. E. Flaherty, Applied Numerical
Mathematics 14, 255 (1994).

[4] H. M. Lui, Runge-Kutta Discontinuous Galerkin Method for the Boltz-
mann Equation, Master’s thesis, Massachusetts Institute of Technology,
2006.

[5] L. Krivodonova, Journal of Computational Physics 226, 879 (2007).

[6] J. Qiu, B. C. Khoo, and C.-W. Shu, Journal of Computational Physics
212, 540 (2006).

[7] B. Cockburn and C.-W. Shu, Mathematics of Computation 52, 411
(1989).

[8] S. Gottlieb and C. W. Shu, Mathematics of Computation 67, 73 (1998).

[9] M. S. H. Khiyal and K. Rashid, Journal of Applied Sciences 5 3, 411
(2005).

[10] G. Staff, Convergence and Stability of the Parareal algorithm: A nu-
merical and theoretical investigation, Technical report, Norges Teknisk-
Naturvitenskapelige Universitet, 2003.

[11] L. Ferracina and M. Spijker, Applied Numerical Mathematics 58, 1675
(2008).

25

	IPP_5_124 Titel.pdf
	IPP_5_124 Text.pdf
	Introduction
	The linear Advection Equation in 1D
	Using Legendre polynomials as base functions
	Discretising space using a discontinuous Galerkin method with Legendre polynomials
	Discretising the spatial dimension using the ''strong'' form given by Warburton and Hesthaven
	Discretising the spatial dimension using the weak form

	Explicit 3rd order TVD-Runge-Kutta scheme
	Solving the equation system using an implicit time discretisation
	Implicit Runge-Kutta schemes
	Multi-stage Gauss-Legendre type scheme of order 2s
	Multi-stage Radau type scheme of order (2s-1)
	Multi-stage SDIRK scheme of 4th order
	Solving the IRK equation system by matrix inversion
	Efficiency of implicit Runge Kutta schemes

	Limiting methods
	A TVDM minmod slope limiter
	A simple moment limiter
	A generalised moment limiter
	A flux limited centred (FLIC) flux

	References

