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Abstract

The Pfirsch-Schlüter transport of impurities is calculated for stellara-
tor geometry. Contrary to the tokamak case, where the only contribution
to the particle flux arises from friction between different species, in a
stellarator there is another source of impurity transport due to pressure
anisotropy. However, the pressure anisotropy term is usually smaller than
the friction term, so that the impurity particle flux is comparable to that
in a tokamak. The pressure anisotropy is nonetheless important as it
causes the transport to be non-ambipolar and thereby determines the ra-
dial electric field. The presence of impurities therefore affects the radial
electric field in a stellarator. The heat flux is also affected qualitatively
by impurities.

I Introduction

The accumulation of highly charged impurity ions poses a potentially serious
threat to fusion plasma performance, as was recognized already 50 years ago [1].
The problem is that collisional transport processes tend to drive such impurities
into the plasma, against the bulk plasma density gradient. Theoretically, the
problem is particularly severe in stellarators because of their lack of intrinsic
ambipolarity. In tokamaks, the collisional transport is independent of the radial
electric field to lowest order in a gyroradius expansion. In stellarators, however,
this is not the case and the transport of each species is, in general, proportional
to a linear combination of all the “thermodynamic forces”

Aa1 ≡ dlnpa

dψ
+
ea

Ta

dφ

dψ
,

Aa2 ≡ dlnTa

dψ
,

where pa denotes the pressure of species a, Ta its temperature, φ the electrostatic
potential, and ψ is a flux function serving as a radial coordinate. Specifically,
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for impurities (a = z) with high charge number, Z � 1, there is a term in the
transport proportional to

Az1 =
dlnpz

dψ
+
Ze

Tz

dφ

dψ
.

The radial electric field in the second term on the right normally points inward
in stellarators (“ion root” operation) and since this term contains the large
multiplier Z � 1, it will cause a large inward transport.

In the present paper, we calculate the stellarator impurity transport in the
one case where it is possible to do so fully analytically, namely, in the limit
of short mean free path, the Pfirsch-Schlüter regime. This limits the appli-
cability of the calculation to cool edge plasmas, but has the appeal that the
calculation can be carried out without any further approximations (other than
the usual gyroradius expansion). For lower collisionalities, the transport needs
to be calculated numerically, which is generally done with numerical codes us-
ing simplified collision operators. The analytical results of the present paper
should be useful for the qualitative insight they offer and as a benchmark on
the codes, enabling for instance the accuracy of simplified collision operators to
be assessed.

Stellartor impurity transport has been considered in the literature before,
mainly in the framework of the Hirshman-Sigmar moment formalism [2, 3]. The
present calculation, which is based on the direct expansion of the drift kinetic
equation by Hazeltine and Hinton [4], retains some terms of geometrical nature
that are otherwise neglected, see, e.g. [5], and is used here to derive explicit
transport coefficients.

II Expansion of the kinetic equation

We consider a plasma in the Pfirsch-Schlüter regime consisting of electrons,
hydrogenic bulk ions and a single species of highly charged impurities with
charge Z. Indices i refer to the bulk ions, whereas indices z represent impurity
quantities. To take account for the geometry of the magnetic field and without
employing a specific spatial coordinate system, we define a geometry-dependent
quantity u in the following way. Consider the equilibrium current j0 satisfying
j0 ×B = ∇p0, where p0 is the equilibrium pressure. Let u be defined via

h ≡ j0

p′0
=

1
p′0

(
b×∇p0

B
+ j0‖b

)
≡ b×∇ψ

B
+ uB,

where b is the unit vector along the magnetic field and a prime denotes derivation
with respect to the radial spatial coordinate ψ. Using ∇ · h = 0, we find

∇‖u =
1
p′0
∇‖
(
j0‖
B

)
=

2
B2

(b×∇ψ) ·∇lnB,
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which we will employ frequently. Here, ∇‖ = b ·∇ is the gradient along the
magnetic field.

The radial impurity transport is given by [6]

〈Γz · ∇ψ〉 =
〈∫

fzvd · ∇ψd3v

〉
, (1)

where the drift velocity vd is

vd =
b×∇φ
B

+
(
v2
⊥
2

+ v2
‖

)
b×∇lnB

Ω
,

and 〈..〉 denotes an average over the flux surface, defined as the volume average
between two neighboring flux surfaces. As we will show in Sec. III, this equation
can be rewritten as

〈Γz · ∇ψ〉 =
1
ez

(〈
uBRz‖

〉
+
〈(

B

2
∇‖u+ u∇‖B

)
(pz‖ − pz⊥)

〉)
, (2)

where Rz‖ is the impurity-ion friction force and terms of 2nd order in δi ≡
ρi/L have been neglected, ρi being the ion Larmor radius and L the plasma
dimension. The perpendicular and parallel pressures p⊥ and p‖, respectively,
are defined as (

p‖

p⊥

)
=

∫
m

(
v2
‖

v2
⊥
2

)
fd3v.

The flow velocities are, as usual in neoclassical theory, assumed to be one order
smaller than the thermal velocities, Va ∼ δavth,a, which is the only possibility in
most stellarator configurations [7]. We can thus conclude that the particle flux
consists of two essentially different components: one driven by parallel friction
and one by pressure anisotropy [2]. As we shall see, the former contribution
dominates in the Pfirsch-Schlüter regime, but the latter is nonetheless important
since it is not intrinsically ambipolar and therefore determines the radial electric
field [8].

In order to calculate the friction force and the pressure anisotropy, we solve
the drift kinetic equation and order as usual in δi to find in 0th order

Ca(fa0) = v‖∇‖fa0 ,

the solution to which is a stationary Maxwellian, and in 1st order

Ca(fa1) = v‖∇‖fa1 + vd · ∇fa0 +
ea

Ta
v‖fa0∇‖φ. (3)

The independent coordinates in velocity space are εa = mav
2/2 + eaφ and

µa = mav
2
⊥/(2B). We solve this equation by making a subsidiary expansion in

the shortness of the mean-free path, ∆i ≡ λii/L� 1, where λii is the ion mean
free path [6, 9]. The mean free paths of the electrons and impurity ions are then
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automatically short, too, unless their temperatures are very much higher than
the ion temperature. Superscript indices correspond to this expansion whereas
subscript indices express the ordering in δi. In lowest order,

Ca(f (−1)
a1

) = 0. (4)

Note that the expansion starts with −1 as the collision term in lowest order
is proportional to ∆−1

i . The homogeneous solution for the general linearized
collision operator yields for the −1st order distribution function the shifted
Maxwellian

f (−1)
a1

=

(
p

(−1)
a1

pa
+
ma

Ta
v‖V

(−1)
a‖

+
(
x2

a −
5
2

)
T

(−1)
a1

Ta

)
fa0 ,

with equal flow velocities V (−1)
i‖

= V
(−1)
z‖ and temperatures T (−1)

i1
= T

(−1)
z1 .

x2
a ≡ mav

2/(2Ta) is the normalized velocity. The 0th order equation becomes

Ca(f (0)
a1

) = v‖fa0

(
ea

Ta
∇‖φ

(−1)
1 +

∇‖p
(−1)
a1

pa
+
(
x2

a −
5
2

)
T

(−1)
a1

Ta
+
ma

Ta
∇‖
(
v‖V

(−1)
a‖

))
.(5)

Employing momentum conservation, one can show that the −1st order flow
velocities vanish for all particle species, which is done in the appendix. Defining
the parallel thermodynamic forces as

A(−1)
a1‖
≡
∇‖p

(−1)
a1

pa
+
ea

Ta
∇‖φ

(−1)
1 , A(−1)

a2‖
≡
∇‖T

(−1)
a1

Ta
,

the Spitzer problem (5) becomes

Ca(f (0)
a1

) = v‖fa0

(
A(−1)

a1‖
+
(
x2

a −
5
2

)
A(−1)

a2‖

)
. (6)

We follow Braginskii’s ansatz [10] and decompose the distribution functions in
Sonine polynomials L(m)

j ≡ 1
j!

ex

xm
dj

dxj

(
xj+me−x

)
as

f (0)
z1

=
mz

Tz
v‖fz0

∑
k

azk
L

(3/2)
k (x2)

f
(0)
i1

=
mi

Ti
v‖fi0

∑
k

aik
L

(3/2)
k (x2). (7)

Defining the following matrix elements

M jk
ab =

τab

na

∫
v‖L

(3/2)
j (x2)Cab

[
ma

Ta
v‖L

(3/2)
k (xa)fa0 , fb0

]
d3v,

N jk
ab =

τab

na

∫
v‖L

(3/2)
j (x2)Cab

[
fa0 ,

mb

Tb
v‖L

(3/2)
k (x2)fb0

]
d3v,
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which can be found in [6, 10], we can rewrite (6) as∑
b,k

ma

Taτab

(
M jk

ab aak
+N jk

ab abk

)
= A(−1)

a1‖
δj0 −

5
2
A(−1)

a2‖
δj1

where τab = 3
√
π/(4ν̂ab) = 3π3/2ε20mav

3
th,a/(nbe

2
ae

2
b lnΛ) and lnΛ is the Coulomb

logarithm. Due to the symmetry properties of the matrix elements, the matrix
does not have full rank, and thus a solubility condition for the values of the
parallel thermodynamic forces on the right-hand side exists. This condition,
making the j = 0 equations for ions and impurities linearly dependent, reads∑

a

paA
(−1)
a1‖

= 0

and follows directly from momentum conservation. Thus, A(−1)
z1‖ can be ex-

pressed as − pi

pz
A

(−1)
i1‖

. Assuming equal equilibrium temperatures Ti0 = Tz0 ,
which is realistic for usual values of Z, and using Eq. (4), one can show that
A

(−1)
z2‖ = A

(−1)
i2‖

, which leaves only two unknowns on the right-hand side of the
system of equations. The coefficients can then be written as functions of the
bulk ion quantities in the form

ai0 − az0 =
Ti

miν̂ii

(
α0A

(−1)
i1‖

+ β0A
(−1)
2‖

)
aaj =

Ti

miν̂ii

(
αajA

(−1)
i1‖

+ βajA
(−1)
2‖

)
, j ≥ 1. (8)

In the limit of large Z, solving the matrix problem becomes especially easy
since the impurity-ion collision operator can be approximated by

Czi(f
(0)
z1 ) = − Rzi

mznz
· ∂f

(0)
z1

∂v
+

mini

mznzτiz

∂

∂v
·

(
(v − V (0)

z )f (0)
z1 +

Ti

mz

∂f
(0)
z1

∂v

)
and yields

Czi(f (0)
z1

) = v‖fz0A
(−1)
z1‖

,

which cancels the first expression on the right, and the remaining equation

Czz(f (0)
z1 ) = v‖fz0

(
x2 − 5

2

)
A

(−1)
2‖

depends only on impurity parameters and can be solved analytically for az1 and
az2 to yield

az1 =
75
32

√
π

2
A(−1)

z2‖

Tz

mz ν̂zz

az2 = −5
8

√
π

2
A(−1)

z2‖

Tz

mz ν̂zz
.
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The ion problem can then be solved with the impurity coefficients given.
Exploiting the orthogonality properties of the Sonine polynomials, one can

relate the coefficients to the parallel flow velocities V (0)
a‖ and heat fluxes q(0)

a‖ ,

aa0 =
1
na

∫
v‖f

(0)
a1
d3v = V (0)

a‖

aa1 =
1
na

∫
v‖L

(3/2)
1 f (0)

a1
d3v = −2

5
q

(0)
a‖

pa
.

Using these relations and neglecting terms of order nz/ni, the two unknown
quantities can be expressed as

A
(−1)
i1‖

= −miν̂ii

Ti

(2/5)β0

∑
a
q

(0)
a‖ /Ta + βi1ni

(
V

(0)
i‖
− V (0)

z‖

)
(αi1β0 − α0βi1)ni

A
(−1)
2‖ =

miν̂ii

Ti

(2/5)α0

∑
a
q

(0)
a‖ /Ta + αi1ni

(
V

(0)
i‖
− V (0)

z‖

)
(αi1β0 − α0βi1)ni

. (9)

The remaining task is to find expressions for the flow velocities and heat fluxes,
which can be obtained from the condition of particle and energy conservation.
From the 0th order velocity moment of (3), we obtain

B∇‖

(
naV

(0)
a‖

B
− pa

ea
Aa1u

)
= 0,

and from the energy moment

∑
a

B∇‖

(
q

(0)
a‖

TaB
− 5

2
pa

ea
Aa2u

)
= 0.

Due to the assumption of equal equilibrium temperatures, Ai2 ≈ Az2 . Thus,

V (0)
a‖

=
Ta

ea
Aa1uB +Ka(ψ)B,

∑
a

q
(0)
a‖

Ta
=

5
2

∑
a

pa

ea
A2uB + L(ψ)B, (10)

where Ka(ψ) and L(ψ) are integration constants, for which we can find ex-
pressions by noting that 〈B∇‖M〉 vanishes for all scalars M , and therefore the
constraints 〈

B
∑

a

q
(0)
a‖

Ta

〉
= 0,

〈
B
(
V

(0)
i‖
− V (0)

z‖

)〉
= 0
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must hold. Another constraint can be obtained from the flux-surface average of
B times the velocity moment of the 1st order equation, which reads

Ca(f (1)
a1

) = v‖∇‖f (0)
a1

+ vd · ∇fa0 +
ea

Ta
v‖fa0∇‖φ

(0)
1 . (11)

Exploiting momentum conservation, we find the condition∑
a

〈
∇‖B

(
pa‖ − pa⊥

)〉
=

∑
a

〈
∇‖B

∫
mav

2P2(ξ)f (1)
a1
d3v

〉
= 0, (12)

where P2(ξ) is the 2nd Legendre polynomial and ξ = v‖/v. Due to the orthog-
onality properties of the Legendre polynomials, only the P2 components of the
distribution functions contribute. These first occur in 1st order in the mean-
free path expansion, so Eq. (11) must be solved. This involves solving Spitzer
problem of the form

Ca(P2(ξ)fa0gaj
) = (−1)jP2(ξ)x2fa0L

(3/2)
j (x2), (13)

which defines the functions gaj
. These are qualitatively different from the type

of Spitzer problem occurring before, which involved P1 instead of P2. The results
(for the first few coefficients) can be found in [11]. Defining{

gaj

}
≡ 5

2
γaj

ν̂aa
,

where {A} = 8/(3
√
π)
∞∫
0

Ax4exp(−x2)dx denotes an average over velocity space,

and using Eqs. (12), (13) and the solutions for the coefficients aaj , we find the
expressions for the integration constants to read

L(ψ) = −5
2

∑
a

pa

ea
Aa2

〈uB2〉
〈B2〉

Kz(ψ) =
Ti

ei

(
Ai1 −

1
Z
Az1

)
〈uB2〉
〈B2〉

+Ki(ψ)

Ki(ψ) = −Ti

ei

(
Ai1G1(ψ) +Ai2

γi1

γi0

(
G1(ψ)− 〈uB

2〉
〈B2〉

)
+
γi2

γi0

((
Ai1 −

1
Z
Az1

)
η2 +Ai2η1

)(
G1(ψ)−

〈
uB2

〉
〈B2〉

+
1
3

〈
B
2∇‖u∇‖B

〉〈
(∇‖B)2

〉 ))

where G1(ψ) ≡ 〈∇‖B(u∇‖B +B∇‖u/2)〉/〈(∇‖B)2〉 and

η1 =
α0βi2 − β0αi2

αi1β0 − α0βi1

,

η2 =
αi1βi2 − βi1αi2

αi1β0 − α0βi1

.
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For simplicity, the expansion was truncated after two components and the im-
purity pressure anisotropy, being much smaller than the ion pressure anisotropy,
was neglected in (12). The coefficients γaj

are given in the appendix. Since the
equilibrium temperatures of the ions and impurities are assumed to be equal,
the difference between the total temperatures is small (of the order δi), and
therefore it is not necessary to distinguish between these two quantities.

III Particle transport

In this section, we calculate the radial impurity particle flux (1). Inserting the
drift velocity, we find

〈Γz · ∇ψ〉 = 〈nz(uB − h) · ∇φ〉 − 1
ez

〈(
pz⊥ + pz‖

) B
2
∇‖u

〉
.

On the other hand, we can write

〈
eznz0uB∇‖φ

〉
=

〈
ezuB

∫
mz

Tz
v2
‖fz0d

3v∇‖φ
〉

= −
〈
ezuB

∫
v2
‖∇‖fzd

3v

〉
+
〈
uBRz‖

〉
=

〈
uBRz‖

〉
+
〈
ezpz‖B∇‖u

〉
+
〈
ezuB(pz‖ − pz⊥)∇‖lnB

〉
,

and thus Eq. (2) follows.
If we estimate the magnitude of the two terms contributing to the impurity

flux relative to each other, we find that

pressure anisotropy term
friction term

∼ ∆2

Z4
� 1.

The friction term thus dominates strongly, and not only in the ∆ expansion, as
expected from the order in which friction and pressure anisotropy occur, but
also by a factor Z4, which becomes large even for relatively small values of the
impurity charge Z. Therefore, the impurity pressure anisotropy term will be
neglected in the transport calculation. The friction part can be calculated to be〈
uBRz‖

〉
= −

〈
uBRi‖

〉
= −

〈
uBpiA

(−1)
i1‖

〉
= − mipiν̂ii

ei(αi1β0 − α0βi1)

(〈
u2B2

〉
−
〈
uB2

〉2
〈B2〉

)(
βi1

(
Ai1 −

1
Z
Az1

)
+ β0A2

)
.

The entire effect of the magnetic field geometry is contained in the factor(〈
u2B2

〉
−
〈
uB2

〉2
〈B2〉

)
,
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which is positive by the Schwartz inequality. In the limit of large Z and for
Zeff = 2, this yields

〈
uBRz‖

〉
= −mipiν̂ii

ei

(〈
u2B2

〉
−
〈
uB2

〉2
〈B2〉

)(
0.50

(
Ai1 −

1
Z
Az1

)
− 0.41A2

)
.

IV Ambipolarity

In a stellarator that is not quasisymmetric, the radial electric field is not arbi-
trary but is instead set by the condition that the transport should be ambipolar
[8]. The important part of the transport in this respect is the pressure anisotropy
term as friction is intrinsically ambipolar. Since the pressure anisotropy terms
scale as pa/ν̂aa and the impurities are much more collisional than the bulk ions
due to their higher mass and charge, the impurity term is only a small correc-
tion to the ion pressure anisotropy and can therefore be neglected. The radial
electric field is nevertheless affected by the presence of impurities, because the
Equation (11) that determines the pressure anisotropy of the bulk ions contains
the collision operator Ciz. The pressure anisotropy therefore depends on Zeff .
In the limit Zeff − 1 � 1, the radial electric field is equal to that in a pure
plasma and is given in Ref. [5]. In the opposite, Lorentz limit (Zeff � 1), the
ion collision operator reduces to a simple pitch-angle scattering operator,

Ci(f
(1)
i1

) ≈ Ciz(f (1)
i1

) = νiz

(
L(f (1)

i1
) +

mi

Ti
v‖Vz‖fi0

)
.

As the Legendre polynomials are eigenfunctions of this operator, the Spitzer
problems (13) can be solved analytically in this limit, which allows comparing
these results with the results in a pure plasma to estimate the effect of the
impurities. The corresponding coefficients are given in Appendix A. The part
of f (1)

i1
proportional to P2 is then found to read

f
(1)
i1
|P2 = − 1

3νiz

(
v‖∇‖f

(0)
i1

+ vd · ∇fi0

)
|P2 ,

where

vd · ∇fi0 |P2 = −ma

3ea
v2P2(ξ)fi0(Ai1 − L

(3/2)
1 (x2)Ai2)

B

2
∇‖u

and v‖∇‖f
(0)
i1
|P2 is found from (7), truncated after k = 2, where ai0 and ai1 can

be read off from (10) and ai2 from (8) and (9). Furthermore, using

pi‖ − pi⊥ =
3
5
pi

{
f

(1)
i1
|P2

P2(ξ)fi0

}
,
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we can calculate the bulk ion pressure anisotropy contribution to the radial flux
for large Z and Zeff , and after some tedious algebra we obtain〈(

B

2
∇‖u+ u∇‖B

)
(pi‖ − pi⊥)

〉
= − 3piTi

(Zeff − 1)ν̂iiei

[(
0.47Ai1 + 1.93

1
Z
Az1 + 9.90Ai2

)
· (G2(ψ)−G1(ψ))

+
(

1.29Ai2 − 0.65
(
Ai1 −

1
Z
Az1

))
·G3(ψ)

]
,

where

G2(ψ) =

〈(
B

2
∇‖u+ u∇‖B

)2
〉
,

G3(ψ) =
〈
B

2
∇‖u

(
B

2
∇‖u+ u∇‖B

)〉
−
〈
B

2
∇‖u∇‖B

〉
G1(ψ)

and G1(ψ) has already been defined in Sec. II. The pressure anisotropy of a
pure plasma has been calculated before [5], and, in the notation used in this
paper, reads〈(

B

2
∇‖u+ u∇‖B

)
(pi‖ − pi⊥)

〉
= −3piTi

ν̂iiei
[(1.80Ai1 + 3.21Ai2) (G2(ψ)−G1(ψ))

+0.10Ai2G3(ψ)] .

Except for the quantitative change in the magnitude of the coefficients, there
is no great qualitative change when impurities are present, as the contribution
from Az1 is proportional to 1/Z and thus relatively small. The only qualitative
difference is the additional contribution from Ai1 in front of the second geometric
term. The magnitude of the two geometric terms G2 − G1 and G3 is strongly
dependent on the exact geometry of the device, but the latter term tends to be
slightly smaller than or comparable to the first one. Although the magnitude of
the ion distribution function coefficients increases when impurities are present,
the overall contribution to the pressure anisotropy decreases due to the large
factor Zeff − 1 in the denominator.

V Heat flux

The radial heat fluxes are also influenced by the presence of impurities, and are
given by

〈qa · ∇ψ〉 = Ta

〈∫
fa

(
x2 +

eaφ

Ta
− 5

2

)
vd · ∇ψd3v

〉
= Ta 〈Γa · ∇ψ〉 −

ma

ea

〈
B

2
∇‖u

∫
fa1

(
v2
‖ +

v2
⊥
2

)(
x2 +

eaφ1

Ta
− 3

2

)
d3v

〉
.
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The particle flux has already been calculated in the last section, and we can
rewrite the second term, using the orthogonality properties of the Sonine and
the Legendre polynomials and neglecting components proportional to P2, which
first occur in 1st order in the ∆ expansion and are thus two orders smaller than
the other terms, as

ma

ea

〈
B

2
∇‖u

∫
fa1

(
v2
‖ +

v2
⊥
2

)(
x2 +

eaφ1

Ta
− 3

2

)
d3v

〉
= −pa

ea

〈
uB

(
5
2
A

(−1)
2‖

+A(−1)
a1‖

)〉
.

Combining this term with the expression for the particle flux, the total heat
flux becomes

〈q · ∇ψ〉 =
5
2

∑
a

Ta

ea
pa0

〈
uBA

(−1)
2‖

〉
=

5
2

∑
a

Ta

ea
pa0

miν̂ii

ei

(〈
u2B2

〉
−
〈
uB2

〉2
〈B2〉

)
αi1

(
Ai1 − 1

ZAz1

)
+ α0Ai2

αi1β0 − α0βi1

.

VI Conclusions and Summary

We have calculated the Pfirsch-Schlüter impurity particle and heat fluxes in
a stellarator. Compared with the axisymmetric case, the particle transport is
qualitatively different and consists of two separate terms, one tokamak-like term
that is proportional to the friction force, and one term related to the difference
between parallel and perpendicular pressures, which is multiplied by a geometric
factor that vanishes in axisymmetric systems. The first term is proportional to
the collision frequency and the second one is inversely proportional to it. When
comparing the magnitude of their contributions in the Pfirsch-Schlüter regime,
one therefore finds that the friction term is considerably larger than the pressure
anisotropy term, both with respect to the ordering in the shortness of the mean
free path and to the ordering of the impurity charge Z � 1. Since the two terms
differ by a factor of Z4, even for relatively small impurity charges the friction
term will dominate strongly. As the friction term is intrinsically ambipolar, the
small pressure anisotropy term, which does not have this property, is nonetheless
important for determining the radial electric field. The main contribution comes
from the bulk ion pressure anisotropy, which is affected quantitatively by the
presence of impurities, but the qualitative effect of the impurities is minor.

The circumstance that the neoclassical pressure anisotropy becomes small
at high collisionality may have implications for the conclusion drawn in Refs. [8,
12] and [13] that the radial electric field is usually set by neoclassical rather
than turbulent transport in stellarators, even if the turbulent fluxes exceed the
neoclassical ones. This result was based on the observation that the particle
flux produced by gyrokinetic turbulence is intrinsically ambipolar (in leading
order) whereas the neoclassical transport is not. Since the neoclassical non-
ambipolarity decreases with increasing collisionality, however, one would expect
that turbulence could affect the electric field in cool edge plasmas if the small
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non-ambipolarity of the turbulence can compete with the similarly small one of
the neoclassical transport.

The Pfirsch-Schlüter heat flux is unremarkable. The direct contribution
from the impurities is smaller than that from the bulk ions, but the latter is
affected by the presence of impurities. In a pure plasma, the heat flux exceeds
the particle flux by a large factor, but they are comparable when impurities are
present.

VII Appendix A: Coefficients of the distribu-
tion functions

For fixed Z,Zeff , the coefficients of the distribution functions can easily be cal-
culated numerically. Here we give some values for different impurity charge
and effective charge, assuming equal equilibrium temperatures. The values for
Zeff � 1 are analytical limits.

Table I: Coefficients of f (0)
i1

Z = 6, Zeff = 2 large Z, Zeff = 2 large Z, Zeff � 1

α0 -1.618 -2.591 -4.51/(Zeff -1)
αi1 0.520 0.738 2.71/(Zeff -1)
αi2 -0.005 0.084 -0.39/(Zeff -1)
β0 -1.301 -1.843 -6.77(Zeff -1)
βi1 1.673 2.205 11.28/(Zeff -1)
βi2 -0.613 -0.781 -6.77(Zeff -1)

Table II: Coefficients of f (0)
z1

Z = 6, Zeff = 2 large Z, Zeff = 2

α0 -1.618 -2.591
αz1 0.006 0.000
αz2 0.000 0.000
β0 -1.301 -1.843
βz1 0.029 0.000
βz2 -0.006 0.000
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Table III: Coefficients γij

large Z, Zeff � 1

γi0 -2.41/(Zeff -1)
γi1 -6.02 /(Zeff -1)
γi2 -4.51 / (Zeff -1)

VIII Appendix B: Proof that the −1st order flow
velocities vanish

We can show the −1st order flow velocities to vanish: Due to particle conserva-
tion, one gets the constraint

0 =
∫
v‖∇‖

(
ma

Ta
v‖V

(−1)
‖

)
=

1
3
ma

Ta

(
∇‖V

(−1)
‖ − V (−1)

‖ ∇‖lnB
)∫

v2fa0d
3v︸ ︷︷ ︸

6=0

⇒ V
(−1)
‖ = K−1(ψ)B.

Now consider (5) to find∑
a

〈
B

∫
mav‖Ca(f (0)

a1
)d3v

〉
= −

∑
a

〈
B

∫
maP2(ξ)v2f (−1)

a1
d3v∇‖lnB

〉
=
∑

a

〈(
p(−1)

a‖
− p(−1)

a⊥

)
∇‖B

〉
= 0

As in Sec. II, we define

Ca(P2(ξ)fa0ha) = x2P2(ξ)fa0 ,

which yields

f (−1)
a1
|P2 =

ma

Ta
K−1(ψ)P2(ξ)fa0ha∇‖B.

Thus,∑
a

〈(
p(−1)

a‖
− p(−1)

a⊥

)
∇‖B

〉
=

3
5
K−1(ψ)

〈
(∇‖B)2

〉∑
a

mana{ha}︸ ︷︷ ︸
6=0

,

and K−1 must vanish.
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