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Abstract

Via nonlinear gyrokinetic simulations, microturbulent transport is investigated for electromag-

netic Trapped Electron Mode (TEM) and Ion Temperature Gradient (ITG) tokamak core turbu-

lence with β up to and beyond the Kinetic Ballooning Mode (KBM) threshold. Deviations from

linear expectations are explained by zonal flow activity in the TEM case. For the ITG scenario,

β-induced changes are observed in the nonlinear critical gradient upshift—from a certain β, a

strong increase is observed in the Dimits shift. Additionally, a Rechester-Rosenbluth-type model

for magnetic transport is applied, and the amplitudes of magnetic field fluctuations are quantified

for different types of turbulence.
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I. INTRODUCTION

Finite plasma β and the associated electromagnetic effects can have a significant influence

on the quality of confinement in fusion experiments—to date, it is poorly understood why

different machines and discharges display apparently inconsistent scalings, some of which

are rather unfavorable [1, 2]. Additionally, the parameter governs the bootstrap fraction as

well as the fusion reaction rate and imposes limits on operation regimes. Therefore, and in

light of the fact that experimentally, no clear quantitative understanding of the impact of β

on the confinement exists, numerical investigations of the matter are of great importance.

Electromagnetic core microturbulence has been studied by means of both gyrokinetic [3–

7] and gyrofluid [8–11] simulations. Few nonlinear results, however, have been reported for

(higher) β values near and at the Kinetic Ballooning Mode (KBM) threshold. Both current

and future fusion devices require the highest feasible β to operate at maximum efficiency. It

is thus paramount to have a precise understanding of the nonlinear behavior of the transport

near the KBM critical β.

Recently, advances have been made in extending the achievable β range of nonlinear gy-

rokinetic simulations and explaining the observed turbulent transport [7, 12]—more specif-

ically, a significant reduction in transport levels was observed which could not be explained

by the linear physics alone, including by a standard quasi-linear model [13, 14]. The present

work aims to both extend and generalize these findings by examining both linear and non-

linear gyrokinetic simulations in the Ion Temperature Gradient (ITG) and the Trapped

Electron Mode (TEM) regime, in addition to the runs published in Ref. [7] which employed

Cyclone Base Case (CBC) [15] parameters.

This paper is organized as follows. First, a brief overview of the gyrokinetic code Gene

is given which was used to obtain the results presented here. In the following two sections,

parameters, simulation results, and analyses of the TEM and ITG case β scans are presented,

with an emphasis on explaining the deviations of the turbulent transport levels from the

linear expectations. Comparisons with the CBC scan are made to generalize certain findings.

Next, the focus shifts to the magnetic properties of the aforementioned simulations: a model

for magnetic transport is verified, and coefficients describing the amplitude of the magnetic

fluctuations are provided. Lastly, the findings from the above sections are summarized and

the paper is concluded.
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II. GENE SIMULATIONS

All simulations in the context of this work were performed with the nonlinear gyroki-

netic Vlasov code Gene [16–20]. The Gene code solves the gyrokinetic Vlasov equation

alongside Maxwell’s equations, treating the electrostatic and electromagnetic potentials –

Φ and (A‖,B‖), respectively – self-consistently. To reduce the computational requirements,

field aligned coordinates are used: x serves as a flux surface label, z as the (poloidal) coor-

dinate along the field line, and y denotes the remaining third direction. The velocity space

is spanned by the parallel velocity v‖ and the magnetic moment µ.

Note that for β ≪ 1, parallel magnetic fluctuations, B‖, are small, and are thus neglected

here. By convention, the (electron) plasma pressure β is defined to be

β ≡ βe =
8πneTe

B2
ref

(1)

for the remainder of this paper. When operating in its linear mode, the code has an eigen-

value solver complementing its initial value solver, making subdominant and stable modes

accessible [21].

Although all simulations presented here were performed in local ŝ-α flux tube geometry

(with α ≡ αMHD set to zero) to allow for convenient comparison with other codes (as was

done in Ref. [7]), Gene is able to utilize general, experimental equilibria [22], and may also

be run in its radially non-local mode.

In the following sections, results from Gene simulations are reported and analyzed,

starting with an investigation into TEM turbulence.

III. TEM TURBULENCE

TEMs are known to occur on scales similar to ITG modes and may contribute to the

observed anomalous transport. Recently, advances have been made in explaining the sat-

uration mechanisms of TEM turbulence [23–25]. In this section, the effects of finite β on

both linear and nonlinear TEMs are to be examined.
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A. Physical and Numerical Parameters

TEMs may be classified as either temperature gradient driven or density gradient driven,

depending on the gradient settings and the critical gradients of the physical scenario [26].

This section focuses on a case somewhat in between: In order to avoid a smooth transition

from the TEM to an ETG (Electron Temperature Gradient) mode at large ky which may

complicate the interpretation of nonlinear simulation results, the electron temperature gra-

dient is chosen relatively low and the density gradient moderately higher. The corresponding

parameter choice is:

ωT i = 2 , ωT e = 4 , ωn = 3 , ŝ = 0.796 , q0 = 1.4 , ǫt = 0.18 , Ti/Te = 1 .

where ωTj = R0/LTj is the normalized temperature gradient of species j, with R0 the

major radius, ωn = R0/Ln is the normalized density gradient, ŝ is the magnetic shear,

q0 is the safety factor, ǫt = r0/R0 is the inverse aspect ratio, and Tj is the equilibrium

temperature of species j. Both ions and electrons are treated kinetically, with a mass ratio

of mi/me = 1836. Note that the gradient choice results in ηe = ωT e/ωn ∼ 1, corresponding

to a typical threshold between density gradient and temperature gradient driven TEMs.

The numerical settings were chosen as follows. In the linear simulations, the parallel

coordinate is resolved by 24 points, and five radial connections are retained (corresponding

to 11 complex radial modes). 48 points span a parallel velocity space, while the magnetic

moment coordinate has 16 points. Gene also employs hyperdiffusion [19, 27] to suppress the

occurrence of unphysical modes which are excited due to properties of centered differencing

stencils —the settings for the parallel hyperdiffusion coefficient is ǫz = 4, which acts on the

Vlasov equation via the hyperdiffusion term

D4 = −ǫz

(

∆z

2

)4

∇4
‖ . (2)

It should be noted that the simulations show very little sensitivity to this value.

For nonlinear runs, a perpendicular box of 125.6ρs×125.7ρs is resolved by 192×24 (com-

plex) Fourier modes, corresponding to 192×48 spatial grid points in the x and y coordinate,

respectively. For the nonlinear run at β = 2.1%, an increased box size of 251.3ρs×150.8ρs

was chosen (resolved by 48 binormal Fourier modes) to prevent radial structures from self-

connecting via the radial (periodic) boundary condition. Note that the perpendicular nor-

malization length is ρs = cs/Ωi, with the ion gyrofrequency Ωi and cs = (Te/mi)
1/2, while

4



FIG. 1: (Color online) Linear growth rates for the TEM β scan. Shown are the results for kyρs = 0.2

(black squares), 0.4 (red diamonds), and 0.6 (blue crosses). At higher β values, the TEM growth

rates are exceeded by that of the KBMs.

time scales are specified in units of cs/R0. The parallel resolution is increased by a factor of

two while the magnetic moment space is spanned by 8 grid points. ǫz is set to 12. Conver-

gence was tested successfully both linearly and nonlinearly in all spatial and velocity space

dimensions, as well as with respect to the parallel hyperdiffusivity. This was done separately

in the electrostatic limit and at a moderate β value of 1%, with deviations of <
∼ 10%.

B. Linear Results

For kyρs from 0.2 to 0.6 and a range of β values, the linear growth rate γ and the

(real) frequency ω are shown in Figs. 1 and 2, respectively. Conforming with the general

expectations, e.g. in Ref. [7], the linear TEM is subjected to very little modification as β

increases. At β = βcrit(kyρs = 0.2) = 2.7%, a Kinetic Ballooning Mode (KBM) takes over

at kyρs = 0.2, its growth rate increasing rapidly, whereas a discontinuity in the frequency is

observed. For higher ky, the critical value rises quickly. Fig. 3 shows the critical β for a larger

range of ky. As is to be expected, the MHD limit βMHD
crit = 2.03% – here, a simple estimate

αcrit
MHD = 0.6ŝ was used, but taking the more precise MHD value [28] yields no significantly

different result – is retained for ky → 0, and the KBM appears first at the smallest simulated

ky. Note that in the figure, βdom
crit is the point where the KBM growth rate starts to exceed
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FIG. 2: (Color online) Real frequencies for the TEM β scan. Shown are the results for kyρs = 0.2

(black squares), 0.4 (red diamonds), and 0.6 (blue crosses). At higher β values, KBMs become the

dominant instability.

FIG. 3: (Color online) Spectra of the KBM critical β values. Black triangles denote the β where the

KBM becomes the dominant instability, whereas red diamonds correspond to the point of marginal

KBM stability (see the text). For reference, the MHD estimate is shown as a blue dashed line.

that of the TEM, while at βcrit, the KBM is marginally stable and subdominant. For more

details, see Ref. [7]. Note that the overall kinetic threshold is determined by the threshold
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FIG. 4: (Color online) Nonlinear heat and particle fluxes for the TEM case β scan. Black triangles

denote the ion electrostatic heat flux, blue stars the electron electrostatic heat flux, and pink squares

the electron electromagnetic heat flux. The electrostatic particle flux is shown as red diamonds.

The other transport channels are small in comparison with those included in this figure. For

β ≤ 2%, the turbulence has a clear TEM character, whereas at β = 2.1%, both TEM and KBM

characteristics may be found.

at that ky where the KBM is destabilized first,

βcrit ≡ min
ky

βcrit(ky) ≈ βMHD
crit , (3)

which, in the present case, coincides with the MHD threshold—not surprisingly, since the

MHD result has to be retained as ky → 0.

Next, results from a nonlinear investigation will be presented to establish whether the

slowly declining growth rate carries over qualitatively. In addition, the question will have

to be answered whether the linear and nonlinear KBM thresholds coincide, as likely, the

transport spectra will not peak at the ky with the lowest βcrit, i.e., the lowest ky.

C. Nonlinear Transport

Transport levels obtained from nonlinear simulations are reported in Fig. 4. Here, the

TEM behaves somewhat differently compared with the linear case: Unlike the near-constant,

slightly declining growth rate, the dominant electrostatic heat flux Qes
e grows slowly with
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FIG. 5: (Color online) Nonlinear heat fluxes for the TEM simulation at β = 1.5% as a function

of time. From top to bottom, the quantities shown here are the electron electrostatic heat flux

Qes
e (blue), its ion counterpart Qes

i (black), and the electron electromagnetic heat flux Qem
e (pink).

After an initial linear phase, nonlinear saturation is achieved in all channels.

increasing β. The same is true for the ion heat flux Qes
i , as well as for the particle flux

Γes. Stronger growth is observed for the electron magnetic heat flux Qem
e —as detailed in

Ref. [7], magnetic fluxes comparable with the electrostatic fluxes are also observed at CBC

parameters. Further below, a more detailed analysis of the magnetic transport will be

provided.

Exemplarily, the time evolution of the most important heat fluxes for the simulation at

β = 1.5% is shown in Fig. 5. The nonlinearly saturated phase is reached after a few 10 time

units.

At β = 2.1%, some qualitative changes occur (prompting a larger perpendicular box

size to ensure convergence)—most significantly, small KBM contributions start to appear in

the nonlinear frequencies. Typically, such behavior is caused by one or more subdominant

linear instabilities competing with the dominant mode nonlinearly, resulting in a dip of the

transport channels [18]. In Ref. [7], such mode interactions have been observed for the CBC,

while in the present TEM case, they explain the slightly lower transport at β = 2.1%. It

thus follows that βnonlin
crit ≈ 2.1%, nearly identical to the linear threshold.
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D. Zonal Flow Activity

Although TEM turbulence is known to often exhibit streamer activity, zonal flows may

also have an influence on transport levels to the point where they may become the primary

saturation mechanism (see, e.g., Refs. [26] and [24]). In the electrostatic potential, these

structures have constant amplitudes on flux surfaces and may perturb or even destroy ra-

dial streamers, thereby depriving the plasma of an effective transport mechanism and thus

lowering the radial transport levels. More quantitatively, it has recently been found [25]

for the electrostatic case that for ωT e/ωn
<
∼ 1, zonal flows can indeed significantly influence

TEMs. As ωT e/ωn ≈ 1.3 in the present case, the operation point is rather close to this limit.

Additionally, the ion temperature gradient is set to a finite value (unlike in Ref. [25]), and

finite-β effects may change the zonal flow dynamics.

A quantitative measure of the zonal flow strength is the (normalized) shearing rate,

ωs =
d2Φzon

dx2
. (4)

Here, Φzon is the zonal component of the electrostatic potential. Motivated by finite-

frequency corrections [29], a simple yet reasonably general condition for zonal flows to have

an impact on nonlinear saturation is met when the shearing rate exceeds the dominant linear

growth rate (here at kyρs = 0.4) by about an order of magnitude [30], ωs
>
∼ 10γ.

Fig. 6 shows the (rescaled) shearing rate as a function of the plasma β, with the linear

growth rate at kyρs = 0.4 also shown for comparison. Clearly, the shearing rate declines

much faster than γ, indicating that as β gets larger, the zonal flow activity becomes less

important. When comparing this finding with the (electrostatic) transport curves, it can be

conjectured that as β is increased, the heat transport is less inhibited by the zonal flows.

In order to put this finding on more solid footing, runs were performed where the zonal

component of the field was zeroed out. For the electrostatic case, this caused the transport

to increase by a few 10% while for β = 1.5%, the increase was only half as strong, indicating

that the impact of zonal flows is stronger for lower β values, which is in line with the shearing

rate behavior and its above interpretation.

As TEM turbulence tends to exhibit streamer-like features, it is not surprising that zonal

flows are not dominantly visible in the x-y plane, as can be seen in Figs. 7 and 8 which

show contours of the electrostatic potential for β = 0.01% and 1.75%, respectively. In the
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FIG. 6: (Color online) Shearing rate (red triangles, rescaled) and shear fluctuations (blue crosses)

for the TEM case. While it is declining more quickly than the growth rate (shown here for the

dominant kyρs = 0.4, black line), the shearing rate is larger by roughly an order of magnitude

throughout the TEM regime. In contrast, the shear fluctuations always remain much smaller than

the equilibrium shear ŝ = 0.796.

former plot, small streamer-like structures form a weak zonal flow—in the latter, however,

the zonal flow has clearly broken up. This is in line with the aforementioned statement that

zonal flow activity is reduced for higher β.

It is to be noted that this investigation may be thought of as an extension of parameter

space of the (electrostatic) work published in Refs. [26] and [24] where zonal flows in TEM

turbulence were regulated via adjustments in the gradients. As a high β diminishes zonal

flows, it can be conjectured that the parameter space where TEM turbulence is affected by

zonal flows may shrink with respect to simple electrostatic expectations.

Lastly, the shear fluctuation caused by magnetic perturbations is also included in Fig. 6,

s̃ = q0

R0

Bref

dBy

dx
. (5)

As their magnitude always remains significantly smaller than the equilibrium shear ŝ =

0.796, no significant influence is to be expected (see also Ref. [7]).

In the present case of TEM turbulence, it was found that the linear and nonlinear sim-

ulations exhibited qualitatively different behavior, which was explained by β-induced mod-

ifications to the zonal flow dynamics. The ballooning threshold, on the other hand, agrees
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FIG. 7: (Color online) Contours of the electrostatic potential for the TEM case in the electrostatic

limit (β = 0.01%) during the saturated phase. A weak zonal flow can be seen to comprise a number

of small, streamer-like structures.

well between linear simulations, nonlinear simulations, and the MHD value. Below, an ITG

scenario will be studied to see whether the above findings can be applied to a different type

of turbulence, as well.

IV. ITG TURBULENCE

A. Physical and Numerical Parameters

In Ref. [7], ITG turbulence was investigated at CBC parameters where mode interactions

of ITG modes with TEMs made it difficult to quantify the influence of different transport-

reducing mechanisms. To isolate ITG turbulence features from those of other microturbu-

lence types, an ITG operation point different from that of the CBC was selected for the

simulations presented in this section.
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FIG. 8: (Color online) Contours of the electrostatic potential for the TEM case at β = 1.75%. In

this β range, the zonal flow activity which was present at lower β has become all but negligible,

which is reflected by the absence of vertical structures in this plot.

To this end, the gradients were adjusted from the TEM case to

ωT i = 8 , ωT e = 0 , ωn = 1 ,

leaving only ITG modes (and KBMs at higher β) unstable. All other physical parameters

were left identical to those of the TEM case. The parallel hyperdiffusion coefficient was

set to ǫz = 8 for both linear and nonlinear runs. Again, checks were performed linearly

and nonlinearly which determined convergence in all coordinates and the parallel hyperdif-

fusivity electrostatically and at β = 0.5%. Since throughout a significant β range, very little

transport is observed, it is difficult to identify a good point for testing convergence—while at

0.5%, there is still some transport remaining, a sometimes burst-like nature of the respective

simulations was observed, making it harder to obtain good statistics. Therefore, convergence

was achieved to only <
∼ 20% in some cases due to bursts (<∼ 10% for the electrostatic tests).
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FIG. 9: (Color online) Linear growth rates for the ITG scenario β scan. Displayed are kyρs = 0.1

(black stars), 0.2 (red diamonds), 0.3 (blue squares), and 0.4 (pink crosses). The left part of the

plot exhibits dominant ITG modes up until they are stabilized by the increasing β. After crossing

the corresponding threshold, a KBM grows quickly.

B. Linear Results

The linear growth rates and frequencies (see Figs. 9 and 10, respectively) follow the

general expectations: the ITG mode is getting weaker as β is increased; there is a small

gap where, essentially, no instability occurs; and at a critical β, the KBM starts to grow,

accompanied by a jump in the frequency.

Much like in the CBC, the KBMs set in first at around kyρs = 0.2 − 0.3 (see Fig. 11),

coinciding with the spectral maximum of both the growth rate and the nonlinear transport.

Note that βcrit = 1.8%, while βMHD
crit = 2.44%—KBMs may be excited at significantly lower β

than one may expect from the MHD prediction. This finding also agrees with the CBC data

qualitatively, while here, the reduction is even stronger at ∼ 26%, highlighting the necessity

of performing at least linear simulations to determine βcrit rather than relying on the MHD

estimate.

Generally, one is to expect such behavior in the presence of an ion temperature gradient

[31] which for the ITG case is even higher than in the CBC. On the other hand, it will

remain to be seen whether the KBM threshold is also lowered that much nonlinearly, as will

be determined below.
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FIG. 10: (Color online) Linear frequencies for the ITG scenario. β scan. Displayed are kyρs = 0.1

(black stars), 0.2 (red diamonds), 0.3 (blue squares), and 0.4 (pink crosses). In the lower half of the

β range, a clear ITG signature is found, while in the higher half, typical KBM frequencies appear.

FIG. 11: (Color online) Spectra of the KBM critical β values (black stars). Note that in the current

ITG scenario, βcrit and βdom
crit are identical by definition. For reference, the MHD estimate is shown

as a blue dashed line.

C. Nonlinear Transport

In Fig. 12, nonlinear transport levels are shown for the ITG case. Qes
i displays behavior

qualitatively similar to that of the linear growth rate γ. For the declining ITG branch,
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FIG. 12: (Color online) Transport levels for the ITG case β scan. Black triangles denote the ion,

blue stars the electron electrostatic heat flux; pink squares the electron and cyan crosses the ion

electromagnetic heat flux; and red diamonds the electrostatic particle flux. From β = 1.9%, the

turbulence is of KBM type.

however, the slope of γ is much steeper, suggesting that much like in the CBC, nonlinear

processes inhibit radial heat transfer. Since ωT i dominates the other gradients, the relative

contributions of Qes
e and Γes are small. In particular, due to ωT e = 0, the electron magnetic

transport Qem
e is negligible over most of the β range and only starts to grow once the

KBM threshold is crossed at βnonlin
crit = 1.9%, at which point even its ion counterpart Qem

i

becomes non-negligible, but with opposite sign, more than canceling out the impact of

the former. Note that low magnetic transport does not necessarily correspond to a small

magnetic fluctuation level, as shall be discussed later.

Again, the time evolution of the dominant heat fluxes for the simulation at β = 1.5%

is shown exemplarily, see Fig. 13. At this β, the ITG turbulence is essentially stabilized,

leading to the quiescent behavior observed here.

The nonlinear KBM threshold agrees well with the linear kinetic value βcrit = 1.8%.

Since this finding applies to all cases investigated so far – CBC, TEM, ITG – it is concluded

that the linear and nonlinear KBM thresholds are the same and that linear studies are thus

sufficient to obtain KBM (in)stability regimes. In contrast, βMHD
crit , while useful as an initial

estimate, is too imprecise and may easily predict KBM stability where the actual threshold
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FIG. 13: (Color online) Nonlinear heat fluxes for the ITG simulation at β = 1.5% as a function of

time. The ion electrostatic heat flux Qes
i is denoted by a solid black line, its electron counterpart

Qes
e by a dotted blue line. After an initial linear phase, nonlinear saturation is achieved.

has already been crossed.

As mentioned above, nonlinear mode interaction cannot cause the phenomenon of strongly

declining transport in the present case, as no additional linearly unstable modes were found

which may have been able to compete with the dominant ITG mode. Thus, a different

explanation is required, again prompting a look at zonal flows: Fig. 14 shows the (rescaled)

shearing rate along with the linear growth rate at kyρs = 0.3. The former is found to decline

much more slowly than the growth rate. Thus, with ωs ≈ 10γ and ωs/γ increasing with β,

zonal flows become more important for larger values of β. From the data at hand, however,

it cannot be concluded whether this alone is sufficient to explain the sharp drop in the

nonlinear transport.

Interestingly, just as in the TEM case, the zonal flow strength (as quantified, e.g., by the

shearing rate) decreases slowly with β. As is described, e.g., in Ref. [32], the (electrostatic)

Reynolds stress – which tends to be largely responsible for the nonlinear generation of zonal

flows – can be (partially) offset for larger β values by the (electromagnetic) Maxwell stress.

At the same time, the Reynolds stress itself may simply be reduced with increasing β. For

gyrofluid simulations of edge turbulence [33, 34], both of these tends have been reported.

Although no such measurements were done here, the aforementioned findings regarding the
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FIG. 14: (Color online) Shearing rate (red triangles, rescaled) and shear fluctuations (blue crosses)

for the ITG case. The growth rate (shown here for the dominant kyρs = 0.3, black line) is

declining more rapidly than the shearing rate, while the latter is larger by roughly an order of

magnitude, causing zonal flows to gain in influence with increasing β. As in the TEM case, the

shear fluctuations always remain much smaller than the equilibrium shear.

transport behavior of core ITG or TEM turbulence qualitatively agree with such scenarios.

Regarding nonlinear ITG runs, a current discussion about nonlinear simulations at β <
∼

βcrit is focusing on why it is fairly hard to achieve saturation at CBC parameters. For

that case, it has been shown that several codes agree on a runaway β value above which

saturation is not achieved [35] for a wide range of initial conditions (including the standard

initial conditions employed in the present work). The runaway β threshold, however, does

not coincide with the nonlinear KBM threshold—instead, the latter agrees very well with

the linear critical β [7]. To avoid any confusion, it is to be noted that hyperdiffusion has no

impact on the runaway phenomenon. Techniques or adjustments to avoid transport runaway,

like using initial conditions close to the expected saturated regime – e.g., by continuing a

low-β run at higher β – were used in Ref. [7] but were not required for any of the simulations

performed in the context of the present work.

In the present work, the parameter regimes are sufficiently different from the CBC that no

such sub-βcrit runaway phenomena were observed—with the exception of runaway transport

at large times (i.e., after a reasonably long saturated regime, unlike the runaways observed
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for CBC parameters) for the single point at highest β and ωT i in Fig. 15. Only when the

KBM threshold was crossed did saturation become difficult. The results presented above

may be used to rule out or possibly substantiate certain theories as to where the runaway

phenomenon may originate from.

D. β-Modified Critical Gradient Upshift

In order to understand the transport reduction, an analysis of both the linear and the

nonlinear critical temperature gradients was performed. It is well-established that there

exists an upshift of the critical ion temperature gradient when going from linear to nonlinear

ITG simulations, the so-called Dimits shift [15]. Recently, the Dimits shift was found to be

fairly robust in simulations with realistic geometries which also included finite-β effects [36].

However, no systematic study exists as to how the critical gradient upshift may change when

β is varied.

In Fig. 15, the results of a corresponding study are shown, and the nonlinear critical

gradients are obtained. Those, along with their linear counterparts, are plotted in Fig. 16 as

functions of β. In the linear case, only a small, linear increase is observed over the displayed

β range. This increase goes hand in hand with the growth rate reduction with increasing

plasma β. Comparing this data with the nonlinear results, however, one finds significant

differences. Where ωlin
T i,crit increases only by about 14%, the increase becomes 61% for the

nonlinear ωnonlin
T i,crit. The resulting upshift is thus amplified by a factor of 5.4 compared with

the electrostatic limit. As both standard and additional diagnostics revealed no qualitative

changes or significant jumps in this β range, the sudden and rather drastic increase of ωnonlin
T i,crit

when going from β = 0.25% to 0.5% is unexpected—the only connection to other data that

was observed is its link with the steeper-than-linear decline of the transport with β.

It should be emphasized that while measurements of the nonlinear critical gradient are

prone to significant uncertainties – mostly due to burst-like phenomena in and near the

Dimits regime that can make it difficult to obtain meaningful statistics of time-resolved

data – the results presented here leave no doubt that a radically increased upshift occurs at

high β. The precise functional dependence of this upshift on the plasma pressure, however,

cannot be deduced from the data at hand.

Note that in the present case, nonlinear ITG stabilization via increasing β leads to com-
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FIG. 15: (Color online) Critical gradient study for the ITG case β scan. As functions of the ion

temperature gradient, the electrostatic ion heat flux is plotted for different values of β: 0.01%

(black stars), 0.25% (red diamonds), 0.5% (blue triangles), 0.75% (pink squares), and 1.0% (cyan

crosses; the outlier was excluded for the fit). The linear critical gradients for these β values are

included for reference as dotted vertical lines (the order from left to right is the same as that of

the above (ascending) β values). Most notably, a significant gap exists between the β = 0.25% and

0.5% nonlinear critical gradients.

plete suppression of microturbulence, whereas in the CBC scenario, once the ITG level

reaches that of the TEM, the latter takes over.

Defining the slope α∆ω = ∂Qes
i /∂ωT i of the gradient-resolved transport curves shown in

Fig. 15, one obtains α∆ω ∼ 60 for the electrostatic limit and α∆ω ∼ 45 for all other β

values. Consequently, there is little change with regard to how sensitive to small gradient

adjustments the system is when near the critical gradient. In other words, β has only a

rather small effect on the profile stiffness for the present scenario.

After this investigation of the influence of β on primarily the electrostatic transport

channels, the next section focuses on the magnetic flutter transport of electrons due to field

line perturbations.
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FIG. 16: (Color online) The critical ion temperature gradients are plotted for the linear (red

squares) and the nonlinear (blue triangles) case as functions of β, as is the difference between those

quantities (black stars). The initially small difference grows to reach values > 2, enlarging the

Dimits regime radically.

V. VERIFYING A MODEL FOR THE MAGNETIC TRANSPORT

The heat flux of the electrons caused by their motion along radially perturbed field lines

is predicted well by a Rechester-Rosenbluth-type ansatz [3, 37] for CBC parameters, as was

shown in Ref. [7]. This model reads

Qem
e =

〈q̃e‖B̃x〉

Bref

, (6)

q̃e‖ = −ne0χe‖

(

dT̃e‖

dz
+

B̃x

Bref

dT̃e‖

dx
+

B̃x

Bref

dTe0

dx

)

, (7)

where tildes indicate fluctuating quantities, B̃x is the radial component of the magnetic

field fluctuation, T̃e‖ is the fluctuating part of the parallel electron temperature, and q̃e‖ is

the parallel electron heat conductivity. Three terms can be identified in the large brackets

which – in order – shall be labeled T1, T2, and T3, respectively. Together, they describe the

parallel temperature gradient along the perturbed field lines. Note that in the case of linear

simulations, the nonlinear term T2 drops out. One is left with the parallel diffusivity χe‖. It

is taken to be [7, 38]

χe‖ = q0R0

(

Te

me

)1/2

. (8)
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FIG. 17: (Color online) Nonlinear phases governing the magnetic transport. Plotted from left to

right are the phases of: the magnetic potential A‖ and the parallel temperature T‖, the magnetic

potential and the parallel heat conductivity q‖, as well as T‖ and q‖, corresponding to terms T2,

T3, and T1, respectively (see the text).

FIG. 18: Scaling of the nonlinear magnetic transport in the TEM case. The quadratic dependence

on β reflects the results shown in Eq. 10.

To gauge the applicability of the model to the TEM case, it is instructive to look at the

phase relations governing the efficiency of the aforementioned terms. In linear simulations,

the phase between T̃e‖ and q̃e‖ is ∼ −π/4, while B̃x and q̃e‖ have a near-random phase
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relation, suggesting T1 ≫ T3. As will be shown further below, B̃x ∝ β, and therefore one

may predict the quasilinear transport ratio to scale as

Qem
e

Qes
e

∝ β . (9)

This scaling is found to predict the simulation behavior very well in both the CBC and the

TEM case.

In Fig. 17, the nonlinear phase relations are shown. T̃e‖ and q̃e‖ have a random relative

phase, while the phases obtained for the other two terms are similar, suggesting T1 ≪ T2 ∼

T3. However, the relative magnitudes of those terms are governed not only by their relative

phases but also by the amplitudes of their respective constituents. As becomes evident from

Fig. 18, term T3 must dominate in order to retain the quadratic scaling (much like in the

CBC), and the resulting electron electromagnetic heat diffusivity reads

χem
e = ηTEMq0R0

(

Te

me

)1/2
〈B̃2

x〉

B2
ref

, (10)

where ηTEM is a scaling factor of order unity which depends on the turbulence regime.

Comparing the model to χem
e as obtained from the simulations directly, it is found that

ηTEM ∼ 0.5.

Note that for the ITG case presented in this work, the electromagnetic electron heat

transport is negligible since in that scenario, the corresponding gradient is zero. Therefore,

no evaluation of the magnetic transport model can be performed here.

VI. MAGNETIC FLUCTUATION STRENGTH

Particularly in the context of fast particle diffusion (e.g., the redistribution of beam ions in

Neutral Beam Injection heating scenarios [39]), it is important to know the amplitude of the

magnetic field perturbation, primarily its radial component. Expressions have been derived

for the electrostatic and electromagnetic particle diffusivities in the case of both trapped

and passing fast tracer particles [40], and for the electromagnetic diffusivity of passing fast

ions,

Dem
fi,p ≈

(

R

ρs

Bx

Bref

)2
λc

6η2
, (11)

with the radial correlation length λc of the magnetic perturbations and the pitch angle

η. In the same work, it was shown that these expressions are in excellent agreement with
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TABLE I: Coefficients for the radial and toroidal magnetic field fluctuation amplitude, specified

for different parameter cases. Within a single regime – i.e., ITG or TEM – only little change is

observed.

case Cx Cy

ITG 0.73 1.46

CBC: ITG 0.79 1.45

TEM 0.16 0.38

CBC: TEM ∼ 0.4 ∼ 0.7

passive particle species behavior in the aforementioned CBC simulations. To compute the

diffusivities quantitatively, a coefficient for the (linear) dependence of Bx ≡ B̃r on β is

required, however, which may be obtained from a nonlinear β scan. For the CBC, it reads

Bx

Bref

= C̄xβ̄
ρs

R0

= Cx
β

βcrit

ρs

R0

, C̄x = 0.6 , Cx = 0.79 , (12)

with β̄ = 100β. Note that the second formulation, which was used in Ref. [41], is

somewhat more convenient in the present case, as its value does not change significantly

within one instability regime, as can be inferred from Tab. VI which lists the coefficients

for all four cases: TEM, ITG, CBC: ITG regime, and CBC: TEM regime. Additionally,

the respective coefficients for By/Bref are provided. Since that value generally is more

conveniently accessible, βMHD
crit was used for βcrit; thus, should one aim to use the kinetic

threshold instead, the ITG coefficients would be slightly lowered. In this form, it becomes

clear that the fluctuation strength primarily depends on the turbulence type.

To obtain an indication how Bx depends on other physical quantities, simulations at

a different temperature ratio were performed. Cx,y should ideally be obtained from full β

scans; however, certain trends may still be gathered from single β points.

Decreasing the ion temperature to Ti = 0.5 leaves Bx unchanged (at µ = 40) while

increasing Qes
i to 123, nearly twice the base value, as is to be expected. It may thus be

tentatively concluded that Bx is independent of Ti. A more elaborate study would be

required if one were to determine dependencies and possibly obtain scaling exponents for all

physical parameters.
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VII. CONCLUSIONS

In this paper, β scans of both TEM and ITG turbulence were presented to provide a basis

for analyses of transport behavior and especially differences between the linear expectations

and the nonlinear results.

For the TEM case, a slow decline of the linear growth rate with β was found to change

to a moderate increase of the nonlinear transport. At the same time, the shearing rate was

falling off with respect to the growth rate, indicating that a reduction in zonal flow strength

was responsible for the transport β scaling, thereby explaining the discrepancy.

Linearly, the ITG growth rate was stabilized by an increasing β, up to the point where the

mode became completely stable before the KBM threshold was reached. While qualitatively,

this picture carried over to the nonlinear simulations, the decline occurred much faster.

Again, zonal flows contribute to this behavior—the shearing rate decreases more slowly

than the growth rate with β, thus inhibiting the transport. To quantify this effect, a study

of the critical gradients was performed. The linear ITG threshold experienced only small

modifications throughout the entire β scan, while the nonlinear critical gradient increased

rapidly, thus expanding the Dimits regime and stabilizing ITG turbulence over a wide range

of β values. As changes to critial gradients are of great importance to experimental studies,

this effect is one of the major findings of this work.

The impact of zonal flows in both scans seems to be fundamentally different. This,

however, is the result of different linear growth rate behaviors, while the shearing rate

displays rather a similar decline in both cases. Another similarity is found in the good

agreement of the linear and nonlinear KBM threshold. It is to be noted, however, that the

kinetic βcrit is significantly smaller than the MHD ballooning threshold in the ITG case.

The Rechester-Rosenbluth-type model was then successfully applied to the TEM case,

corroborating its general applicability and hinting at its lack of sensitivity to unfavorable

deviations in the phase relations. Like in the CBC, a quadratic scaling of the transport with

β was obtained.

For both that model and the redistribution of fast particles in magnetic turbulence, the

radial magnetic field fluctuation level Bx/Bref is of great importance. It was found that by

expressing that quantity in terms of the KBM threshold βcrit, it could be specified indepen-

dently of the gradient choice within a single turbulence regime for the cases investigated
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here.
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