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Abstract. The determination of the free parameters present in the modified Rutherford
equation (MRE), which is routinely used for studying the physics of Neoclassical Tearing
Mode (NTM) stabilisation, is addressed by making use of the Bayesian probability theory.
The evaluation of the free coefficients is particularly sensitive to the assumptions used in the
modelled equation, to the correlation of various physical parameters, and to the uncertainties
of the experimental measurements. A probabilistic method was applied for the consistent
evaluation of the coefficients and their uncertainties using a large database of discharges and
by considering the correlations and the uncertainties of the multiple physical quantities present
in the MRE. The estimated values and uncertainties of the coefficients are related to the precise
determination of the minimum amount of ECCD power necessaryto stabilise NTMs in ITER.

1. Introduction

Neoclassical Tearing Modes (NTMs) are a type of resistive instability which limit the
performance of present tokamaks and are expected to be highly detrimental for the
International Thermonuclear Experimental Reactor (ITER). They are present in the plasma
in the form of magnetic islands whose saturation and decay are modelled by the Modified
Rutherford Equation (MRE). The MRE is a differential equation which describes the
behaviour of the magnetic island widthW. By applying the MRE to present devices it is
possible to extrapolate the NTM behaviour and stabilisation requirements to ITER. In fact, in
ITER it is of major interest to predict the behaviour of NTMs and to quantify the amount of
ECRH power in the form of current drive necessary to stabilise them.

The main drive which allows the island to grow is the missing bootstrap currentIBS inside
the island [1]. The bootstrap current is present in a toroidal plasma and is due to the combined
effects of trapped particles and pressure gradient [2]. Stabilisation of NTMs is achieved by
means of Electron Cyclotron Current Drive (ECCD) which counteracts the loss ofIBS by
injecting inside the island ECCD currentIECCD [3]. Other stabilising effects are given by the
influence of the island on the equilibrium current profile andthe favourable tokamak curvature
[4]. Free coefficients in the MRE account for uncertainties and approximations used to derive
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the analytical model (e.g. simplifications in the geometry and simplified physics). For the
MRE used in this work two coefficients are introduced, namelycsat andcstab (equation [1]).
These fitting coefficients are on the order of unity. It is assumed that they have the same
meaning for all devices and for all types of NTMs (e.g. for every helicity (m;n) wherem
andn are the poloidal and toroidal mode numbers, respectively).They have been calculated
for a set of NTM stabilisation discharges from the ASDEX Upgrade [5] and JT-60U devices
[6]. The estimation of their values depend on many plasma parameters which are correlated
among themselves and are deteriorated with measurement uncertainties.

Considering the multiple correlations and uncertainties the question arises how
consistently one can estimate the uncertainties oncsat andcstab. Often the discussion on the
error bars of these coefficients is neglected due to its complicated nature. On the other hand,
the evaluation of the error bars oncsat andcstab is directly related to the precise determination
of the minimum amount of ECCD power necessary to stabilise NTMs in ITER.

In order to approach this task, an error analysis using a probabilistic method was
developed. The probabilistic approach based on Monte-Carlo sampling of physical quantities
from correlated probability distributions generalises the frequently used Gaussian error
propagation technique. Applying Gaussian error propagation to the MRE is actually not
feasible if all dependencies and uncertainties have to be considered. The proposed method
is based on Bayesian Probability Theory (BPT) [7] which provides a framework for scientific
reasoning from uncertain data. BPT allows one to combine anysort of data or information
[8], [9]. Uncertainty or lack of knowledge as well as correlated information is quantified
with probability distribution functions (PDF). Non-Gaussian error propagation of multiple
uncertainties is inherent to BPT and can be easily performedwith Monte-Carlo sampling
from PDFs.

The main focus is to investigate the sensitivity of the evaluation of csat and cstab on
the measurements of the physical quantities. A thorough determination of all relevant
measurement uncertainties and of the correlation of the plasma quantities is provided. The
result of the probabilistic method is a two-dimensional PDFfor the two coefficients of the
MRE which allows one to estimate the most probable values, the individual uncertainties and
the correlation between the coefficients. A sensitivity study shows which physical parameters
are most crucial for a reliable estimation of the coefficients and for extrapolation to ITER.

In section 2 the MRE is outlined. The NTM stabilisation experiments are described
in section 3. In section 4 the measured and correlated (dependent) quantities are specified
together with their respective uncertainties. In section 5the standard least-squares
minimisation technique and the new probabilistic method are depicted. The results forcsat

andcstab and a sensitivity study are shown in section 6. Finally, section 7 summarises and
concludes.
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2. The Modified Rutherford Equation

A complete form of the MRE is given by [10]

τs

rres

dW
dt

=�rres∆0+csat

�
rres3:17µ0Lq

jBS

Bpol
( W

W2+W2
d

+ W

W2+28W2
b

)� rres6:35µ0DRq
W2+0:65W2

d

��cstab16
p

πµ0rresLq
jECCD

Bpol
d

ηECCD

W2 (1)

whereW is the full magnetic island width,rres is the radius at the rational surface,τs =
1:22r2

res=ηNC is the resistive time andηNC is the neoclassical resistivity. The different terms
describe the stabilising (� sign) and destabilising (+ sign) contributions of the physical
mechanisms. The first term on the right-hand side is the so-called ∆0-term which is modelled
for a cylinder as�rres∆0 =�m [12] in case of a (2, 1) NTM and�rres∆0(W) =�1:97rres

a (1+
23:1W

a for a (3, 2) NTM. In the latter case, in fact, a fit including theisland width dependence
has been available [11]. The cylindrical assumption is frequently used although it does not
take into account important effects such as the toroidal coupling between different harmonics.
Although the∆0-term affects systematically the estimates ofcsatandcstab, a thorough treatment
of the∆0-term variants is beyond the scope of this work. For the studied NTMs, in fact, the
∆0-term is a negative quantity which has therefore a stabilising effect on the evolution of the
magnetic island.

The second term on the right-hand side is the bootstrap term whereLq= q
q0 is the gradient

scale length of the safety factor profile q,jBS is the local value of the bootstrap current
density, andBpol is the mean poloidal field at the resonant surface. The bootstrap term has
a destabilising effect on the evolution of the magnetic island. The bootstrap current density
is proportional tojBS ∝ p=Lp, wherep = 2ne(Te+Ti) is the plasma pressure andne is the
electron density for which it is assumed that the ion densityni = ne. Te andTi are the electron
and ion temperatures, respectively.Lp = p=p0 is the pressure gradient scale length. The
bootstrap term also includes the effect of incomplete flattening of the temperature profile

modelled with the threshold island widthWd = 5:1qRmajLqq
m (χ?
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field, a being the minor radius,A the atomic number andZ the charge. The parallel thermal

conductivity is given byχk = χSpp
1+(3:16�380=Lk) with χSp = 26:4pπT5=2

e ε2
0

2meε3=2 lnΛne
being the Spitzer

conductivity from the classical transport theory [12].Lk = RmajLq
4nW is the connection length,

Rmaj is the major radius andΛ is the Coulomb logarithm. The bootstrap term also includes the
beneficial effect of trapped particles sustaining the bootstrap current inside the island which is

modelled byWb = ε1=2ρpi with ρpi = p
2mikBTi(rres)
eBpol(rres) being the ion poloidal gyro-radius,mi the

ion mass,e the electron charge andkB being the Boltzmann constant. The curvature term is

written in terms ofDR =�2p0(1�q2)q2

rresB2
Tq02 which is the so-called resistive interchange parameter.

The third term models the external injection of ECCD currentjECCD which is
given by the peak valuejECCD;0 of the ECCD Gaussian current density profilejECCD =
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jECCD;0e�C( r�rres
d )2 whered is the full deposition width at half maximum,C = 4ln2 and

jECCD;0 is calculated from the totalIECCD current. ηECCD describes the efficiency of ECCD
considering the relative alignment of the island width and the ECCD beam and the relative
width of the island sizeW to the deposition widthd.

The above formulas show that each term contributing to the MRE includes dependencies
among the various physical quantities and many of the dependencies are non-linear in nature.
The form of the MRE used in this work does not take into accountthe polarisation current
effect, or other possible terms describing viscosity, flow shear, or coupling between surfaces
and the wall. In fact, at the present time a single complete form of the MRE does not exist.
However, the main attempt of this work is to study the uncertainty of the fitting parameters
due to the quantities included in the present MRE. The depicted probabilistic method is not
restricted to the present MRE but can be easily applied to anysophistication of the MRE.

The evolution of the magnetic island can be analysed by considering the stationary
solutions (dW=dt = 0) of equation (1) and by using its phase diagram(W;dW=dt). The
experimental database allows us to determine all physical parameters present in equation (1)
as well as to observe directly the island width evolution from the magnetic perturbation signal
(W �p

δB).

3. NTM stabilisation experiments and database

For both devices, ASDEX Upgrade and JT-60U, a typical NTM stabilisation experiment
consists of three phases: A first phase, in which an NTM is destabilised by increasing the
pressure drive (β). A second phase, in which a saturated mode (of widthWsatanddW=dt= 0)
is allowed to form and a third phase, in which the ECCD powerPECRH is applied to generate
a highly localised currentIECCD in the region where the resonant surfacerres is located. The
discharges used in this work consist of 5 different sets of (3,2) and (2,1) NTMs successfully
stabilised with ECCD. They are carried out in different experimental campaigns both at
ASDEX Upgrade and JT-60U. Two examples for NTM stabilisation discharges are shown
in figure 1 for ASDEX Upgrade (left panel) and JT-60U (right panel), respectively. The
measured island widthW, derived from the Mirnov coil diagnostic, will be compared to
the simulation from the MRE as shown in figure 9. Table 1 summarises the global plasma
parameters together with the geometrical factorq95 = s a2BT

RmajIp
and the shaping factors for

the five different sets of NTM stabilisation discharges at ASDEX Upgrade and JT-60U.
The difference in the mean values fors between the two machines is about 30% whereas
within the ASDEX Upgrade and JT-60U databases the differences in the geometrical set-ups
between (3,2) NTM and (2,1) NTM discharges are smaller. The saturated island widths are
determined from the contour plots of the electron temperature measurementsTe(R) from the
ECE diagnostics. Despite the good quality of the ECE data a width uncertainty of 1-2 cm is
still present as shown in figure 2. The uncertainty depends onthe limited spatial resolution
of the ECE channels as well as on the temporal resolution of the data acquisition system,
which is sufficient to resolve the frequency of the mode. An example of the kinetic profiles
Te, Ti , andne, is given in the figures 3 and 4 for ASDEX Upgrade and JT-60U, respectively.
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Figure 1. Typical time slices for NTM stabilisation experiments for #18036 withβN � 2:2
(ASDEX Upgrade) and for #41666 withβN � 1:5 (JT-60U). The NBI powerPNBI is increased
until the NTM is destabilised. Once the mode is triggered,PNBI is decreased to a level
for which the availablePECRH power is sufficient to effectively suppress the mode. As a
consequenceβN increases.

NTM Ip [MA] BT [T] a2

Rmaj
q95 s

(2,1) NTM ASDEX Upgrade 0.8 1.85 0.14 4.4 14.2
(2,1) NTM - a JT-60U 1.5 3.7 0.19 3.9 8.3
(2,1) NTM - b JT-60U 0.85 1.7 0.19 3.5 10.0

(3,2) NTM ASDEX Upgrade 0.8 2.1 0.14 4.8 12.5
(3,2) NTM JT-60U 1.5 3.7 0.19 3.75 8.0

Table 1. Set of global parameters for JT-60U and ASDEX Upgrade for (2,1) and (3,2) NTMs
and resulting shaping factors

The evaluation of quantities like the bootstrap currentjBS is strongly affected by the gradient
length scales of the profiles, which are shown for both devices in figure 5. TheTe andTi

profiles are typically stiff for H-mode discharges. In contrast, the shape of the density profile
strongly depends on the collisionality. For different collisionalities, the gradient length can
change up to a factor of 2-3. Therefore, the profile of the density gradient lengthLn is most
uncertain. The absolute value ofLn interpolated at the resonant surface of the mode (dotted
lines) is larger at ASDEX Upgrade than at JT-60U by almost a factor of 2. This is in agreement
with the expectation that for lower collisionality (JT-60Ucase) the density profile is more
peaked.

Figure 6 shows the safety factor profiles which are determined from equilibrium
calculations. In the core of the plasma, MHD activity can help to constraint the q-profile.
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Figure 3. Kinetic profiles for ASDEX Upgrade: The electron temperature profile is fitted
using ECE data (left), the ion temperature profile is fitted using CXRS data (centre), and
the density profile (right) is fitted by combining Thomson scattering data (up toρpol = 1:0),
Lithium beam data (starting fromρpol = 0:93), and by matching the integrated values of the
data from the 5 interferometry channels.

However, the determination of the safety factor profile is relying on the Motional stark effect
diagnostic. The estimate of the ECCD current density and thedeposition profile depends
not only on the kinetic calculations but also on the experimental set-up which determines the
width of the deposited profile. An example is shown in figure 7:jBS is steeper at the edge of
ASDEX Upgrade because of the steeper pressure gradient. Globally, jBS is larger for ASDEX
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data whereas the ion temperature profile is fitted using CXRS data (centre).
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Figure 5. Gradient lengths of the kinetic profiles for JT-60U and ASDEXUpgrade. The dotted
lines depict the location of the resonant surface of the mode

Upgrade than for JT-60U as the bootstrap current density mainly depends on the value ofβ,
which is larger for the ASDEX Upgrade discharge. ThejECCD current is characterised by
a Gaussian profile and the mismatch between the mode location(blue dotted line) and the
injection location (red dotted line) indicates the presence of a possible misalignment between
the centre of the island and the ECCD beam.

4. Values, multiple uncertainties, boundaries and correlations in physical quantities

In general, the two fitting coefficients depend on the plasma quantities mentioned in the
previous section in a non-linear way:

csat = csat(Wsat;Lq; jBS; :::::)
cstab= cstab(Wsat;Lq; jBS; jECCD;d; :::::)
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.

4.1. Values

In order to determinecsat andcstabwith their error bars, the plasma parameters which need to
be considered at saturation timetsatand at stabilisation timetECCD are the following:

(i) the radial location of the moderresand the saturated island widthWsatare measured from
the flattening of the electron temperature profile

(ii) the electron densityne, electron temperatureTe and ion temperatureTi profiles are
obtained from the combination of different diagnostics

(iii) the safety factor profileq and the gradient scale lengthLq = q=q0 are calculated using the
equilibrium current profile
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(iv) the bootstrap current density profilejBS is calculated with a transport code using the
kinetic profiles(ne; Te; Ti)

(v) the ECCD current density profilejECCD and the ECCD deposition widthd are calculated
with a ray-tracing code using the kinetic profiles

(vi) the neoclassical resistivityηNC is calculated with a transport code using the kinetic
profiles

(vii) the gradient scale lengths of the kinetic profilesLTe; LTi ; Lne are obtained using the
derivative over the minor radius of the fitted kinetic profiles

(viii) the poloidal magnetic fieldBpol is calculated from the equilibrium reconstruction and the
toroidal magnetic fieldBT is obtained from the magnetic coils’ measurements

(ix) the efficiency functionηECCD of the ECCD injection is calculated analytically [15].

(x) the growth ratedW
dt jtECCD and the decay of the island widthWECCD are obtained from an

integration of the MRE.

The dependent parametersp, Lp, χ?, χk, ρpi, Lk, DR, Wb, Wd, τs are calculated from the
measured quantitiesrres, Lq, Wsat, ne, Te, Ti, Lne, LTe, LTi , Bpol, BT. jECCD andd are obtained
from beam tracing calculations andjBS andηNC from transport modelling.

4.2. Multiple uncertainties

The quantities shown in the previous section can be split into two groups where one group
contains quantities with significant uncertainties and thesecond group quantities where
the uncertainties are negligible. The first group with values with significant uncertainties
comprisesWsat, WECCD, dW=dttECCD, ηECCD, ne, Te, Ti , jECCD, jBS, d, Lq, Lne, LTe, LTi . In the
second group areq, rres, ηNC, Bpol, BT.

For a comprehensive error analysis proper estimates for theuncertainties of the various
physical quantities are essential. In the Bayesian framework uncertainties are quantified with
probability distribution functions. Although the Bayesian method can process any type of
PDF only Gaussian distributions are used in this work. Gaussian distributions for the error
statistic are the most uninformative distributions if onlythe mean (herehεi= 0) and variance
(hε2i = σ2) are known. For the given physical quantities standard deviations for the error
statistics could be estimated whereas higher moments of theerror statistics are not known. If
higher moments of the error statistics are relevant for the most sensitive physical quantities
additional measurements are necessary to recover the precise statistics.

In general, for the quantities measured directly from a diagnostic the value given from
the diagnostician is considered as the standard deviation,as for example in the case of the
kinetic profiles (for whichσ� 7% forTi andTe andσ� 10% forne both at ASDEX Upgrade
and JT-60U have been assumed). For quantities which result from modelling codes (such as
jBS or jECCD) or are calculated from derivatives (as the gradientsLq, Lne or LTe) estimating the
proper uncertainty is not trivial since one should take intoaccount the approximations in the
relevant model, the numerical precision of the calculation, and the correlation in profiles. The
uncertainties on the quantitiesWECCD, dW=dtjtECCD andηECCD are small compared to, e.g.,
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Wsat andLq because they do not vary much once the temporal evolution of the island width
simulated from the MRE is determined from the experimental data. The standard deviations
are estimated as a compromise between being too optimistic (σ > 5� 10%) and being too
pessimistic (σ < 50�60%) in the experimental data and modelling codes. Discharge specific
uncertainties have not been considered as they have all beentreated in the same way, with the
same measurements conditions. The chosen values for the standard deviations are listed in
table 2.

Table 2. Standard deviationsσ given in percentage chosen for the statistical analysis

Lne Wsat, Lq, jBS jECCD, d, ne, LTe,LTi , ηECCD, dW
dt jtECCD Te, Ti WECCD

20% 15% 10% 7% 5%

4.3. Boundaries and correlations
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Figure 8. Probability distribution function forjECCD and jBS considering the physics’
boundary imposed. The randomisation ofjECCD and jBS satisfies the conditionjECCD

jBS
> 0:3

which, in the present database, is the marginal value which still allows for stabilisation.

The estimation of the MRE coefficients and their uncertainties is based on a Monte-Carlo
method which randomises the physical quantities accordingto their uncertainty probability
distributions. Physical boundaries on as well as correlations between the physical quantities
can easily be incorporated into the PDFs. The physics boundaries are given by positivity or
negativity (LTe, Lne, dW=dtjECCD) constraints, a minimum value of 2 cm for the deposition
width d, a minimum ratiojECCD= jBS for stabilisation of� 0:3 (as shown in figure 8), and
a lower boundary forWsat of Wd or Wb. Therefore, the PDFs of the physical quantities are
normally distributed with cut-offs due to their constraints.
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5. Determination of csat and cstab

5.1. χ2 approach to the Modified Rutherford equation

The standard technique to evaluatecsat andcstab has been to measure the necessary physical
quantitiesB̄ = (Wsat;Lq; :::) present in equation (1) at two specific time pointst1 = tsat and
t2 = tECCD. For a statistical analysis the following quantities are defined:

ξ0i = � rres∆0� τs

rres
(dW

dt
)jti (2)

ξ1i = rres(∆0
BS+∆0

GGJ) (3)

ξ2i = rres∆0
ECCD (4)

whereξ21= 0 andξ22 6= 0 as onlyt2 accounts for ECCD. All quantities on the right-hand side
of (2),(3),(4) depend oni. Therefore, equation (1) can be re-written as

0= ξ0i +csatξ1i +cstabξ2i + ε (5)

whereε is the deviance fromτs
rres

dW
dt = 0 andhεi = 0, hε2i = σ2 whereσ2 is its variance.

Ideally, dW
dt = 0 at tsat and tECCD in case of marginal stabilisation. In fact, it is assumed

σ2 = 0:01 for all discharges, which corresponds to an uncertainty in the evaluation ofdW
dt

of about 10%. By assuming a normally distributed error, the estimation ofcsat and cstab

corresponds to the minimisation ofχ2 defined as:

1
2

χ2 = 1
2

2

∑
i=1

�
ξ0i +csatξ1i +cstabξ2i

σi

�2

(6)

In order to minimiseχ2, the derivative with respect tocsat andcstab has to be 0. By defining
the following quantities:

β11=∑
i

ξ2
1i

σ2
i

; β02=∑
i

ξ0iξ2i

σ2
i

; β12=∑
i

ξ1iξ2i

σ2
i

β22=∑
i

ξ2
2i

σ2
i

; β01=∑
i

ξ0iξ1i

σ2
i

(7)

the system of equations to be solved simultaneously in orderto determinecsat andcstab is

csatβ11+cstabβ12= β01 (8)

csatβ12+cstabβ22= β02 (9)

which leads to the solutions

csat = β01β22�β02β12

β11β22�β2
12

(10)

cstab= β02β11�β01β12

β11β22�β2
12

(11)

At tsat where no ECCD was applied (ξ21 = 0), csat can be determined simply bycsat= β01
β11

.
Equivalent formulas can be derived for the uncertainties ofcsat andcstab from equation (6).
However, these uncertainties do only reflect the uncertainty in dW

dt but do not encounter the
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correlation and the uncertainties on the other numerous physical quantities. To estimate
full uncertainties of the coefficients applying Gaussian error propagation including all
uncertainties is cumbersome and does not even include correlations. Therefore, a probabilistic
approach is used.

5.2. Bayesian approach to the Modified Rutherford equation

To estimatecsatandcstab, their uncertainties and correlations, from a comprehensive statistical
description of all measured data and modelling parameters including parameter dependencies
and constraints a probabilistic approach based on BayesianProbability Theory is applied [7].
The Bayesian Theorem states that a posterior PDF of the eventc given the event B,P(cjB),
can be calculated by multiplying the prior PDFP(c) by the likelihoodP(Bjc) that event B will
occur if c is true:

P(cjB) = P(Bjc)P(c)
P(B) (12)

The Bayesian theory is applied to the MRE written in the form of equation (1).b̄ is the set
of measured data with uncertainties and the parameters of interest ¯c arecsat andcstab. The
quantitiesB̄ are the true quantities to be measured (e. g.Wsat, Lq, jBS, etc.) which are
unknown. The marginal probability distribution forcsat andcstabcan be obtained by applying
the marginalisation theorem and the product rule of BPT,

p(c̄jb̄; σ̄) = Z
dB̄p(c̄; B̄jb̄; σ̄) (13)= Z
dB̄

p(b̄jc̄; B̄; σ̄)p(c̄; B̄)
p(b̄jσ̄)

∝
Z

dB̄p(b̄jB̄; σ̄)p(c̄jB̄)p(B̄)
where the integral is calculated using Monte-Carlo simulation. p(b̄jB̄; σ̄) is the product of
the likelihood functions of all the measured quantities, the probabilityp(c̄jB̄) is given by the
physical model (the MRE in this case) andP(B̄) quantifies the dependencies and constraints
characterising the physical values̄B. The likelihood for each physical quantity is assumed to
be a normal distribution:

P(bijBi;σBi) = 1p
2πσBi

exp
� 1

2( bi�Bi
σBi

)2
(14)

The joint likelihood probability is given by

p(b̄jB̄; σ̄) =∏
i

p(bi jBi;σBi) (15)

The probabilistic method applied to the MRE has several advantages compared to a standard
Gaussian error propagation method due to the complex structure of the MRE. It allows one
to provide a comprehensive statistical description of all uncertainties, to consider the physics
constraints and the correlations present in the model, and to make a sensitivity study on the
full model to identify which are the most influencing quantities. The termp(B̄) accounts for
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the physical constraints (positivity, thresholds, etc...) and for the automatic propagation of
errors for each quantityBN�1 which depends on the quantityBN:

P(B̄) = P(B1jB2; ::::)�P(B2jB3:::::)�P(BN) (16)

For example, starting from the likelihood ofjBS a sample is drawn subject to the imposed
constraints (e.g. being a positive quantity). Successively, a second quantity likejECCD is
sampled from its likelihood whose acceptable values need tofulfil the constraintjECCD= jBS>
0:3.
After having sampled all the physical quantitiescsat andcstab are determined from equation
(10) and (11). The process of sampling a complete set of physical quantities and the
subsequent calculation ofcsat and cstab is repeated. From a large number ofcsat andcstab

values one calculates a 2-dimensional histogram which directly approximates the marginal
distributionp(c̄jb̄; σ̄) (13).

For the statistical analysis each quantity has been randomised with a sample number
of 50000, according to the distribution of their uncertainties. This sample number is large
enough to obtain sufficiently smooth marginal probability distributions. Whereas a sample
number of 10000 has been tested to be the lower limit for the creation of smooth probability
distributions. Marginal probability distributions forcsat andcstabare calculated for the single
discharges individually as well as for all discharges jointly to obtain a unique value forcsat

andcstabfor the full database.
Therefore, the probabilistic approach for the MRE consistsof the following steps:

(i) sample random values for̄B from probability distributionsp(b̄jB̄; σ̄) � p(B̄) for individual
discharges starting from the collected datab̄

(ii) calculate the marginal posterior probability distribution p(csat;cstabjb̄; σ̄) for each single
discharge by generating histograms with the collected samples

(iii) calculate the marginal posterior probability distribution p(csat;cstabjb̄; σ̄) considering all
the discharges simultaneously

(iv) calculate the mean valueshcsati, hcstabi and the standard deviations∆csat, ∆cstab from the
marginal probability distributions for each single discharge as well as for all discharges
together

(v) carry out a sensitivity study on the quantitiesB̄ present in the MRE (see section 6.3)

Summarising, the probabilistic method is based on theχ2 approach for the MRE
concerning the determination of the coefficients for given physical quantities. Additionally,
the probabilistic method allows for arbitrary error distributions, model parameter correlations
and boundary constraints. Therefore, a sensitivity study within the probabilistic approach
with respect to major error sources improves the classicalχ2 approach due to the complex
dependencies.

6. Results

Considering the 23 discharges taken into account, the 2 timepoints necessary for the analysis
and the 13 quantities which are considered within their uncertainties, the number of uncertain
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Figure 9. Phase diagram obtained from the MRE (left) and integrated MRE (right). Starting
from the saturated island widthWsat simulation of the island width decay is carried out by
including the ECCD term in the MRE and by optimising the valueof cstab. In the experiment
injection of ECCD current starts at� 3:2 s. Indicated are also the growth ratedW=dtjtECCD

and the corresponding island widthWECCD.

model parameters in equation (1) is� Ndischarges�2�13� 600.

6.1. Results for csat and cstabwith theχ2 method

In [13] csat andcstab have been evaluated for a set of experimental discharges collected at
ASDEX Upgrade and JT-60U. The fitting method consists of aχ2 misfit minimisation (details
are given in section 5.1) based on the measurement of the local quantities present in the MRE
and the comparison between a simulated island width decay and the experimental one.csat

has been evaluated at saturation timetsat when dW=dt = 0 andW = Wsat. cstab has been
evaluated during the stabilisation time when the island width decays until it becomes zero
at tECCD. The former makes use of the equationcsat= ∆0

∆0BS+∆0GGJ
. The latter is determined by

direct comparison with the experimental evolution. Both the phase diagram and the simulation
optimised to the experimental curve of an NTM stabilisationdischarge are shown in figure 9.
The average values of the two coefficientscsat andcstabobtained with this method are:

csat = 0:81�0:13 (17)

cstab= 0:68�0:22 (18)

All plasma quantities are kept constant without errors [13]. The uncertainties reflect the scatter
of the coefficient values estimated from the different discharges.

6.2. Results for csat and cstabwith the probabilistic method

The results obtained for the marginalised posterior probability distributions forcsat andcstab

over a single discharge and over all the discharges are obtained in terms of 2-dimensional
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Figure 10. 2D marginal posterior probability distribution for one discharge (left) and for all
discharges (right). Overplotted are the mean values for (csat;cstab) with their error bars

diagrams and are shown in figure 10. The cross describes the mean values and standard
deviations of the marginal PDF. The results show that:� The PDF ofcsat andcstab obtained for each single discharge is centred around a value

which agrees with the one calculated with the standardχ2 approach. Since the mean
value of the PDF does not necessarily have to coincide with the maximum value of the
χ2 method, this result shows that neglecting in theχ2 method the statistical uncertainties,
the constraints and the correlations of the many physical quantities does not deteriorate
the estimated values significantly.� The PDF ofcsat andcstab obtained by marginalising over all the discharges is centred
around a mean value (csat = 0:64� 0:07 andcstab= 0:62� 0:09) which is slightly
different but consistent with the value found from theχ2 calculation (e.g. csat =
0:81�0:13 andcstab= 0:68�0:22).� The difference between the probabilistic and the classicalresults increases if the standard
deviations assumed in the Monte-Carlo process is increased. If the uncertainties are
reduced dramatically, the overall PDF for all the discharges agrees with the value
obtained in ref. [13]. This suggests that the non-linearityof the MRE is responsible
for the difference. This also suggests that for some quantities a skewed error probability
distribution might better represent the distribution of its values compared to the normal
distribution which has been assumed here.� The uncertainties for the coefficients obtained with the probabilistic method are smaller
than the uncertainties from theχ2 method, although theχ2 method is not explicitely
incorporating uncertainties on the physical quantities. The reason is that with theχ2

method the uncertainties are determined from the scatter ofthe estimated coefficients for
single discharges. This scatter implicitly includes the measurement errors on the physical
parameters. The larger uncertainties arise from the missing statistical quantification of
the physical parameters and the missing constraints and correlations. Providing more
information results in more reliable estimates.



Application of the Bayesian analysis to the MRE for NTM stabilisation 16� As expected, the standard deviation of the PDF forcsat andcstab for marginalising over
all the discharges is smaller (σ= 10%�15%) compared to the values obtained for single
discharges (σ = 30%�40%), although one would expect a somewhat larger uncertainty
reduction than a factor of 3 from 23 discharges. The reason might be a natural scatter
of the discharge properties which is not included in the measurement uncertainties of the
physical quantities.� The PDF over a single discharge as well as for the combined discharges show a clear
correlation betweencsat andcstab. They are positively correlated. Overestimation of one
coefficient results in simultaneous overestimation of the other one.

The results show that the classical approach provides reasonable estimation values and
uncertainties for the MRE coefficients. The conceptual drawbacks of the classical approach
were overcome with the probabilistic method. The probabilistic approach results in more
reliable estimates due to the additional information whichcan be easily incorporated with the
Bayesian method. An important advantage of BPT is that all relevant information can and has
to be quantified explicitely which provides an ideal framework for scientific reasoning.

The amount of ECRH power necessary to stabilise NTMs is directly proportional to the
ratio csat=cstab (e.g. PECRH ∝ jECCD= jBS ∝ csat=cstab [14]). Therefore, the uncertainty on
csat andcstabdirectly influences the ECRH power necessary for ITER. In [13], the minimum
amount of ECRH power is estimated to be about 10 MW. From the error analysis of this work
one can estimate an uncertainty of�2 MW on these calculations. This is indeed a comforting
result since in ITER, an ECRH system delivering a maximum of 20 MW of ECRH power is
foreseen.

6.3. Sensitivity analysis

As mentioned in the previous section, not all the quantitiespresent in the MRE have been
randomised according to their uncertainty since their negligible uncertainty does not affect
the evaluation ofcsat andcstabsignificantly. Nevertheless, for the other quantities considered
in the statistical analysis it is interesting to study whichquantity has the most effect on the
overall uncertainty. In fact, it is relevant to understand how precise the measurements on such
quantities need to be in order to have robust results for the MRE coefficients. In order to carry
out such a sensitivity study only one relevant quantity at a time is considered by switching
off the other quantities’ uncertainties. Statistically, this means to marginalise the probability
distribution over one of the quantities given that the otherquantities are kept constant, as for
exampleLq:

p(csat;cstabjd̄) = Z
d Lqp(csat;cstab;Lqjd̄) (19)

The results of the sensitivity analysis are shown in figure 11where each quantity is randomised
over the uncertainties listed in table 2.Wsat, jBS andLq are found to be the most crucial ones
for the determination ofcsat. This is expected as physically the saturated island sizeWsat and
the bootstrap current densityjBS are proportional. Both depend on the pressure of the plasma.
The strong dependency on the safety factor gradient length,on the other hand, is related to the
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Figure 11. Marginal probability distributions forcsat andcstab for various uncertain physical
quantities where all the other uncertainties are assumed tovanish.

effect of the shear on the island width. The uncertainty ofLne, which is quite large, has almost
no effect since it enters explicitly in the MRE only in the curvature term via the pressure
gradient lengthLp = p=p0. For cstab nearly all of the quantities affect the evaluation in a
similar way. Only the uncertainty of the quantitydW=dtjtECCD has little impact on the width
of the probability distribution. Additionally, it is interesting to notice that some quantities like
jBS andWECCD tend to shift the centre of the probability distribution towards the left as their
uncertainty is increased. This is due to the non-linear dependence ofcstabon these quantities.

Summarising, the sensitivity analysis shows clearly whichphysical parameters are most
important to obtain efficient improvements in estimating the MRE coefficients. Additionally,
an improved statistical description for those parameters employing non-Gaussian probability
distributions might be most beneficial.

7. Summary and conclusion

The Modified Rutherford Equation is routinely used to study the evolution of magnetic islands
associated to the presence of NTMs in fusion devices. To improve the description of NTMs
with the MRE, its expression needs to be verified and its free coefficientscsat and cstab

need to be determined from the experiment. It is important toobtain estimates of these
coefficients with high precision as the estimate of the amount of ECCD power required for
NTM stabilisation in ITER directly depends on their values as well as on their uncertainties.
Therefore, to calculate the error bars ofcsat andcstab a new technique is developed which
makes use of the Bayesian Probability Theory. Monte-Carlo simulations are applied to
generate probability distributions forcsat andcstab starting from the probability distributions
of all the physical quantities present in the MRE which quantify the measured or derived
uncertainties, the correlations and the constraints.



Application of the Bayesian analysis to the MRE for NTM stabilisation 18

The resulting standard deviations ofcsat and cstab for single discharges are between
30% and 40%. An analysis of the combined set of discharges results in mean values of
csat= 0:64� 0:07 andcstab= 0:62� 0:09. In this case the uncertainty decreases to about
12%. As a consequence the minimum ECRH power requirements for NTM stabilisation in
ITER can be estimated to be 10�2 MW. A sensitivity study shows that the most important
three quantities needed to be estimated with high precisionfor a good evaluation ofcsat and
cstab are the saturated island sizeWsat, the bootstrap current densityjBS and the local shear
valueLq.

The probabilistic approach is not restricted to the MRE analysis but can be applied to
any problem with multiple uncertainties in physical quantities.
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