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Abstract

A nonlinear two-dimensional steady state solution in the framework of hy-
drodynamics describing a row of periodic counter-rotating vortices is exten-
ded to the magnetohydrodynamic (MHD) equilibrium equation with incom-
pressible flow of arbitrary direction. The extended solution covers a variety
of equilibria because four surface quantities remain free. Similar to the case
of the MHD cat-eyes equilibrium [Throumoulopoulos et al., J. Phys. A:
Math. Theor. 42, 335501 (2009)] and unlike linear equilibria, the flow has
a strong impact on isobaric surfaces by forming pressure islands located wi-
thin the counter-rotating vortices even for values of  (defined as the ratio
of the thermal pressure over the external axial magnetic-field pressure) on
the order of 0.01. Also, the axial current density is appreciably modified by
the flow. Furthermore, a magnetic-field-aligned flow of experimental fusion
relevance, i.e for Alfvén Mach numbers of the order of 0.01, and the flow
shear in combination with the variation of the magnetic field perpendicular
to the magnetic surfaces have significant stabilizing effects potentially related
to the equilibrium nonlinearity. The stable region is enhanced by an external
axial magnetic field.
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I. Introduction

Sheared flows influence the equilibrium and stability properties of ma-
gnetically confined plasmas and result in transitions to improved confine-
ment regimes of fusion devices. Typical experimental velocities correspon-
ding to Alfvén Mach numbers, M, on the order of 0.01 have been obser-
ved in JET (Ref. [1]) and ASDEX Upgrade (Ref. [2]) tokamaks. Theore-
tically, there has been an increasing number of studies on the equilibrium
and stability properties of flowing plasmas (see, for example, Refs. [3]-[21]
and Refs. cited therein). In particular, analytic equilibrium solutions have
been obtained as solutions to generalized Grad-Shafranov equations (Refs.
3,4, 6,7,9,10, 11, 13]). An impact of the equilibrium flow related to the
convective term in the momentum equation is that the isobaric surfaces de-
viate from the magnetic surfaces. For linear equilibria and M =~ 0.01 this
deviation is weak (see, for example, Ref. [3]). Regarding stability, the pro-
blem becomes tough because of the same convective flow term which makes
the force operator non-hermitian. The difficulty reflects to the lack of neces-
sary and sufficient conditions for stability, an old unsolved problem even in
the framework of hydrodynamics. Thus, only certain sufficient conditions
have been obtained (Refs [14, 15, 18, 19, 20, 21]). In connection with the
present study we mention a readily applicable sufficient condition for linear
stability pertinent to plasmas of constant density and parallel incompressible
flows (Ref. [21]) (see also Sec. III).

Motivation of the present study was a previous paper (Ref. [13]) in which
the cat-eyes hydrodynamic equilibrium solution describing a row of identical
vortices was extended to magnetohydrodynamic plasmas with incompressible
flow. In this study it was found that for flows with M =~ 0.01 the pressure
surfaces deviate strongly from magnetic surfaces by forming pressure islands
in the location of the cat eyes, unlike the weak respective deviation in linear
equilibria. Thus, this strong flow effect should be related to the equilibrium
nonlinearity. In addition, a flow parallel to the magnetic field results in
appreciable stabilizing effects.

Here we examine the validity of these conclusions in the case of another
nonlinear equilibrium solution which in the framework of hydrodynamics
describes a row of counter-rotating vortices (Ref. [22]) by extending this
solution to MHD for plasmas with incompressible flow of arbitrary direction.
The extended solution may be more relevant to laboratory fusion plasmas
than cat-eyes because it can be bounded. The impact of flow on the pressure



is then examined. Also, for parallel flows the stability is studied by applying
the aforementioned sufficient condition (Ref. [21]). Conclusions similar to
those in the case of cat-eyes are drawn as concerns the formation of pressure
islands and stabilizing effects of flow. Pressure islands, however, are not
necessary for stabilization for large values of § on the order of 0.1. Owing
to the objectives, the study is conducted along the same lines as in Ref. [13]
including a couple of additional issues: the impact of flow on the axial current
density and the role of the individual terms of a quantity A involved in the
stability condition [Eqgs. (14-19) of Sec. III]. The latter decomposition shows
that stabilization is caused by a combination of flow and the magnetic field
variation perpendicular to the magnetic surfaces.

For convenience the study will be presented in a self contained way
because otherwise repeated reference to [13] would make reading tedious.
In Sec. II the extended counter-rotating-vortices equilibrium is derived by
solving the pertinent generalized Grad-Shafranov equation. Also the impact
of flow on the pressure and axial current density is examined. Then, the sta-
bility condition is applied to the solution constructed for a broad variation of
the free parameters in Sec. III. The impact of the magnetic surface shaping,
amplitude and shear of the flow, thermal pressure and axial magnetic field on
the stable region is also examined. Section IV summarizes the conclusions.



II. MHD counter-rotating-vortices equilibrium with
flow

We consider a translational symmetric magnetized plasma with incom-
pressible flow whose equilibrium states satisfy the generalized Grad-Shafranov
equation (Refs. [6, 9]),
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and the Bernoulli relation for the pressure
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P = B(¢) — 5—M?|Vy[”. (2)
Here, ¥ (z,y) is the poloidal magnetic flux function which labels the magnetic
surfaces; (z,v, z) are Cartesian coordinates with z corresponding to the axis
of symmetry and (z,y) associated with the poloidal plane; M (¢) the Mach
function of the poloidal velocity with respect to the poloidal-magnetic-field
Alfvén velocity; B, the axial magnetic field; for vanishing flow the surface
function Py(1)) coincides with the pressure; the prime denotes a derivative
with respect to 1. The surface quantities M (1), B,(v) and Py(¢)) are free
functions for each choice of which (1) is fully determined and can be solved
whence the boundary condition for ¢ is given. Also, to completely determine
the equilibrium, three additional surface functions are needed, i.e, the density,
0(v), the electrostatic potential, ®(¢), and the axial velocity component
v,(¢0). Details including derivation of (1) and (2) can be found in Refs.
(7, 9].
Equation (1) can be simplified by the transformation (Refs. [23, 24])

P 1/2
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which reduces (1) to
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Also, (2) is put in the form
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Note that (4) free of a quadratic term as |Vu|? is identical in form with the
quasistatic [25] MHD equilibrium equation as well as to the equation gover-
ning the steady motion of an inviscid incompressible fluid in the framework of
hydrodynamics. Transformation (3) does not affect the magnetic surfaces, it
just relabels them. Also, once a solution of (4) is found, the equilibrium can
be completely constructed in the u-space; in particular, the magnetic field,
current density, velocity, and electric field can be determined by relations
(9)-(12) of Ref. [13].

To construct the extended counter-rotating-vortices solution to (4) we
first introduce for convenience dimensionless quantities: T = x/L,§g=y/L,
U = U/(BZ()L), 0= Q/QO; P = P/(Bg()/MO)v ]?3 = B/Bz(b Jj= j/<Bz0/<:U/0L))7
V = Vv/vao, Where va9 = B.o/\/l000 , and E = E/(B.ovao); here, L, B.,
and gy are reference quantities to be defined later. Equations (4) and (5)
hold in identical forms for the tilted quantities and will be further employed
as dimensionless by dropping for simplicity the tilde. Then, we make the

ansatz
d(P,+ B2/2) 1—¢

I = sinh (2u) , (6)
by which (4) reduces to the following form of sinh-Poisson equation:
1— 2
V2u = ——— sinh (2u). (7)
Equation (7) admits the solution
e cos(x)
u = —2arctanh | ———= | , (8)
cosh(ey)

the characteristic lines of which are shown in Fig. 1. The configuration
consists of an infinite series of periodic pairs of vortices having magnetic axes
on (x = km,y = 0) with k£ an integer. Also, it holds u(x = km + 7/2) =0
and therefore boundary conditions at the points x = kr +7/2 can be readily
imposed (see Fig. 1). The velocity of the individual vortices of each pair
have opposite direction. The magnetic field and current density lie on the
velocity or magnetic surfaces and therefore the vortices can be regarded as
magnetic islands with plasma flow. Quasistatic MHD and hydrodynamic
counter-rotating vortices can be recovered as particular cases. The magnetic
surface elongation along y gets shorter as the parameter € increases with
€ = +1 corresponding to point vortices. In comparison with the cat-eyes
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equilibrium [Eq. (15) of Ref. [21]] the extended counter-rotating vortices
have the following diverse characteristics:

1. Solution (8) is inherently two-dimensional (for 0 < |e¢| < 1) while the
cat-eyes solution for e = 0 becomes one-dimensional (note that here

u(e =0) =0).

2. Except for the bounding surfaces, u = 0, the configuration has only
closed magnetic surfaces while cat eyes have a separatrix.

3. It holds limu,—.~ = 0, unlike the cat-eyes solution which in this limit
becomes singular.

Equation (6) can be solved for Ps(u) + B.(u)?/2 to yield
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where ¢y is a constant. In fact, (8) and (9) hold for a rather large set of
equilibria because the functions p(u), ®(u), M(u) and one out of B,(u) and
Py(u) remain free.

We will further consider a subset of steady sates by assigning the free
functions P,, B, and M as

1— 2
Py(u) =~ ‘ [cosh(2u) — 1] + 6;, (10)
2 1—¢ 2
B2 (u) = (1 —27) cosh(2u) + B, (11)
M = My [cosh(—2u) — 1]", n > 0. (12)
Choice (12) yields a peaked M?-profile along y with | M| being the maximum
absolute value at x = y = 0 and lim Mgﬁoo = 0. The profile becomes steeper

as n takes larger positive values, thus increasing the shear of M in relation to

the velocity shear. The parameter B, represents the external axial magnetic

field, : )
_ Ps r=Y= 0 - 2
8= @y (1 — €°) [cosh (4arctanh(e)) — 1], (13)



and 3y = Py/(B?,/2), where Py, = const. Note that 7 has been introduced in
(10) and (11) in such a way that (9) is automatically satisfied. The physical
parameter ( (the ratio of thermal pressure on axis over the B,g-pressure)
is related to y. The other parameter f; in (10) yields force-free quasistatic
equilibria when v = 8 = 0. For 8 # 0, we set B¢ = 0 in order that P, vanishes
for y — oo; thus, only one of the parameters § and [ is finite in connection
with peaked and flat P,-profiles, respectively. A peaked P,-profile is shown
in Fig. 2. The parameters M,, and n are free together with L, gg, €, B.o,
and ( or (¢ It is recalled that dimensionless quantities are employed and
therefore B,y = 1. Also, the reference quantities L and gy not appearing
explicitly in the equations can arbitrarily be defined as the vortex length
(along the x-axis) and the density at z = y = 0. Because of the many free
parameters there is a variety of steady states. An example for v = 1/2 is an
equilibrium with peaked P-profile shown in Fig 4(a), B, = B,, axial current
density and three-component velocity. Another example for § = My =0 is a
force free quasistatic equilibrium with three-component current density. In
the presence of flow, however, the pressure profile becomes hollow [see Fig.
4(b)].

We have examined the pressure and current density by Mathematica 6
within broad regions of the free parameters, i.e., 0 < e < 1,0 < g < 0.9,
0 < |[My| <09 and 0 <n < 10. Note that, because of the flow term in
(5) the pressure for certain parametric values can become negative. Thus,
particular care has been taken in getting everywhere physically acceptable
pressure. It turns out that, as in the case of cat-eyes (Ref. [21]), the flow
has strong impact on the isobaric surfaces by creating pressure island within
the counter-rotating vortices. This is shown in Fig. 3. The pressure islands
are twisted at an angle of m/2 with respect to the islands of the cat-eyes
equilibrium (see Fig. 3 of Ref. [21]). Also P-profiles are presented in Fig. 4.
As can be seen in Fig. 3 pressure islands appear even for parametric values
of experimental fusion concern (8 = 0.01, My = 0.02). Usual equilibria with
nested pressure surfaces are also possible for appropriately large values of (3
on the order of 0.1 because then the first quasistatic term in (5) dominates
over the second flow term. In addition, the flow affects appreciably the axial
current density, 7., regardless of (3, while the poloidal current density remains
nearly unaffected. An example is shown in Fig. 5. Since for fusion pertinent
linear equilibria the flow impact on the pressure and the current density is
weak, it is the nonlinearity here which should play an important role.



I1I. Combined stabilizing effects of low and magnetic
field

The linear stability of the equilibria described by (8) and (10)-(12) is now
examined by applying a sufficient condition (Ref. [21]). This condition states
that a general steady state of a plasma of constant density and incompressible
flow parallel to B is linearly stable to small three-dimensional perturbations
if the flow is sub-Alfvénic (M? < 1) and A > 0, where A is given by (22) of
Ref. [21] (with A therein corresponding to M here). Consequently, we restrict
the study to parallel flows and set o = 1. In fact if the density is uniform at
equilibrium it remains so at the perturbed state because of incompressibility
(Ref. [26]). First it is noted that on the basis of Mercier expansions it
turns out that the condition is never satisfied in the vicinity of the magnetic
axis (A < 0) (Ref. [27]). This holds for generic two-dimensional equilibria
irrespective of the geometry. Also, for the pressure (10), the quantity A
is independent of (3, as may be expected on physical grounds, because A
contains dP,/du and not P, itself. It is recalled here that § = 0 when [ # 0.
In the u-space for translational symmetric equilibria, A assumes the form

A = A4 Ay + Ay + Ay, (14)

Ay = —([xVu)?, (15)

Ay = (jXVu)-(Vu-V)B, (16)
1dM? N1 o 12 V B2

A =~ (1=M?) | Vuf Vu- 5 (17)
1dM? o\ —3/2 A

Ay = —5—- (1= M2) 77 | Vul'y, (18)

(19)

g = (1—M2)V? (dps _dM232>

du du 2

and B and j as given by (9) and (10) of Ref. [13]. To calculate A analytically
for the equilibria under consideration we developed a code in Mathematica 6.
The expressions obtained for both peaked and flat P.-profiles being lengthy
are not given explicitly here except for the case of quasistatic equilibria [Eq.
(20) below]. The calculations led to the following conclusions.



1. For quasistatic equilibria (My = 0) the quantity A assumes the concise
form

C
A = ol
= 128¢° (62 — 1) cos?(x) cosh?(2ey) [cos(2x) — cosh(2ey)]
X [1 + € + € cos(2z) + Cosh(2€y)}
D = [62 + € cos(2x) — cosh(2ey — 1)}5 : (20)

Note that A becomes independent of 3 and B.y. The condition is
nowhere satisfied except for point vortices (¢ = 1), the magnetic axes,
the bounding surfaces x = k7 4+ 7/2 and for y — oo for which A = 0.
A profile of A is given in Fig. 6.

2. The flow results in the formation of a stable region close to the magnetic
axis. An example shown the sign of A on the poloidal plane is presented
in Fig. 7. The red (lighter) colored regions are stable (A > 0), while
in the blue (darker) colored region it holds A < 0. The whole area of
Fig. 7 becomes blue (lighter) colored when M, = 0. Profiles of the
individual four terms contained in A [Egs. (15-18)] are given in Fig.
8. As can be seen there stabilization is caused by a synergism of the
fourth flow term, A4, containing g and the second term, As, containing
(Vu-V)B and therefore related to the variation of B perpendicular to
the magnetic surfaces. Note that A, itself can not make the condition
satisfied. The first destabilizing term, A; potentially relates to current
driven modes. The other flow term As with indefinite sign is at least
two orders of magnitude lower than the other terms. It may be noted
here that certain synergetic action of the magnetic field and flow for the
formation of internal transport barriers in terms of reversed magnetic
shear and flow shear was found theoretically in Refs. [11, 12] and
observed recently in JET (Ref. [29]). Further physical understanding
in the context of the present study is difficult even in the quasistatic
case because we can not compare with the conventional stability theory,
e.g. Mercier criterion. The reason is that A > 0 is a local condition
stemming from the requirement that the integrand of inequality (12)
of Ref. [21] should be positive while Mercier modes are localized in the
vicinity of a magnetic surface. This difference reflects to the fact that



the stable regions determined by A > 0 are not located near a magnetic
surface.

. The stable region broadens when the parameters My, n and € take lar-
ger values as can be seen in Figs. 9(a), 9(b) and 9(c), respectively. Note
the sensitiveness of A in the region of the stable window to the small
variation of these parameters possibly related to the nonlinearity; in
particular, € appears in the arguments of the counter-rotating-vortices
solution (8). The impact of the magnetic surface elongation on stabi-
lity in connection with € is opposite to that in the cat-eyes equilibrium.
These results hold for both peaked- and flat-P; equilibrium profiles.
Unlikely, the stable region is rather insensitive to the variation of (.
An example is given in Fig. 9(d), where the stable window persists (just
getting slightly smaller) when ( is increased by an order of magnitude
(from 0.01 to 0.1). Also, for point vortices (¢ = 1) A becomes inde-
pendent of § irrespective of the value of M,. It should be noted that
stabilization is possible for usual nested pressure surfaces for appro-
priately large values of 5. An example is the equilibrium with g = 0.1
Fig. 9(d) refers to. Thus, pending on the value of 3 flow stabilization is
possible for either equilibria having pressure islands or nested isobaric
surfaces. This holds also for the extended cat-eyes equilibrium a result
not noticed in Ref. [13]. On the other side the modification of the axial
current density profile by the flow persists regardless of the values of

G.

. Although for My = 0 the vacuum magnetic field B,y has no impact
on A [equation (20)], in combination with the flow, B,y can enhance
the stable region. An example of this synergetic effect is shown in Fig.
10(a). Another example of such a strong synergism can be seen in
Fig. 10(b). In this case, while the flow itself can not make A positive,
together with B.q it results in the formation of the stable window.

IV. Conclusions

We have constructed a counter-rotating-vortices equilibrium for MHD
plasmas with incompressible flow by extending the respective hydrodynamic
solution. The extended solution describes a two-dimensional non-linear equi-
librium consisting of a row of periodic island pairs with counter currents and
covers a variety of equilibrium configurations because four surface functions
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remain free. Compared with the extended MHD cat-eyes (Ref. [13]), the
counter-rotating vortices solution may be more appropriate to magnetically
confined plasmas because the plasma can be bounded.

By means of the equilibrium constructed and a criterion for linear stability
we came to the following conclusions.

1. As in the case of cat-eyes, fusion pertinent flows with M =~ 0.01 in
equilibria with 3 & 0.01 affect drastically the pressure surfaces by for-
ming pressure islands within the counter rotating vortices. The pres-
sure islands are twisted at an angle of /2 with respect to the cat-eyes
islands. In addition, the axial current density is appreciably modified
by the flow irrespective of 3. Since such strong flow-caused changes
do not occur in linear equilibria it is the equilibrium nonlinearity here
which plays an important role.

2. A parallel flow and the flow shear in conjunction with the variation of
B perpendicular to the magnetic surfaces have remarkable stabilizing
effects potentially correlated to the equilibrium nonlinearity. Note that
in the case of a linear sinusoidal solution describing a tokamak equi-
librium with parallel incompressible flow in toroidal geometry (Ref.
28]), the stability condition is not satisfied for M ~ 0.01 because the
stabilizing flow term, A, [see Eq. (18)] becomes three orders of magni-
tude lower than in the present study. In both the extended cat-eyes and
counter-rotating-vortices equilibria, stabilization is also possible for ne-
sted pressure surfaces in connection with large values of 3 on the order
of 0.1; in this respect the flow-caused change of the equilibrium axial
current density being independent of § might play a more important
role on stability.

3. The stable regions shorten with the magnetic surface elongation along
the non periodic direction, broaden with the flow and the flow shear and
are rather insensitive to thermal pressure. In addition, a combination
of flow and a constant axial magnetic field have synergetic stabilizing
effects by enlarging the stable region.

The generic validity of the results of the present and cat-eyes studies
could be further examined by alternative non-linear solutions. Since in plane
geometry the Laplace operator is involved in the equilibrium equation, such
solutions can be constructed by using the powerful tool of complex functions.
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Also, it is interesting to examine the impact of toroidicity by extending the
study to toroidal geometry. Because of unavailability of analytic nonlinear
solutions in this case, most likely the construction should be performed nu-
merically. Finally, it is noted that in Ref. [28] only linear low-shear Mach
functions were considered. Therefore, to check the importance of the equili-
brium nonlinearity on stability, the potential role of the flow shear could be
further examined in the linear regime by employing Mach functions of the
form M oc u™.
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Figure captions

Figure 1: w-lines of the MHD counter-rotating-vortices solution (8) for ¢ =
0.4 as intersections of the magnetic surfaces with the poloidal plane.

Figure 2: Profile of the quasistatic pressure function P; [equation (10)] along
the y—axis.

Figure 3: Pressure islands in connection with (5) and (10). The curves
represent pressure lines on the poloidal plane. In the absence of flow the
lines of Fig. (a) coincide with the w-lines of Fig. 1 while the equilibrium of
Fig. (b) becomes force-free.

Figure 4: Pressure profiles along the y-axis respective to the pressure-island
configurations 3(a) and 3(b). For vanishing flow profile (a) reduces to the
Ps-profile of Fig. 2 and profile (b) becomes flat.

Figure 5 (Color on line): Profiles of the axial current density j.,.

Figure 6: Profile of the quantity A [Eqgs. (14-19)] associated with the suf-
ficient condition for linear stability for a quasistatic equilibrium (M, = 0).
Except for the marginally stable points y = 0 and y — oo the condition is
nowhere else satisfied.

Figure 7(Color on line):  Stabilization effect of flow: In the presence of
flow the red (lighter) colored stable regions appear in the diagram (a) where
A > 0. The respective stable window can be seen in the profile of A in (b).

Figure 8: Profiles of the four individual terms the stability quantity A
comprises of [Egs. (14)-(19)] for € = 0.4, § = 0.01, My = 0.02 and n = 6.
Stabilization is caused by combination of the term A, related to the variation
of the magnetic field perpendicular to the magnetic surfaces and the flow term

Ay

Figure 9(Color on line): Impact of the flow (a), flow shear (b), island size (c)
and thermal pressure (d) in connection with a variation of the parameters
My, n, €, and 3, respectively, on the flow caused stable window associated
with A > 0 for the equilibrium of Fig. 3(a).

Figure 10(Color on line): Combined stabilization effect of flow and B.y: The
curve (a) indicates a stabilizing synergism of B,y and flow for the equilibrium
of Fig. 3(a). A stronger synergism of this kind is shown in Fig. 3(b) in which
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the stability window can not appear by the sole presence of flow.
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List of Figures

Figure 1: w-lines of the MHD counter-rotating-vortices solution (8) for e = 0.4
as intersections of the magnetic surfaces with the poloidal plane.
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Figure 2: Profile of the quasistatic pressure function P; [equation (10)] along
the y—axis.
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(@ €=0.4, 5=0.01, Mg=0.02, n=6 (b) €=0.4, B;=0.02, My=0.02, n=6
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Figure 3: Pressure islands in connection with (5) and (10). The curves
represent pressure lines on the poloidal plane. In the absence of flow the
lines of Fig. (a) coincide with the u-lines of Fig. 1 while the equilibrium of
Fig. (b) becomes force-free.
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Figure 4: Pressure profiles along the y-axis respective to the pressure-island
configurations 3(a) and 3(b). For vanishing flow profile (a) reduces to the
Ps-profile of Fig. 2 and profile (b) becomes flat.
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(a) e=0.4, 5=0.01, n=6 (b) e=0.4, 8=0.01, n=6

Figure 5: (Color on line) Profiles of the axial current density

€=0.4, $=0.01, My=0, B,;=0
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-0.015

Figure 6: Profile of the quantity A [Eqs. (14-19)] associated with the suf-
ficient condition for linear stability for a quasistatic equilibrium (M, = 0).
Except for the marginally stable points y = 0 and y — oo the condition is
nowhere else satisfied.
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(8) e=0.4, =0.01, Mp=0.02, n=6
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Figure 7: (Color on line) Stabilization effect of flow: In the presence of
flow the red (lighter) colored stable regions appear in the diagram (a) where
A > 0. The respective stable window can be seen in the profile of A in (b).
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Figure 8: Profiles of the four individual terms the stability quantity A com-
prises of [Egs. (14)-(19)] for ¢ = 0.4, § = 0.01, My = 0.02 and n = 6.
Stabilization is caused by combination of the term A, related to the varia-
tion of the magnetic field perpendicular to the magnetic surfaces and the
flow term Ajy.
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(8) e=0.4, #=0.01, n=6, B,,=0

(b) e=0.4, 8=0.01, My=0.02, B,,;=0
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(c) p=0.01, My=0.02, n=6, B,;=0 (d) e=0.4, My=0.02, n=6, B,;=0
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Figure 9: (Color on line) Impact of the flow (a), flow shear (b), island size
(c) and thermal pressure (d) in connection with a variation of the parameters
My, n, €, and 3, respectively, on the flow caused stable window associated

with A > 0 for the equilibrium of Fig. 3(a).
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(a) e=0.4, 5=0.01, n=6, B,;=0 (b) e=0.4, 5=0.6, n=6, My=0.02
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Figure 10: (Color on line) Combined stabilization effect of flow and B,o: The
curve (a) indicates a stabilizing synergism of B,y and flow for the equilibrium
of Fig. 3(a). A stronger synergism of this kind is shown in Fig. 3(b) in which
the stability window can not appear by the sole presence of flow.
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