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Abstract. The determination of the free parameters present in the fraddRutherford
equation (MRE), which is routinely used for studying the giog of Neoclassical Tearing
Mode (NTM) stabilisation, is addressed by making use of thgd3ian probability theory.
The evaluation of the free coefficients is particularly sresto the assumptions used in the
modelled equation, to the correlation of various physie@abmeters, and to the uncertainties
of the experimental measurements. A probabilistic methad applied for the consistent
evaluation of the coefficients and their uncertaintiesgisiiarge database of discharges and
by considering the correlations and the uncertaintiesefithltiple physical quantities present
in the MRE. The estimated values and uncertainties of thificeats are related to the precise
determination of the minimum amount of ECCD power necesgasyabilise NTMs in ITER.

1. Introduction

Neoclassical Tearing Modes (NTMs) are a type of resistivaaipility which limit the
performance of present tokamaks and are expected to beyhdgitimental for the
International Thermonuclear Experimental Reactor (ITER)ey are present in the plasma
in the form of magnetic islands whose saturation and decayrardelled by the Modified
Rutherford Equation (MRE). The MRE is a differential eqoatiwhich describes the
behaviour of the magnetic island widW. By applying the MRE to present devices it is
possible to extrapolate the NTM behaviour and stabilisatgmuirements to ITER. In fact, in
ITER it is of major interest to predict the behaviour of NTMsdato quantify the amount of
ECRH power in the form of current drive necessary to stabtlem.

The main drive which allows the island to grow is the missingtistrap currenigs inside
the island [1]. The bootstrap current is present in a totqtésma and is due to the combined
effects of trapped particles and pressure gradient [2]bil&ation of NTMs is achieved by
means of Electron Cyclotron Current Drive (ECCD) which dewacts the loss offgs by
injecting inside the island ECCD currelgiccp [3]. Other stabilising effects are given by the
influence of the island on the equilibrium current profile #melfavourable tokamak curvature
[4]. Free coefficients in the MRE account for uncertaintieg approximations used to derive
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the analytical model (e.g. simplifications in the geomeing aimplified physics). For the
MRE used in this work two coefficients are introduced, nantglyand csiap (€quation [1]).
These fitting coefficients are on the order of unity. It is assd that they have the same
meaning for all devices and for all types of NTMs (e.g. formveelicity (m,n) wherem
andn are the poloidal and toroidal mode numbers, respectivdligey have been calculated
for a set of NTM stabilisation discharges from the ASDEX Uit [5] and JT-60U devices
[6]. The estimation of their values depend on many plasmarpaters which are correlated
among themselves and are deteriorated with measuremesttainties.

Considering the multiple correlations and uncertaintiee tjuestion arises how
consistently one can estimate the uncertaintiessgrandcsiap Often the discussion on the
error bars of these coefficients is neglected due to its doatpld nature. On the other hand,
the evaluation of the error bars ogy:andcsiapis directly related to the precise determination
of the minimum amount of ECCD power necessary to stabilisMBlin ITER.

In order to approach this task, an error analysis using agiibstic method was
developed. The probabilistic approach based on MontesGarhpling of physical quantities
from correlated probability distributions generaliseg tlhequently used Gaussian error
propagation technique. Applying Gaussian error propagatio the MRE is actually not
feasible if all dependencies and uncertainties have to heidered. The proposed method
is based on Bayesian Probability Theory (BPT) [7] which jleg a framework for scientific
reasoning from uncertain data. BPT allows one to combinesanyof data or information
[8], [9]. Uncertainty or lack of knowledge as well as corteld information is quantified
with probability distribution functions (PDF). Non-Galess error propagation of multiple
uncertainties is inherent to BPT and can be easily performigd Monte-Carlo sampling
from PDFs.

The main focus is to investigate the sensitivity of the esiin of Csa; and Csiap ON
the measurements of the physical quantities. A thorougkrabation of all relevant
measurement uncertainties and of the correlation of thenpdaquantities is provided. The
result of the probabilistic method is a two-dimensional PiDiFthe two coefficients of the
MRE which allows one to estimate the most probable valuesintthividual uncertainties and
the correlation between the coefficients. A sensitivitglgtshows which physical parameters
are most crucial for a reliable estimation of the coefficseantd for extrapolation to ITER.

In section 2 the MRE is outlined. The NTM stabilisation expemnts are described
in section 3. In section 4 the measured and correlated (depénquantities are specified
together with their respective uncertainties. In sectiorthd standard least-squares
minimisation technique and the new probabilistic methagl gepicted. The results fag,;
and csiap and a sensitivity study are shown in section 6. Finally,isecf summarises and
concludes.
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2. The Modified Rutherford Equation

A complete form of the MRE is given by [10]

s dW

— —— = —Ire\ + Csat les3-1 7oL q
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whereW is the full magnetic island widthres is the radius at the rational surface,=
1.22r?es/r]NC is the resistive time angyc is the neoclassical resistivity. The different terms
describe the stabilising—< sign) and destabilisingH sign) contributions of the physical
mechanisms. The first term on the right-hand side is the Beda&’-term which is modelled
for a cylinder as-re\' = —m[12] in case of a (2, 1) NTM anére N (W) = —1.97”7?3(1+
23.1"3" for a (3, 2) NTM. In the latter case, in fact, a fit including iskand width dependence
has been available [11]. The cylindrical assumption isdesdly used although it does not
take into account important effects such as the toroidgblwog between different harmonics.
Although thed\'-term affects systematically the estimates@fandcsian, a thorough treatment
of the A’-term variants is beyond the scope of this work. For the stifiTMs, in fact, the
AN'-term is a negative quantity which has therefore a stabdigffect on the evolution of the
magnetic island.

The second term on the right-hand side is the bootstrap téveneky = % is the gradient
scale length of the safety factor profile ¢gs is the local value of the bootstrap current
density, andBp is the mean poloidal field at the resonant surface. The baptsérm has
a destabilising effect on the evolution of the magneticridlaThe bootstrap current density
is proportional tojgs [0 p/Lp, wherep = 2ne(Te+ T;) is the plasma pressure anglis the
electron density for which it is assumed that the ion density ne. Te andT; are the electron
and ion temperatures, respectively, = p/p’ is the pressure gradient scale length. The
bootstrap term also includes the effect of incomplete fhaigg of the temperature profile

modelled with the threshold island widig; = 5.1/ W(%)W where the perpendicular

thermal conductivity is expressed ps = %ﬁ%z—@ with Bt being the toroidal magnetic
field, a being the minor radiush the atomic number and the charge. The parallel thermal
Xsp 26.4,/mTe %62

\/1+(3.16380/L ) 2mee®/2In Ane
conductivity from the classical transport theory [12]; = Rg‘ne{j,bq is the connection length,
Rmajis the major radius andl is the Coulomb logarithm. The bootstrap term also incluties t

beneficial effect of trapped particles sustaining the ompscurrent inside the island which is
modelled by, = £%/2py; with ppi = v2mkeTillies) poing the jon poloidal gyro-radiusy the

eBp I(rres)
ion masseg the electron charge ang belﬁg the Boltzmann constant. The curvature term is

L A—@)P vy s L
written in terms oDg = —% which is the so-called resistive interchange parameter.
resbT

The third term models the external injection of ECCD currgatcp which is
given by the peak valugeccpo of the ECCD Gaussian current density profjleccp =

jess, W W
(G oz tos 2
Bool W2+ W2 W2+ 280

)

(1)

conductivity is given byx = being the Spitzer
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jeccnoe ©7d%)* whered is the full deposition width at half maximunG = 4In2 and
Jeccpo is calculated from the totdkccp current. neccp describes the efficiency of ECCD
considering the relative alignment of the island width amel ECCD beam and the relative
width of the island siz&V to the deposition widtlal.

The above formulas show that each term contributing to th&MRIudes dependencies
among the various physical quantities and many of the depenels are non-linear in nature.
The form of the MRE used in this work does not take into accalbatpolarisation current
effect, or other possible terms describing viscosity, flbwas, or coupling between surfaces
and the wall. In fact, at the present time a single completa fof the MRE does not exist.
However, the main attempt of this work is to study the undetyeof the fitting parameters
due to the quantities included in the present MRE. The degiptobabilistic method is not
restricted to the present MRE but can be easily applied tsaphistication of the MRE.

The evolution of the magnetic island can be analysed by densig the stationary
solutions @W/dt = 0) of equation (1) and by using its phase diagramdW/dt). The
experimental database allows us to determine all physa@peters present in equation (1)
as well as to observe directly the island width evolutiomfrine magnetic perturbation signal

(W ~ V/3B).

3. NTM stabilisation experiments and database

For both devices, ASDEX Upgrade and JT-60U, a typical NTMoiitation experiment
consists of three phases: A first phase, in which an NTM isatdédsted by increasing the
pressure drivef). A second phase, in which a saturated mode (of widiiianddW/dt = 0)

is allowed to form and a third phase, in which the ECCD polgirn is applied to generate
a highly localised currericcp in the region where the resonant surfaggis located. The
discharges used in this work consist of 5 different sets @&)(&nd (2,1) NTMs successfully
stabilised with ECCD. They are carried out in different expental campaigns both at
ASDEX Upgrade and JT-60U. Two examples for NTM stabilisatthscharges are shown
in figure 1 for ASDEX Upgrade (left panel) and JT-60U (rightnp8, respectively. The
measured island widtkv, derived from the Mirnov coil diagnostic, will be compareal t
the simulation from the MRE as shown in figure 9. Table 1 sunsearthe global plasma
parameters together with the geometrical facgy = sF‘;"mSTp and the shaping factas for
the five different sets of NTM stabilisation dlscharges atDEX Upgrade and JT-60U.
The difference in the mean values feibetween the two machines is about 30% whereas
within the ASDEX Upgrade and JT-60U databases the differemt the geometrical set-ups
between (3,2) NTM and (2,1) NTM discharges are smaller. Hterated island widths are
determined from the contour plots of the electron tempeeamueasurement®(R) from the
ECE diagnostics. Despite the good quality of the ECE datadéhwincertainty of 1-2 cm is
still present as shown in figure 2. The uncertainty dependb@timited spatial resolution
of the ECE channels as well as on the temporal resolutioneftia acquisition system,
which is sufficient to resolve the frequency of the mode. Aaregle of the kinetic profiles
Te, Ti, andne, is given in the figures 3 and 4 for ASDEX Upgrade and JT-608peetively.
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Figure 1. Typical time slices for NTM stabilisation experiments fat8936 withfy ~ 2.2
(ASDEX Upgrade) and for #41666 wify ~ 1.5 (JT-60U). The NBI powePyg is increased
until the NTM is destabilised. Once the mode is triggerBdg is decreased to a level
for which the availablePecry power is sufficient to effectively suppress the mode. As a
consequencBy increases.

NTM b[MA] Br[Tl & dos | s
(2,1) NTM ASDEX Upgradel 0.8  1.85 0.14 4.4 14.2
(2,1) NTM - a JT-60U 1.5 37 019 3.9| 83

(2,1) NTM - b JT-60U 085 1.7 0.19 3.5 10.0
(3,2) NTM ASDEX Upgrade 0.8 21 0.14 438|125
(3,2) NTM JT-60U 1.5 3.7 019 3.75 8.0

Table 1. Set of global parameters for JT-60U and ASDEX Upgrade fdr)@nd (3,2) NTMs
and resulting shaping facter

The evaluation of quantities like the bootstrap currgsntis strongly affected by the gradient
length scales of the profiles, which are shown for both devinefigure 5. TheTle andT;
profiles are typically stiff for H-mode discharges. In castr, the shape of the density profile
strongly depends on the collisionality. For different matinalities, the gradient length can
change up to a factor of 2-3. Therefore, the profile of the ijggsadient length_, is most
uncertain. The absolute value lof interpolated at the resonant surface of the mode (dotted
lines) is larger at ASDEX Upgrade than at JT-60U by almost#ofeof 2. This is in agreement
with the expectation that for lower collisionality (JT-60t4se) the density profile is more
peaked.

Figure 6 shows the safety factor profiles which are deterchiftem equilibrium
calculations. In the core of the plasma, MHD activity canphtel constraint the g-profile.



Application of the Bayesian analysis to the MRE for NTM disdition

. ;53
20 e #2218
£ g
56 ﬁ? Te@25s
® 1400
15 #
=)
R # {= < 1200
> 8, b -E- 2]
9 i%iéﬁ (v ;
> [
[V}
F 10 *%iwmsy . 1000
-,
Pk {7
1%24 800
12 < 3 ; A
05 1 | |.&'|- "lml- &
25000 25002 25004 25006  2.5008
time (s)

19
R(m) @ z=ma

Figure 2. Electron temperature profile for #22186 together with thetcor plot which shows
the (2,1) magnetic island chain and the asymmetric shageahtignetic island. The O-point
of the island is aR = 1.96 m which corresponds tg.s = 0.25 m
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Figure 3. Kinetic profiles for ASDEX Upgrade: The electron temperatprofile is fitted
using ECE data (left), the ion temperature profile is fittethgi<CXRS data (centre), and
the density profile (right) is fitted by combining Thomsontsang data (up t@po = 1.0),
Lithium beam data (starting fromye = 0.93), and by matching the integrated values of the
data from the 5 interferometry channels.

However, the determination of the safety factor profile Iging on the Motional stark effect

diagnostic. The estimate of the ECCD current density andd#éposition profile depends
not only on the kinetic calculations but also on the expenitakset-up which determines the
width of the deposited profile. An example is shown in figurggg is steeper at the edge of
ASDEX Upgrade because of the steeper pressure gradierialBlggs is larger for ASDEX
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Figure 4. Kinetic profiles for JT-60U plotted versus the volume avecgiinor radiug=y.
The electron temperature (left) and density profiles ()igine fitted to Thomson scattering
data whereas the ion temperature profile is fitted using CX&8 @entre).
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Figure 5. Gradient lengths of the kinetic profiles for JT-60U and ASDEgrade. The dotted
lines depict the location of the resonant surface of the mode

Upgrade than for JT-60U as the bootstrap current densitynlgndepends on the value @f
which is larger for the ASDEX Upgrade discharge. Tjgecp current is characterised by
a Gaussian profile and the mismatch between the mode loddtioa dotted line) and the
injection location (red dotted line) indicates the pregeoica possible misalignment between
the centre of the island and the ECCD beam.

4. Values, multiple uncertainties, boundaries and correléons in physical quantities

In general, the two fitting coefficients depend on the plasmantties mentioned in the
previous section in a non-linear way:

Csat = CsatWsat Lg, JBS; -+ )
Cstab= Cstab(Wsab LQ7 jBS7 jECCD7 d7 """ )
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Figure 6. Safety factor profile and gradient lengtly for JT-60U and ASDEX Upgrade
discharges. The local values of the mode position (from tB& Eneasurement) and of the
g=1.5 surface (from the equilibrium) are indicated withtddtlines.
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Figure 7. Bootstrap current density profilgs for ASDEX Upgrade and JT-60U discharges
together with the Gaussian profile of the injectggtcp current density of widthd for
discharge #18036 (left) witliy ~ 2.2 and discharge #41666 (right) wiy ~ 1.5 both

normalised to&%.

4.1. Values

In order to determinesa; andcsiapWith their error bars, the plasma parameters which need to
be considered at saturation tirggrand at stabilisation timgccp are the following:

() the radial location of the modgesand the saturated island widfth,;are measured from
the flattening of the electron temperature profile

(ii) the electron densityne, electron temperatur@. and ion temperaturd; profiles are
obtained from the combination of different diagnostics

(iii) the safety factor profilej and the gradient scale lendth = q/d are calculated using the
equilibrium current profile
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(iv) the bootstrap current density profiigs is calculated with a transport code using the
kinetic profiles(ne, Te, T;)

(v) the ECCD current density profilgccpand the ECCD deposition widthare calculated
with a ray-tracing code using the kinetic profiles

(vi) the neoclassical resistivitync is calculated with a transport code using the kinetic
profiles

(vii) the gradient scale lengths of the kinetic profileg, Ly, Lne are obtained using the
derivative over the minor radius of the fitted kinetic prdfile

viii) the poloidal magnetic fieldB, is calculated from the equilibrium reconstruction and the
p
toroidal magnetic fieldt is obtained from the magnetic coils’ measurements

(ix) the efficiency functiomgeccp of the ECCD injection is calculated analytically [15].

(x) the growth rate‘ijlt"hECCD and the decay of the island widlccp are obtained from an
integration of the MRE.

The dependent parameteps Lp, X1, X|» Ppi» Lj» Dr, Wb, Wa, Ts are calculated from the
measured quantitieges, Lg, Wsag Nes Te, Ti, Lne, Lte, LTi, Bpol, BT. jEccp andd are obtained
from beam tracing calculations afgs andnyc from transport modelling.

4.2. Multiple uncertainties

The quantities shown in the previous section can be spbttwb groups where one group
contains quantities with significant uncertainties and skeond group quantities where
the uncertainties are negligible. The first group with valwath significant uncertainties
comprisedNsay Wecen, dW/dt .o, NECCD, Nes Tew Tiy JEceD: jBS: d, Lgs Lne, L1e, LTi. Inthe
second group are, rres, NN, Bpol, Br-

For a comprehensive error analysis proper estimates faurtbertainties of the various
physical quantities are essential. In the Bayesian framewacertainties are quantified with
probability distribution functions. Although the Bayesianethod can process any type of
PDF only Gaussian distributions are used in this work. Gauasdistributions for the error
statistic are the most uninformative distributions if otilg mean (herée) = 0) and variance
((€?) = @) are known. For the given physical quantities standardadievis for the error
statistics could be estimated whereas higher moments @rtbestatistics are not known. If
higher moments of the error statistics are relevant for tlestraensitive physical quantities
additional measurements are necessary to recover thes@statistics.

In general, for the quantities measured directly from a wiistjc the value given from
the diagnostician is considered as the standard devia®ir example in the case of the
kinetic profiles (for whicho < 7% for T, andTe ando ~ 10% forne both at ASDEX Upgrade
and JT-60U have been assumed). For quantities which resuaitrhodelling codes (such as
jBs Or jeccp) or are calculated from derivatives (as the gradiégfs ne or L1e) estimating the
proper uncertainty is not trivial since one should take extoount the approximations in the
relevant model, the numerical precision of the calculgtaod the correlation in profiles. The
uncertainties on the quantiti®¥ccp, dW/dt|.., andneccp are small compared to, e.g.,
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Wsat andLg because they do not vary much once the temporal evolutioneoistand width
simulated from the MRE is determined from the experimenddhd The standard deviations
are estimated as a compromise between being too optimistic§— 10%) and being too
pessimistic¢ < 50— 60%) in the experimental data and modelling codes. Disehspecific
uncertainties have not been considered as they have alttzzged in the same way, with the
same measurements conditions. The chosen values for tigastiadeviations are listed in
table 2.

Table 2. Standard deviations given in percentage chosen for the statistical analysis

Lne | Weas Lq, jBs | jecep d, Ne, LroLti, NEced: Peltecen | Ter Ti | Weeeo
20%| 15% | 10% | 7% | 5%

4.3. Boundaries and correlations

0.25

0 005 01 015 02 025 03 0.35 04
j gg IMAM]

Figure 8. Probability distribution function forjeccp and jgs considering the physics’
boundary imposed. The randomisationjgEcp and jgs satisfies the conditioﬁ% > 0.3
which, in the present database, is the marginal value whiithléows for stabilisation.

The estimation of the MRE coefficients and their uncertasis based on a Monte-Carlo
method which randomises the physical quantities accorttirtgeir uncertainty probability
distributions. Physical boundaries on as well as cori@hatbetween the physical quantities
can easily be incorporated into the PDFs. The physics boigsdare given by positivity or
negativity (e, Lne, dW/dt|eccp) constraints, a minimum value of 2 cm for the deposition
width d, a minimum ratiojeccp/ jgs for stabilisation of~ 0.3 (as shown in figure 8), and
a lower boundary foWsg of Wy or W,. Therefore, the PDFs of the physical quantities are
normally distributed with cut-offs due to their constraint
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5. Determination of csgrand Cstap

5.1.%2 approach to the Modified Rutherford equation

The standgrd technique to evaluatg andcsiap has been to measure the necessary physical
quantitiesB = (Wsat Lg, ...) present in equation (1) at two specific time poitits= tsqt and
to = teccep. For a statistical analysis the following quantities arérosal:

Ts , dW

&oi = —lred) — @(W)‘ti (2)
&1i = Ires(Dgs+ Aga)) (3)
&2 = IreddeceD (4)

whereé21 = 0 andg,2 # 0 as onlyt; accounts for ECCD. All quantities on the right-hand side
of (2),(3),(4) depend on Therefore, equation (1) can be re-written as

0= &0i + Csaf1i + Cstatf2i + € (5)

wheree is the deviance from= 4 = 0 and(g) = 0, (€?) = 0® wheread? is its variance.

Ideally, %it" = 0 attsg; andtgccp in case of marginal stabilisation. In fact, it is assumed
02 = 0.01 for all discharges, which corresponds to an uncertaimthé evaluation ofjdit"

of about 10%. By assuming a normally distributed error, thgngation of sy and Cstap
corresponds to the minimisation gt defined as:

1, 1 2 &0i + Csa€1i + Cstatf.2i 2
X = éé( . ) (6)

Oj

In order to minimisex?, the derivative with respect i, andcsap has to be 0. By defining
the following quantities:

&% &oi2i &1i2i
Bii=Y =5 ; Bo2=Y —5— ; Br2=
2o Pem2 T P2 g
&2 &oiai
Bo= 25 ; Bor= (7)
2o 1 P1T2
the system of equations to be solved simultaneously in dod@etermines,; andcsiapis
Csaf311+ CstaB12 = Bo1 (8)
Csaf312 + CstaB22 = Bo2 9)

which leads to the solutions

_ Bo1B22— Bo2B12

~ PBuBa2—B3,

Gy — Bo2B11 — Bo1B12
B11B22— B2,

At tsgt where no ECCD was appliedf; = 0), csat can be determined simply bya = %
Equivalent formulas can be derived for the uncertaintiessgfand csiap from equation (6).

However, these uncertainties do only reflect the unceycalin%v but do not encounter the

Csat (10)

(11)
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correlation and the uncertainties on the other numerousipalyquantities. To estimate
full uncertainties of the coefficients applying Gaussiamoempropagation including all
uncertainties is cumbersome and does not even includdatiores. Therefore, a probabilistic
approach is used.

5.2. Bayesian approach to the Modified Rutherford equation

To estimatessgtandcsiap their uncertainties and correlations, from a comprehlverstatistical
description of all measured data and modelling paramatehsding parameter dependencies
and constraints a probabilistic approach based on BayEsaability Theory is applied [7].
The Bayesian Theorem states that a posterior PDF of the ewginén the event BP(c|B),
can be calculated by multiplying the prior PP¥c) by the likelihoodP(B|c) that event B will
occur if cis true:
P(Bo)P(c)

P(c|B) = P(B) (12)
The Bayesian theory is applied to the MRE written in the forfmequation (1).b is the set
of measured data with uncertainties and the parameterdesksic are csqt andcsiap, The
quantitiesB are the true quantities to be measured (e. Vg Lg, jBs, €tc.) which are
unknown. The marginal probability distribution fogaandcsiap can be obtained by applying
the marginalisation theorem and the product rule of BPT,

p@ﬁaz/dﬁwﬁ5® (13)
_/dB p(b|¢,B.0)p(C.B)
p(blo)
0 [ dBp(blE.3)p(EB)P(B)
where the integral is calculated using Monte-Carlo simaoitat p(b\ 3,0) is the product of
the likelihood functions of all the measured quantities, phobabilityp(c/B) is given by the
physical model (the MRE in this case) aR@B) quantifies the dependencies and constraints

characterising the physical valuBs The likelihood for each physical quantity is assumed to
be a normal distribution:

_l(b —B 1)2
(b||B| OB ) \/_T[O_B Xp 2 oBl (14)
The joint likelihood probability is given by
p(b|B,&) = [] p(bi[Bi, 08,) (15)
|

The probabilistic method applied to the MRE has several atégges compared to a standard
Gaussian error propagation method due to the complex stauof the MRE. It allows one
to provide a comprehensive statistical description of atlertainties, to consider the physics
constraints and the correlations present in the model, angake a sensitivity study on the
full model to identify which are the most influencing quaiest The terrrp(BT) accounts for
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the physical constraints (positivity, thresholds, etcand for the automatic propagation of
errors for each quantity_1 which depends on the quantBy:

P(B) = P(BﬂBz,....)*P(Bz‘Bg ..... )*P(BN) (16)
For example, starting from the likelihood ¢fs a sample is drawn subject to the imposed
constraints (e.g. being a positive quantity). Succesgivgelkecond quantity likeeccp is
sampled from its likelihood whose acceptable values negdftbthe constraintjeccp/ jss >
0.3.
After having sampled all the physical quantitigg; and csiap are determined from equation
(10) and (11). The process of sampling a complete set of palysjuantities and the
subsequent calculation @fs; and csap IS repeated. From a large number@f; and Cstap
values one calculates a 2-dimensional histogram whiclcttirapproximates the marginal
distributionp(clb, o) (13).

For the statistical analysis each quantity has been rarshmhwith a sample number
of 50000, according to the distribution of their uncertest This sample number is large
enough to obtain sufficiently smooth marginal probabilitstdbutions. Whereas a sample
number of 10000 has been tested to be the lower limit for thatmn of smooth probability
distributions. Marginal probability distributions fog,: andcsiap are calculated for the single
discharges individually as well as for all discharges jgind obtain a unique value farsy
andcsigpfor the full database.

Therefore, the probabilistic approach for the MRE con®iétbe following steps:

(i) sample random values f@&from probability distributiong(b|B, 3) - p(B) for individual

discharges starting from the collected data

(i) calculate the marginal posterior probability distrton p(csat cstada o) for each single
discharge by generating histograms with the collected &zsnp

(iii) calculate the marginal posterior probability distation p(Csat cstab|5,6) considering all
the discharges simultaneously

(iv) calculate the mean valu€ssay, (Cstary and the standard deviatiofs,,, Ac,,,, from the
marginal probability distributions for each single disdeas well as for all discharges
together

(v) carry out a sensitivity study on the quantit@sresent in the MRE (see section 6.3)

Summarising, the probabilistic method is based on fReapproach for the MRE
concerning the determination of the coefficients for giveggical quantities. Additionally,
the probabilistic method allows for arbitrary error distrtions, model parameter correlations
and boundary constraints. Therefore, a sensitivity studisizvthe probabilistic approach
with respect to major error sources improves the clasgi€approach due to the complex
dependencies.

6. Results

Considering the 23 discharges taken into account, the 2gomds necessary for the analysis
and the 13 quantities which are considered within their ttaggies, the number of uncertain
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Figure 9. Phase diagram obtained from the MRE (left) and integratedENIiRyht). Starting
from the saturated island wid¥sz; simulation of the island width decay is carried out by
including the ECCD term in the MRE and by optimising the vadfiesizn In the experiment
injection of ECCD current starts at 3.2 s. Indicated are also the growth rab@//dt| ..,
and the corresponding island widtfccp.

model parameters in equation (1 RSNgischarges: 2 * 13~ 600.

6.1. Results forgtand Gapwith thex? method

In [13] csat @and Csiap have been evaluated for a set of experimental dischargéectam at
ASDEX Upgrade and JT-60U. The fitting method consistsyf misfit minimisation (details
are given in section 5.1) based on the measurement of thiejjoaatities present in the MRE
and the comparison between a simulated island width decadyhenexperimental onecsat
has been evaluated at saturation tiggwhendW/dt = 0 andW = Wsa: Csiap has been
evaluated during the stabilisation time when the islandthviecays until it becomes zero
atteccp. The former makes use of the equatmg = ﬁlﬂ’ef The latter is determined by
direct comparison with the experimental evolution. Both m?lase diagram and the simulation
optimised to the experimental curve of an NTM stabilisatiischarge are shown in figure 9.
The average values of the two coefficieaig andcsiap0btained with this method are:

Csat = 0.81+0.13 (17)
Cotab= 0.68+0.22 (18)

All plasma quantities are kept constant without errors.[T8Je uncertainties reflect the scatter
of the coefficient values estimated from the different désges.

6.2. Results forgand GiapWith the probabilistic method

The results obtained for the marginalised posterior pridibhadistributions for csg; andcstap
over a single discharge and over all the discharges arenglotan terms of 2-dimensional
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Figure 10. 2D marginal posterior probability distribution for one clierge (left) and for all
discharges (right). Overplotted are the mean valuescfgt €star) With their error bars

diagrams and are shown in figure 10. The cross describes tha waues and standard
deviations of the marginal PDF. The results show that:

e The PDF ofcsat and csiap Obtained for each single discharge is centred around a value
which agrees with the one calculated with the stanggrdpproach. Since the mean
value of the PDF does not necessarily have to coincide weahrtaximum value of the
x? method, this result shows that neglecting ingRenethod the statistical uncertainties,
the constraints and the correlations of the many physicahtijies does not deteriorate
the estimated values significantly.

e The PDF ofcsgt and csiap Obtained by marginalising over all the discharges is centre
around a mean valuecy; = 0.64+ 0.07 andcsiap = 0.62+ 0.09) which is slightly
different but consistent with the value found from tjgé calculation (e.g. Csat =
0.81+0.13 andcsiap= 0.68+0.22).

e The difference between the probabilistic and the classgsallts increases if the standard
deviations assumed in the Monte-Carlo process is increaffetthe uncertainties are
reduced dramatically, the overall PDF for all the discharggrees with the value
obtained in ref. [13]. This suggests that the non-lineanitghe MRE is responsible
for the difference. This also suggests that for some questt skewed error probability
distribution might better represent the distribution sfutlues compared to the normal
distribution which has been assumed here.

e The uncertainties for the coefficients obtained with thebptmlistic method are smaller
than the uncertainties from th¢ method, although thg? method is not explicitely
incorporating uncertainties on the physical quantitiefie Teason is that with the?
method the uncertainties are determined from the scatteedastimated coefficients for
single discharges. This scatter implicitly includes theswement errors on the physical
parameters. The larger uncertainties arise from the ngsstmtistical quantification of
the physical parameters and the missing constraints amdlabons. Providing more
information results in more reliable estimates.
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e As expected, the standard deviation of the PDFcfgrand csiap for marginalising over
all the discharges is smalles & 10%-- 15%) compared to the values obtained for single
dischargesd = 30%-- 40%), although one would expect a somewhat larger uncéytain
reduction than a factor of 3 from 23 discharges. The reas@hintie a natural scatter
of the discharge properties which is not included in the mesament uncertainties of the
physical quantities.

e The PDF over a single discharge as well as for the combineghaliges show a clear
correlation betweensgiandcsiap, They are positively correlated. Overestimation of one
coefficient results in simultaneous overestimation of teoone.

The results show that the classical approach provides mah#® estimation values and
uncertainties for the MRE coefficients. The conceptual thasks of the classical approach
were overcome with the probabilistic method. The probsatidiapproach results in more
reliable estimates due to the additional information witah be easily incorporated with the
Bayesian method. An important advantage of BPT is that EVesmt information can and has
to be quantified explicitely which provides an ideal framekior scientific reasoning.

The amount of ECRH power necessary to stabilise NTMs is tirecoportional to the
ratio Csai/Cstab (€-9- Pecrn O jeccp/ jBs U Csat/Cstab [14]). Therefore, the uncertainty on
Csat andcgigp directly influences the ECRH power necessary for ITER. Ir],[ff8 minimum
amount of ECRH power is estimated to be about 10 MW. From titeer enalysis of this work
one can estimate an uncertaintyde2 MW on these calculations. This is indeed a comforting
result since in ITER, an ECRH system delivering a maximumG@MV of ECRH power is
foreseen.

6.3. Sensitivity analysis

As mentioned in the previous section, not all the quantpiesent in the MRE have been
randomised according to their uncertainty since theirigégé uncertainty does not affect
the evaluation otsg; andcsiap Significantly. Nevertheless, for the other quantities aered

in the statistical analysis it is interesting to study whegphantity has the most effect on the
overall uncertainty. In fact, it is relevant to understaoaiprecise the measurements on such
guantities need to be in order to have robust results for tR& Moefficients. In order to carry
out such a sensitivity study only one relevant quantity atreetis considered by switching
off the other quantities’ uncertainties. Statisticalljistmeans to marginalise the probability
distribution over one of the quantities given that the otggintities are kept constant, as for
exampleLq:

P(Csae Cotaid) = [ o LaP(Csae Ctas Lq ) (19)

The results of the sensitivity analysis are shown in figurevhére each quantity is randomised
over the uncertainties listed in table\8g; jgs andLq are found to be the most crucial ones
for the determination ofsa: This is expected as physically the saturated islandizeand

the bootstrap current densijys are proportional. Both depend on the pressure of the plasma.
The strong dependency on the safety factor gradient lengttihe other hand, is related to the
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Figure 11. Marginal probability distributions focsat and csiap for various uncertain physical
guantities where all the other uncertainties are assumeaitish.

effect of the shear on the island width. The uncertaintlyf which is quite large, has almost
no effect since it enters explicitly in the MRE only in the eature term via the pressure
gradient lengthL, = p/p’. For cstap Nearly all of the quantities affect the evaluation in a
similar way. Only the uncertainty of the quantdyV/dt|teccp has little impact on the width
of the probability distribution. Additionally, it is intessting to notice that some quantities like
jBs andWeccp tend to shift the centre of the probability distribution s the left as their
uncertainty is increased. This is due to the non-linear deépece otsi;p0n these quantities.

Summarising, the sensitivity analysis shows clearly wipbiisical parameters are most
important to obtain efficient improvements in estimating MRE coefficients. Additionally,
an improved statistical description for those parametergl@ying non-Gaussian probability
distributions might be most beneficial.

7. Summary and conclusion

The Modified Rutherford Equation is routinely used to studyevolution of magnetic islands
associated to the presence of NTMs in fusion devices. Todwgpthe description of NTMs
with the MRE, its expression needs to be verified and its freefficients csyr and Cstap
need to be determined from the experiment. It is importandlitain estimates of these
coefficients with high precision as the estimate of the arhoilECCD power required for
NTM stabilisation in ITER directly depends on their valusssell as on their uncertainties.
Therefore, to calculate the error bars@j; and csiap @ New technique is developed which
makes use of the Bayesian Probability Theory. Monte-Cartwukations are applied to
generate probability distributions faga: and cgiap Starting from the probability distributions
of all the physical quantities present in the MRE which qugrthe measured or derived
uncertainties, the correlations and the constraints.
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The resulting standard deviations ofy; and cgiap for single discharges are between
30% and 40%. An analysis of the combined set of dischargesdtsei® mean values of
Csat = 0.64+ 0.07 andcsiap= 0.62+ 0.09. In this case the uncertainty decreases to about
12%. As a consequence the minimum ECRH power requirementdT® stabilisation in
ITER can be estimated to be H2 MW. A sensitivity study shows that the most important
three quantities needed to be estimated with high precfsioa good evaluation ofs;; and
Cstap @re the saturated island si¥é,; the bootstrap current densifgs and the local shear
valueLg.

The probabilistic approach is not restricted to the MRE ysialbut can be applied to
any problem with multiple uncertainties in physical quaes.
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