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Impurity transport driven by electrostatic turbulence is analyzed in weakly-

collisional tokamak plasmas using a semi-analytical model based on a boundary-layer

solution of the gyrokinetic equation. Analytical expressions for the perturbed den-

sity responses are derived and used to determine the stability boundaries and the

quasilinear particle fluxes. For moderate impurity charge number Z, the stability

boundaries are very weakly affected by the increasing impurity charge for constant

effective charge, while for lower impurity charge the influence of impurities is larger, if

the amount of impurities is not too small. Scalings of the mode frequencies and quasi-

linear fluxes with charge number, effective charge, impurity density scale length and

collisionality are determined and compared with quasilinear gyrokinetic simulations

with GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] resulting

in very good agreement. Collisions do not affect the mode frequencies, growth rates

and impurity fluxes significantly. The eigenfrequencies and growth rates depend

only weakly on Z and Zeff but they are sensitive to the impurity density gradient

scale length. An analytical approximate expression of the zero-flux impurity density

gradient is derived and used to discuss its parametric dependencies.

I. INTRODUCTION

Understanding impurity transport in tokamak plasmas is important since fusion

performance is significantly affected by impurities. In particular, impurity accumulation in

the core may lead to fuel dilution and radiation power losses resulting in lower fusion power

and potentially even plasma disruptions. However, impurities are welcome at the edge

since they can prevent high heat fluxes to the wall by creating a radiative belt. Models of

impurity transport driven by microturbulence [1–15] and neoclassical processes [16–18] are

now well developed, but there are still many open issues regarding the sign and magnitude

of the impurity particle flux and its parametric dependencies. To get reliable predictions

for the turbulent fluxes, nonlinear electromagnetic gyrokinetic simulations are needed, but
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these are costly in computing time. However, the quasilinear electrostatic approximation

has been proven to retain much of the relevant physics and reproduce the results of

nonlinear gyrokinetic simulations for a wide range of parameters [19]. Reduced theoretical

models, based on quasilinear approximations, benchmarked to gyrokinetic simulations can

ease the interpretation of the results of experiments or numerical simulations and can

contribute to the better understanding of the underlying processes.

The aim of the present work is to calculate the quasilinear GYrokinetic IMpurity

transport driven by ElectroStatic turbulence (GYIMES) using a semi-analytical model

based on a boundary layer solution of the gyrokinetic equation. Following the approach

of Ref. [20, 21], we use a model electrostatic potential motivated by a variational analysis

and gyrokinetic simulations, and present analytical expressions for the perturbed density

of the electrons, ions and impurities. These are used in the quasi-neutrality equation that

is solved numerically to obtain the frequencies and growth rates of the unstable modes,

including the effect of impurities on these modes, and the quasilinear impurity particle

fluxes. In particular, we study the parametric dependences of the above quantities with

respect to impurity charge, impurity density, inverse impurity scale length and collision-

ality and the effect of the impurities on the stability boundaries. Using the analytically

calculated expression for the perturbed impurity density response, we derive an approxi-

mative expression for the zero-flux impurity density gradient R/Lnz. Here R is the major

radius and Lnz is the impurity density scale length. Such a zero impurity flux region is

relevant to steady state plasmas in the core of tokamaks since the impurity influx oc-

curs through the edge, and a simple analytical approximation for the zero-flux impurity

density gradient is useful to be able to analyze its parametric dependencies. The results

of GYIMES are compared with linear gyrokinetic simulations with GYRO [22], and the

agreement is very good.

The remainder of the paper is organized as follows. In Sec. II, the perturbed electron,

ion and impurity density and temperature responses are calculated. In Sec. III, the

dispersion relation is presented, and the dependence of the stability boundaries on the

charge number and fraction of impurities is studied. In Sec. IV, the quasilinear transport

fluxes are calculated, and scalings of the growth rates, eigenfrequencies and fluxes with

charge number, fraction of impurities, impurity density scale length and collisionality

are discussed and compared with GYRO results. Finally, the results are summarized in

Sec. V.

II. PERTURBED DENSITY RESPONSE

The perturbed electron, ion and impurity responses are obtained from the linearized

gyrokinetic (GK) equation, [23]

v‖
qR

∂ga

∂θ
− i(ω − ωDa)ga − Ca(ga) = −i

eafa0

Ta

(

ω − ωT
∗a

)

φJ0(za), (1)
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where ga is the nonadiabatic part of the perturbed distribution function, θ is the extended

poloidal angle [24], φ is the perturbed electrostatic potential, fa0 = na/ (
√

πvTa)
3
exp(−x2

a)

is the equilibrium Maxwellian distribution function, xa = v/vTa is the velocity normalized

to the thermal speed vTa = (2Ta/ma)
1/2, na, Ta, ma and ea are the density, temperature,

mass and charge of species a, ω∗a = −kθTa/eaBLna is the diamagnetic frequency, ωT
∗a =

ω∗a

[

1 +
(

x2
a − 3

2

)

ηa

]

, ηa = Lna/LTa, Lna = −[∂(ln na)/∂r]−1, LTa = −[∂(ln Ta)/∂r]−1,

are the density and temperature scale lengths, kθ is the poloidal wave-number, ωDa =

−kθ

(

v2
⊥/2 + v2

‖

)

(cos θ + sθ sin θ) /ωcaR is the magnetic drift frequency, ωca = eaB/ma

is the cyclotron frequency, B is the equilibrium magnetic field, q is the safety factor,

s = (r/q)(dq/dr) is the magnetic shear, r and R are the minor and major radii, J0 is the

Bessel function of the first kind and za = k⊥v⊥/ωca. We consider an axisymmetric, large

aspect ratio torus with circular magnetic surfaces. We assume the following ordering of the

electron/ion bounce frequencies and the eigenfrequency of the mode, ωbi ≪ ω ≪ ωbe, and

consider weakly-collisional plasmas so that ν⋆e = νe/ǫωbe ≪ 1, where ǫ = r/R is the inverse

aspect ratio and νe is the electron collision frequency, including collisions with ions and

impurities, νe = (ν̂ee + ν̂ei + ν̂ez)/x
3
e = (1+ni/ne +Z2nz/ne)ν̂ee/x

3
e = (1+Zeff)ν̂ee/x

3
e, with

ν̂ee = nee
4 ln Λ/4πǫ2

0m
2
ev

3
Te, and ln Λ is the Coulomb logarithm. The electron collisions

are modeled by a pitch-angle scattering operator

Ce = νe(v)
2ξ

B

∂

∂λ
ξλ

∂

∂λ
≡ νe(v)L, (2)

where ξ = v‖/v and λ = v2
⊥/(Bv2). Collisions are neglected in the ion and impurity

equations. The condition for which impurity collisions can be neglected is

(Z3me/mi)
1/2(nzZ

2/ni)ǫν⋆e ≪ 1, (3)

and is well satisfied for not too high charge numbers (depending on the exact parameters,

up to Z ≈ 15 − 25) if we assume, consistent with the rest of our orderings, that ǫ ≪ 1,

ν⋆e ≪ 1 and nzZ
2/ni = O(1). Note that the condition in Eq. (3) breaks down for very

high charge numbers, specially when ν⋆e is not too small, in which case collisional effects

can modify the impurity fluxes as shown in [14]. As in [20], we use the following perturbed

electrostatic potential

φ(θ) = φ0

(

1 + cos θ

2
+ ifs sin2 θ

)

[H(θ + π) − H(θ − π)] , (4)

where H is the Heaviside function and fs can approximately be written as fs = −0.6s +

s2 − 0.3s3. In [20], this model potential was motivated with a variational method and

experience from GYRO simulations. The approximation for the perturbed electrostatic

potential breaks down for low and high shear (outside the region 0.2 < s < 1.7) or near

marginal instability, and correct quantitative predictions for the transport can only be

expected in regions where the assumption for the potential is valid.
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A. Electron response

The circulating electrons are assumed to be adiabatic, and the nonadiabatic trapped

electron distribution can be expanded ge = ge0 +ge1 + ... in the smallness of ω/ωbe and the

normalized collisionality ν⋆e, which gives ∂ge0/∂θ = 0 in lowest order. The electron GK

equation is orbit averaged between the mirror reflection points, providing a constraint for

ge0

(ω − 〈ωDe〉)ge0 −
iνe

ǫK(κ)

∂

∂κ
Ĵ(κ)

∂ge0

∂κ
= −e〈φ〉

Te

(ω − ωT
∗e)fe0, (5)

where 〈· · · 〉 is an average over the bounce orbit of the trapped electrons, κ =

[1 − λB0(1 − ǫ)] /(2ǫλB0), B0 is the flux-surface averaged magnetic field, Ĵ = E(κ) +

(κ − 1)K(κ) and E(κ) and K(κ) are the complete elliptic integrals. Here, the bounce-

average of the potential is

〈φ〉 = φ0

{

E(κ)

K(κ)
+ i

4fs

3

[

(2κ − 1)
E(κ)

K(κ)
+ 1 − κ

]}

and the orbit-averaged precession frequency for trapped electrons is

〈ωDe〉 = ωD0

[

E(κ)

K(κ)
− 1

2
+ 2s

(

E(κ)

K(κ)
+ κ − 1

)]

, (6)

with ωD0 = −kθv
2/ωceR. We introduce the parameter ν̂ ≡ νe/ω0ǫ, which will be treated

as small in the following analysis. This condition restricts the applicability of the solution

for high temperature plasmas (such as ITER). Here, ω0 is the absolute value of the real

part of the eigenfrequency, so that ω = σω0 + iγ = (σ + iγ̂)ω0 ≡ yω0, σ = sign(ℜ{ω})
denotes the sign of the real part of the eigenfrequency and γ̂ = γ/ω0 is the normalized

growth rate.

In the limit of small collisionalities, we can construct a boundary layer solution to

the gyrokinetic equation

ν̂
(

g′′
e0 + (ln Ĵ)′g′

e0

)

+ i
K(κ)

Ĵω0

(ω − 〈ωDe〉) ge0 = i
K(κ)e〈φ〉

Ĵω0Te

(

ωT
∗e − ω

)

fe0. (7)

In the outer region, far away from the trapped/passing boundary, collisions can be ne-

glected, and the solution to (7) is

gouter =
e〈φ〉(ωT

∗e − ω)fe0

Te(ω − 〈ωDe〉)
. (8)

In the inner region, we can approximate Ĵ(κ) with its asymptotic limit for κ → 1: Ĵ(κ) ≃
1. Furthermore we assume that in the inner region g′′

e0 ≫ (ln Ĵ)′g′
e0, the validity of which

is checked a posteriori. Changing variables in (7) to t = (1 − κ)/
√

ν̂ gives

∂2ginner

∂t2
+ i

K(κ)

ω0

(ω − 〈ωDe〉) ginner = i
e〈φ〉K(κ)(ωT

∗e − ω)fe0

ω0Te

, (9)
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and the solution is

ginner = gouter + ĉ1 exp
[

−(1 − κ)
√

ûK(κ)/ν̂
]

+ ĉ2 exp
[

(1 − κ)
√

ûK(κ)/ν̂
]

, (10)

where û = −i(y − 〈ωDe〉/ω0). ĉ1 is determined by the boundary condition ge0(κ = 1) = 0

and ĉ2 = 0 to match the inner and outer solutions. The global solution is then

ge0 = gouter

(

1 − exp
[

−(1 − κ)
√

ûK(κ)/ν̂
])

, (11)

which agrees very well with the numerical solution of (5) for experimentally relevant

parameters, as it will be shown in the Appendix. Interestingly, the boundary layer solution

is a very good approximation of the numerically obtained distribution function ge0 even

when ν̂ is of order unity.

Performing the velocity-space integration as outlined in Appendix A gives the fol-

lowing expression for the perturbed electron density response

n̂e

ne

/
eφ

Te

= 1 − φ̃

{√
2ǫ

[

ω̂η∗e −
3

2

(

ηeω̃∗e −
ω̃Dt

2
ω̂η∗e

)

F1
5/2

(

ω̃Dt

2

)]

(12)

−Γ(3
4
)
√

ǫν̂t√−iπy

[

2ω̂η∗eF3/2
3/4

(

ω̃Dt

2

)

− 3ηeω̃∗e

2
F3/2

7/4

(

ω̃Dt

2

)]

}

,

where φ̃ = (1 + 4ifs/5)4φ0/(3πφ), ω̃Dt = ωD0/(ωx2
e), ν̂t = ν̂x3

e, ω̃∗a = ω∗a/ω, ω̂η∗a =

1− (1−3ηa/2)ω̃∗a and Fa
b (z) = 2F0 (a, b; ; z), where 2F0 denotes the generalized hypergeo-

metric function. To obtain Eq. (12), no approximation on the smallness of the normalized

magnetic drift has been made, and the hypergeometric functions incorporate the full ef-

fect of the drift resonances. The effect of the impurities is contained in the factor 1 + Zeff

multiplying the collisionality parameter. Furthermore, the unstable mode frequencies and

growth rates are affected by the impurities in certain conditions, as will be shown.

The solution in (11) reproduces the numerical solution of the gyrokinetic equation

more accurately than the WKB-solution used in [20, 21], especially in the case of complex

electrostatic potentials. However, comparing the resulting perturbed electron density re-

sponse (12) with the corresponding expression in Eq. (9) of [20], we find that the difference

is only the appearance of a factor 4/π in φ̃.

B. Background ion and impurity responses

For the ions, we neglect the parallel compressibility by assuming k‖vT i ≪ ω. In

this limit, (1) can be solved neglecting the parallel derivative and replacing the magnetic

drift frequency ωDi with its weighted flux-surface averaged value 〈ωDi〉φ, where 〈X(θ)〉φ =
∫ π

−π
X(θ)φ(θ)dθ/

∫ π

−π
φ(θ)dθ, and thus the perturbed ion density becomes

n̂i

ni

/
eφ

Ti

= −ω̃∗i +

(

3ω̃Dsi

2
− bi

)[

ω̂η∗i −
5

2
(ηiω̃∗i − ω̃Dsiω̂η∗i)F1

7/2 (ω̃Dsi)

]

. (13)
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Here, ba = 〈bsa〉φ = ba0 [1 + s2(2π2 − 12 + ifs(2π
2 − 3))/(6(1 + ifs))] is the weighted flux-

surface averaged value of the finite Larmor radius (FLR) parameter, bsa = ba0(1 + s2θ2),

ba0 = (kθρsa)
2 and ρsa = vTa/

√
2ωca. The averaged normalized magnetic drift frequency

is

ω̃Dsa =
6 + (9 + 16ifs)s

12(1 + ifs)

ωDa0

ω
,

where ωDa0 = −2kθv
2
Ta/3ωcaR, and we used the constant energy resonance (CER) approx-

imation for the ion resonance [v2
⊥ + 2v2

‖ → 4(v2
⊥ + v‖)

2/3] [23]. To obtain the expression

for the perturbed ion response (13), only long-wavelength perturbations were considered,

and only the terms linear in bi0 were kept. This approximation is typically valid for the

fastest growing ion temperature gradient (ITG) modes (kθρsi ∼ 0.2).

For the impurities, collisions can be neglected as well, and thus the structure of the

impurity solution is the same as for the ions and reads

n̂z

nz

/
Zeφ

Tz

= −ω̃∗z +

(

3ω̃Dsz

2
− bz

)[

ω̂η∗z −
5

2
(ηzω̃∗z − ω̃Dszω̂η∗z)F1

7/2 (ω̃Dsz)

]

. (14)

III. STABILITY

The dispersion relation follows from the quasi-neutrality condition

n̂e

ne

= (1 − Zfz)
n̂i

ni

+ Zfz
n̂z

nz

, (15)

where fz = nz/ne is the fraction of impurities, and the perturbed electron, ion and

impurity densities are given by (12), (13) and (14), respectively. The dispersion relation

obtained here is valid for both ITG modes propagating in the ion diamagnetic direction

(σ = −1) and trapped electron modes propagating in the electron diamagnetic direction

(σ = 1), but in this paper we will focus only on the ITG mode stability and the quasilinear

fluxes driven by them. In the limit of large aspect ratio, ǫ → 0, the trapped part of the

perturbed electron density can be neglected, and the dispersion relation for ITG (σ = −1)

modes with adiabatic electrons reduces to the following expression:

1 = τi(Zfz − 1)

{

ω̃∗i −
(

3ω̃Dsi

2
− b

)[

ω̂η∗i −
5

2
(ηiω̃∗i − ω̃Dsiω̂η∗i)F1

7/2 (ω̃Dsi)

]}

−Z2fzτz

{

ω̃∗z −
(

3ω̃Dsz

2
− bz

)[

ω̂η∗z −
5

2
(ηzω̃∗z − ω̃Dszω̂η∗z)F1

7/2 (ω̃Dsz)

]}

,(16)

where τa = Te/Ta. Using the condition for marginal stability, γ = 0, we can derive

an approximate stability condition for the ITG modes. As in [20], we note that if the

imaginary parts of ω̃Dsa and ba are negligible (which is the case if fs ≪ 1 at marginal

stability γ = 0), then the expression in Eq. (16) is real except for the terms containing

the functions F1
7/2(ω̃Dsi) and F1

7/2(ω̃Dsz) that have imaginary parts for all values except

ω̃Dsi = 0 and ω̃Dsz = 0. We also note that, for impurity charge numbers Z >∼ 10,
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the imaginary part of the impurity hypergeometric function is negligible compared with

the ion term. Therefore, in this limit, the condition γ = 0 can only be satisfied if the

coefficient in front of F1
7/2(ω̃Dsi) vanishes. This leads to the conclusion that, for higher

impurity charge numbers, the eigenfrequency and stability boundary are very weakly

affected by the increasing impurity charge, even for a significant fraction of impurities,

and are approximately equal to the corresponding quantities in a pure plasma [20]

ω0c

ω∗e

=
b − 1

τib + 1
+

(

1 +
1

τi

)

(2 + 3s)Lni

(τib + 1)2R
, (17)

a

LT ic

=

(

1 + τ−1
i

)

(2 + 3s)a

3R(1 − b)
. (18)

In Fig. 1, we show the mode frequency ω0 (normalized to cs/a, where cs =
√

Te/mi is the

ion sound speed) and critical temperature gradient a/LT ic computed from the full disper-

sion relation (including the non-adiabatic electrons) as a function of the impurity charge Z

and Zeff , together with the expressions given in Eqs. (17) and (18). The parameters used

in the calculations were s = 1, q = 2, a/R = 1/3, a/r = 2, a/Lne = 1 and kθρs = 0.2. The

agreement with the analytical expressions is excellent, except for impurities with lower

charge numbers, where the impurity hypergeometric function is of the same order of mag-

nitude as that of the ions. For lower impurity charge, especially for helium or carbon

dilutions, impurities are expected to significantly influence the eigenfrequency and thus

the stability boundary if the amount of impurities is not too small.

IV. QUASILINEAR PARTICLE FLUXES

The quasilinear particle flux for species a is given by

Γa = −kθpa

eB

∣

∣

∣

∣

eaφ̄

Ta

∣

∣

∣

∣

2

ℑ
(

n̂a/na

eaφ̄/Ta

)

, (19)

where the bar denotes flux-surface averaged quantities, φ̄ = (1 + ifs)φ0/2 and n̂a/na is

the nonadiabatic perturbed density response. The quasilinear fluxes are evaluated using

the expressions for the perturbed electron, ion and impurity densities from (12), (13) and

(14), respectively, and solving the dispersion relation (15), including the non-adiabatic

electron response, for the unstable mode frequencies and growth rates. In the following,

we will present scalings of the eigenfrequency, growth rate and impurity particle fluxes

with impurity charge Z, effective charge Zeff , inverse impurity density scale length a/Lnz

and collisionality, together with quasilinear GYRO results for the GA standard case [22],

a/LTe = a/LT i = 3, s = 1, q = 2, a/R = 1/3, r/a = 1/2, a/Lne = 1 and kθρs = 0.2,

and parameters relevant to the inner core of hybrid plasmas, a/LTe = a/LT i = 3, s = 1,

q = 1.25, a/R = 1/3, r/a = 1/4, a/Lne = 1.5 and kθρs = 0.2. All the frequencies and

growth rates are given in units of cs/a, and the fluxes are normalized to kθpe/eB
∣

∣eφ̄/Te

∣

∣

2
.
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A. Z and Zeff-scalings

For moderate Z (i.e., 10 . Z . 25), the eigenfrequency and growth rate of the

unstable modes are only weakly affected by increasing Z. The main reason for this is

the fact that the imaginary part of the impurity hypergeometric function is negligible

compared to the ion term for Z >∼ 10. The absolute values of the eigenfrequencies and

growth rates decrease slightly with increasing Zeff , reflecting the fact that the impurity

terms of the dispersion relation start to play a larger role when the impurity density is

increased, and the presence of impurities is stabilizing. In Fig. 2, we show the scalings with

Z and Zeff for the GA standard and hybrid cases, together with the results of quasilinear

GYRO simulations.

Figure 3 shows that the normalized impurity flux is expected to be outwards for

the cases we studied. As we will show later, for these parameters, this is expected when

R/Lnz
>∼ 2. The rapid fall in Fig. 3a with increasing Z is due to the fact that we keep

Zeff constant. Although the impurity flux is not sensitive to Z, the normalized impurity

flux is rapidly decreasing since it is proportional to nz/ne ∼ 1/Z2. The normalized flux

increases for increasing impurity density, and this is more pronounced for impurities with

lower charge numbers since the relative increase in Zeff is larger than for high charge

numbers. The ion and electron fluxes are expected to be inwards and their absolute

values decrease with increasing Z.

B. a/Lnz-scaling

The eigenfrequencies and growth rates depend moderately on the inverse impurity

density gradient, and the particle fluxes show a strong dependence, as illustrated in Fig. 4

for the GA standard and hybrid cases. The impurity flux changes sign at a certain fixed

value of the radial impurity density gradient. For the GA standard case with Zeff = 1.5

shown in Fig. 4b, the crossover is at a/Lnz ≃ 0.59 for Z = 6 and a/Lnz ≃ 0.68 for Z = 10,

and for the hybrid case shown in Fig. 4d it is at a/Lnz ≃ 0.62 for Z = 6 and a/Lnz ≃ 0.67

for Z = 10. For Zeff = 2 and Z = 6, the crossover point shifts to a/Lnz ≃ 0.55 for the GA

standard case and a/Lnz ≃ 0.58 for the hybrid case. Thus, the crossover point is almost at

the same a/Lnz independently of the charge number Z, effective impurity charge Zeff and

inverse background temperature scale lengths. Using the perturbed impurity density from

(14), we can derive an approximation for the crossover point by noting that the impurity

hypergeometric function can be replaced by its asymptotic limit for small arguments,

F1
7/2 (ω̃Dsz) = 1 (which is a good approximation for heavy impurities since the argument

ω̃Dsz ∝ 1/Z). If we also assume that the impurity FLR-term is negligible, bz ≪ 3ω̃Dsz/2,

the crossover point is expected to be at

ℑω̃∗z = ℑ
{

3ω̃Dsz

2

[

ω̂η∗z −
5

2
(ηzω̃∗z − ω̃Dszω̂η∗z)

]}

. (20)
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In the limit of moderate or high impurity charge, all terms of order 1/Z2 can be neglected,

so Eq. (20) simplifies to ℑω̃∗z = ℑ{3ω̃Dsz/2}. Using the approximation ω̃Dsz ≃ (2 +

3s)ωDi0/6ω (valid if fs ≪ 1), the zero-flux impurity density gradient becomes R/Lnzc =

(2 + 3s)/2. This is somewhat larger than the value obtained keeping all the terms in the

expression for the impurity flux (which for the GA standard case and Z = 10 is R/Lnzc ≃
2). Note that, to arrive at Eq. (21), we only assumed high Z and bz ≪ 3ω̃Dsz/2, no

assumptions on the eigenfrequency or the magnitude of other parameters have been used.

It is interesting to note that for high Z the zero-flux impurity density gradient becomes

nearly independent of the charge number. Previously, similar results have been obtained

in fluid simulations of ITG turbulence dominated transport [5]. The physical reason for

this is that the convective flux originating from the curvature drift is nearly independent

of the charge number, while the convection caused by thermodiffusion decreases with

increasing Z (this corresponds to the term proportional to ηz).

For moderate and high Z, the expression for the zero-flux impurity density gradient

can be refined to be

R

Lnzc

=
(2 + 3s)

2

1 − 2
1+γ̂2

kθρs

Zτzωn
0

( a
LTz

− a
R

(2+3s)5
6

)

1 + a
R

2+3s
1+γ̂2

kθρs

Zτzωn
0

, (21)

where we neglected terms of order 1/Z3 in Eq. (20). Here, ωn
0 is ω0 normalized to cs/a. For

the GA standard case, this expression gives a/Lnzc = 0.58 for Z = 6 and a/Lnzc = 0.67

for Z = 10, which are in excellent agreement with the values that are obtained by keeping

all the terms in the expression for the impurity flux (here we used γ̂ = 1.2 and ωn
0 = 0.2).

Equation (21) shows that for higher impurity temperature gradient or higher kθρs the

zero-flux impurity density gradient is lower, a trend which is in good agreement with our

numerical results.

In the approximate analysis above we assumed the unstable mode frequencies and

growth rates to be constant, as, for the same set of parameters, they do not show a strong

dependence on the charge number or impurity density. However, if, for instance, the

inverse electron density scale length a/Lne or the temperature ratio τi are changed, the

unstable mode frequencies and growth rates will also change and the zero-flux impurity

density gradient will be affected by that, especially for low Z when the effect of thermod-

iffusion cannot be neglected. This means that in scenarios with more peaked electron

density profiles or strongly differing electron-to-ion temperature ratios the zero-flux im-

purity density gradient is expected to be different from that in scenarios with flat density

profiles or if τi = 1. An indication of this can be seen by comparing the hybrid case with

a/Lne = 1.5 with the GA standard case with a/Lne = 1. The hybrid case leads to a

higher normalized growth rate, and, due to the terms proportional to 1/(1 + γ̂2) in the

expression for R/Lnzc, this leads to a slightly larger R/Lnzc for Z = 6. R/Lnzc for Z = 10

is the same in these two cases, because for higher Z the effect of the terms proportional

to 1/(1 + γ̂2) is reduced.
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C. Collisionality scaling

Previous work noted that collisions do not affect the impurity fluxes significantly [3].

The results of the GYIMES model confirm this. In Fig. 5, it is shown that the unstable

mode frequencies are slightly decreasing with increasing collisionality but the growth rates

are almost independent of collisionality in both the GA standard and hybrid cases. The

effect of collisions on the impurity flux only enters through the eigenfrequency, which

means that the impurity flux is only very weakly dependent on collisionality. This is in

contrast to the very sensitive dependence of the electron particle flux on collisionality,

for which in general a sign change from inward to outward is expected at very small

collisionalities [1, 2, 20, 21, 25].

V. CONCLUSIONS

In this paper we presented a semi-analytical model for impurity transport driven

by electrostatic turbulence. The model does not rely on expansions in the smallness

of the magnetic drift frequencies, and includes collisions modeled by a Lorentz opera-

tor. By assuming large aspect-ratio, low beta, toroidal symmetry, circular cross section

and weak collisionality, and assuming a ballooning eigenfunction for the electrostatic

potential, analytical expressions can be derived for the ion, impurity and electron per-

turbed densities and the quasilinear fluxes. The semi-analytical character of the model

eases the interpretation of experimental and simulation results. In this paper, we study

only ion-temperature-gradient turbulence dominated cases, but the model is suitable for

trapped-electron mode turbulence as well.

For moderate or high impurity charge number Z > 10, the eigenfrequency and sta-

bility boundary are very weakly affected by the increasing impurity charge for constant

effective charge, even for a significant fraction of impurities in the plasma, and are ap-

proximately equal to the corresponding quantities in a pure plasma. For lower impurity

charge, the effect of the impurities influences the eigenfrequency and thus the stability

boundary significantly if the amount of impurities is not too small.

If the mode is far from marginal stability, the effect of increasing charge number and

density affects the growth rates and mode frequencies only weakly. Furthermore, the im-

purity particle flux is only very weakly dependent on the charge number. The normalized

impurity flux is reduced with increasing charge number if Zeff is kept constant, but that

is an artifact of the reducing impurity fraction nz/ne ∼ 1/Z2. The impurity flux changes

sign from inward to outward at approximately the same value of a/Lnz independently of

Z, Zeff and many other plasma parameters. This has been noted previously [5], but here

we also derive an approximate analytical expression for the zero-flux impurity density

gradient R/Lnzc, using the analytical expression for the perturbed impurity density. This

is useful to gain better understanding of the parametric dependencies of R/Lnzc. We

find that collisions do not affect the mode frequencies, growth rates and impurity fluxes
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significantly, in agreement with previous results [3].

The results of the impurity transport model presented in this paper agree well with

quasilinear gyrokinetic simulations with GYRO. It includes some effects that previously

have been neglected in analytical calculations, for instance collisions and magnetic drifts

are treated with more accuracy than in other, existing semi-analytical models, but it is

still simple enough to ease the interpretation of certain physical effects, as we illustrated

with the approximation for the zero-flux impurity density gradient. Due to its simplicity,

it is straightforward to extend it by including several impurity species or include it in

transport simulations. However, due to the model electrostatic potential used in the

calculations, reliable quantitative predictions can only be obtained in the moderate shear

region.

Appendix A: Derivation of the perturbed electron response

The perturbed electron response is proportional to
〈
∫

ge0d
3v

〉

= 4
√

2ǫ

∫ ∞

0

v2dv

∫ 1

0

K(κ)ge0dκ, (22)

where, using the solution from Eq. (11): ge0 = gouter

(

1 − exp
[

−(1 − κ)
√

ûK(κ)/ν̂
])

and the identity
∫ 1

0

{

E(κ) + i
4fs

3
[(2κ − 1)E(κ) + (1 − κ)K(κ)]

}

dκ =
4

3

(

1 + i
4fs

5

)

,

the κ-integral can be evaluated. To make analytical progress we will approximate the

elliptic integral in the exponent of ge0 with a constant value K(κ) ≃
∫ 1

0
K(κ)dκ = 2.

To show the validity of this approximation Fig. 6a compares the absolute value of ge0

as a function of the trapping parameter κ from a numerical solution of Eq. (5), and

the boundary layer solution from Eq. (11) for two collisionalities (ν̂ = 0.01 and ν̂ =

0.1). We show also with dotted line the solution from Eq. (11) using the asymptotic

value of the elliptic integral K(κ) for κ = 1 (K(κ) ≃ ln ν̂/4) in the exponent, and

the dash-dotted line is Eq. (11) using a constant approximation for K(κ) = 2 in the

exponent. The dash-dotted line approximates the full numerical solution very well for all

collisionalities and this is used in our calculations. Interestingly, the approximation using

the asymptotic value of the elliptic integral breaks down for large collisionalities. The

reason for this is that the logarithmic behavior of the elliptic integral is only exhibited

very close to κ = 1, and therefore, for larger (experimentally relevant) collisionalities,

when the width of the boundary layer is larger, the logarithmic value is not a good

approximation to the elliptic integral. Using the approximation 〈ωDe〉 ≃ ωD0/2 and

ge0 = gouter

(

1 − exp
[

−(1 − κ)
√

2û/ν̂
])

the κ-integral becomes

∫ 1

0

K(κ)ge0dκ ≃ −4eφ0fe0

3Te

(

ω − ωT
∗e

ω − ωD0/2

)(

1 + i
4fs

5

)

(

1 −
√

iν̂

y(2 − ω̃D)

)

, (23)
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where ω̃D = ωD0/ω denotes the normalized magnetic drift frequency. To ob-

tain an analytical expression for the collisional part of the integral in (23), we ap-

proximated
∫ 1

0
K(κ)〈φ〉 exp [(κ − 1)/

√
n]dκ ≃

∫ 1

0
K(κ)〈φ〉dκ

∫ 1

0
exp [(κ − 1)/

√
n]dκ =

4/3 (1 + i4fs/5)
√

n, with n = iν̂/y(2 − ω̃D), and after integration retained terms

only to the lowest order in ν̂1/2. A comparison with the numerical solution con-

firms that the approximate expression (23) agrees very well with the correct value.

In Fig. 6b, we illustrate the good agreement between the full integral and its ap-

proximation by showing with solid line the numerical solution of the collisional

part of the κ-integral from Eq. (22), including the κ-variation of the averaged

electrostatic potential
∫ 1

0
K(κ)〈φ〉 exp

[

(κ − 1)
√

K(κ)/(2n)
]

dκ, with dotted we show

4/3 (1 + i4fs/5)
∫ 1

0
exp [(κ − 1)/

√
n]dκ, and with dashed line 4/3 (1 + i4fs/5)

√
n. The

latter is the approximation we use to obtain the expression in Eq. (23).
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FIG. 1: (Color online) Upper figures (a, b): Normalized mode frequency (in units of cs/a) vs.

Z (a) and Zeff (b). Lower figures (c, d): Critical ion temperature gradient vs. Z (c) and Zeff

(d). Dashed: analytical expression from Eqs. (17)-(18). Left figures (a, c): dots: Zeff = 1.5;

squares: Zeff = 2. Right figures (b, d): dots: Z = 10; squares: Z = 20. The impurity charge or

density does not affect the mode frequency or the critical ion temperature gradient significantly

for Z > 10.
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FIG. 2: (Color online) Left figures (a, c): Normalized mode frequency (solid) and growth rate

(dashed) (in units of cs/a) vs. Z for Zeff = 1.5. Right figures (b, d): Mode frequency (solid) and

growth rate (dashed) vs. Zeff for Z = 6. The dots and squares are the corresponding GYRO

results. Upper figures (a, b): GA standard case. Lower figures (c, d): hybrid case.
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FIG. 3: (Color online) Left figures (a, c): Normalized impurity flux vs. impurity charge Z for

Zeff = 1.5. Right figures (b, d): Normalized impurity flux vs. Zeff for Z = 6 (solid), Z = 10

(dashed). The dots and squares are the corresponding GYRO results. Upper figures (a, b): GA

standard case. Lower figures (c, d): hybrid case.
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FIG. 4: (Color online) Left figures (a, c): Normalized mode frequency (solid) and growth

rate (dashed) (in units of cs/a) vs. inverse radial impurity density gradient for Z = 6, and

Zeff = 1.5. Right figures (b, d): Normalized impurity particle flux vs. inverse radial impurity

density gradient for the parameters: solid Zeff = 1.5, Z = 6, dashed: Zeff = 2, Z = 6, dotted:

Zeff = 2, Z = 10. The dots and squares are the corresponding GYRO results. Upper figures

(a,b): GA standard case. Lower figures (c, d): hybrid case.
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FIG. 5: (Color online) Normalized mode-frequency, growth rate (left figures: a, c) and normal-

ized impurity particle flux (right figures: b, d) vs. normalized collisionality (in cs/a) for Z = 6

and (solid) Zeff = 1.5, (dashed) Zeff = 2. The dots and squares are the corresponding GYRO

results. Upper figures (a, b): GA standard case. Lower figures (c, d): hybrid case.
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FIG. 6: (Color online) (a): Absolute value of the trapped electron distribution function as a

function of the trapping parameter κ for fs = 0.18, y = −1+0.2i and ω̃D = 0.6. Solid (black) line

is the numerical solution of Eq. (5), dashed (red) line is the boundary layer solution from Eq. (11),

dotted line is Eq. (11) using the asymptotic value of the elliptic integral K(κ) for κ = 1 (K(κ) ≃
ln ν̂/4) in the exponent, and dot-dashed (blue) line is Eq. (11) using a constant approximation

for K(κ) = 2 in the exponent. Thin lines are for ν̂ = 0.01 and thick lines are for ν̂ = 0.1. The

dash-dotted line approximates the full numerical solution very well for all collisionalities and

this is used in the calculations. (b): Absolute value of the collisional part of the κ-integral of

the perturbed electron distribution function: (solid)
∫ 1
0 K(κ)〈φ〉 exp

[

(κ − 1)
√

K(κ)/(2n)
]

dκ;

(dotted) 4
3

(

1 + i4fs

5

)

∫ 1
0 exp [(κ − 1)/

√
n]dκ; (dashed) 4

3

(

1 + i4fs

5

)√
n. The parameters are the

same as in (a).


