Modelling and optimisation of ionisation gauges for magnetic nuclear devices
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Abstract

We have developed a numerical tool that simulates the operation of an ionisation-based pressure gauge in the presence of magnetic
field. In this paper we describe the physical model, the numerical implementation and the validation of the code against laboratory
experiments using the so called ASDEX pressure gauge. We then show how this modelling has led to a deeper understanding of
processes associated with the presence of magnetic field in this type of gauge: sensitivity enhancement, sensitivity dependence on
primary electron current and output saturation at high gas pressure. The combined electric and magnetic fields may trap electrons
long enough so that they can spend all their energy in collisions with the neutral gas, thus increasing the sensitivity and leading to
early saturation (with respect to the no B-field case). Although it seems difficult to avoid particle trapping with strong B-field, the
fraction of trapped electrons and the trapping time can be limited by careful tailoring of the electric potential in the gauge and thus
creating E X B drifts. This results in a modified sensitivity and saturation characteristic. Finally we show an example of a modified

gauge which has an improved upper pressure limit in view of the next generation nuclear fusion experiment such as ITER.

Key words: ion gauge, neutral density, magnetic confinement, nuclear fusion

PACS: 07, 29, 34

1. Introduction

Neutral gas particle and/or flux density measurements in
magnetic nuclear fusion experiments are important for the con-
trol and safe operation of devices such as tokamaks and stel-
larators. They are also fundamental for the understanding of the
plasma-wall interaction and its influence on the plasma perfor-
mance. Such measurements, however, are generally challeng-
ing. To achieve sufficient temporal and spatial resolution, sev-
eral pressure gauges have to be installed inside the vacuum ves-
sel. A suitable gauge has thus to work in presence of a strong,
variable (in magnitude and direction) magnetic field and a noisy
environment, and should provide reliable measurements for a
typical pressure range of 10~7 — 10! mbar. Under these condi-
tions a standard hot cathode Bayard-Alpert ionisation gauge [1]
cannot generally be employed. On the contrary, the so-called
ASDEX Pressure Gauge (APG) [2] has been used to provide
neutral flux measurements in previous and present-day toka-
maks and stellarators such as ASDEX Upgrade, DIIID, JET and
W7-AS.

The APG is also a hot cathode ionisation gauge. A schematic
of the geometry is shown in figure 1. The neutral particle den-
sity is derived from the electron (from the cathode) and ion
(from ionisation) currents at the electrodes. The electron cur-
rent is normally stabilised and kept constant by a feedback loop.
In difference to standard ion gauges the APG uses a thick fila-
ment (as cathode), a linear geometry with the axis roughly par-
allel to magnetic field, and AC operation to cancel large offsets
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and leakage currents. More details can be found in reference
[2]. The APG is also foreseen as the main in-vessel pressure
gauge in ITER [3], but it must be optimised in order to meet
ITER requirements, such as the pressure range [4]. We have
thus started a theoretical investigation and implemented a nu-
merical model that can be applied to all kinds of ionisation
gauges with and without magnetic field.
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Figure 1: Schematic of the gauge head of an ASDEX pressure gauge (APG).
The control grid allows AC operation by setting its voltage higher and lower
than the filament potential.

2. Numerical model

We calculate the electric current at the electrodes, namely the
electron current, /., to the acceleration grid and the ion current,
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I;, to the ion collector by direct Monte Carlo methods. Specif-
ically we follow the electrons leaving the source (such as a hot
filament) by solving the single particle equation of motion sub-
ject to the Lorentz force, simulate their collisions with back-
ground neutral gas and count them when they are collected at
the electrodes. We account for:

1. motion of primary and secondary (from ionisation) electrons
and ions in realistic gauge geometry and electromagnetic
field under steady state condition.

2. several elastic and inelastic interactions of electrons and ions
with the neutral gas particles.

3. collective effect on trajectories from the (approximated)
space charge of the electron beam.

We neglect:

1. other types of electron-electron interaction (such binary col-
lision and beam instability), electron and ion interaction with
electrode surfaces and radiation effects.

2. neutral particle motion (v, >> Vyeusrais)-

The electrons are initialised with a Maxwellian energy distribu-
tion (with a typical temperature of a few eV) and a user-defined
spatial distribution (i.e. a function of the filament temperature
in case of thermionic emission). Special care has been devoted
to the choice of the trajectory integrator. Given the possibil-
ity of very long residence time (up to millions of gyro orbits
and thousands of oscillations around the acceleration grid) in
magnetic field, a very good energy conservation is crucial for
a correct simulation. We found the best compromise between
speed and energy conservation using a second order symplectic
Verlet scheme [5]. The name symplectic integrator is given to
a numerical scheme for the approximate solution of a hamilto-
nian system of differential equations. Its main advantage over
other common integrators (i.e. Runge-Kutta) is the conserva-
tion of the hamiltonian and angular momentum [6]. At present,
the gauge geometry can be arbitrarily modelled using planar
and cylindrical objects (see fig. 2). It is foreseen to import di-
rectly 3D CAD drawings. The electrostatic and magnetostatic
fields are computed by solving the 3D Poisson and Ampere
equations with the finite element code ANSYS [7]. Appropri-
ate boundary conditions are applied on the base plate, the elec-
trodes and the computational boundaries (representing for in-
stance the vacuum or a metallic box enclosing the gauge head).
The field vectors are saved on a fixed grid and interpolated
during the particle path integration. Alternatively, for simple
geometries, a ’capacitor-like‘ (uniform between electrodes and
null outside) analytic field model is used. We take into account
both the main external guiding magnetic field and the filament
field. The collisions are treated stochastically according to ref-
erence [8]. The cross-section data includes several processes in
electron-atom/molecule impact such as elastic scattering, ion-
isation, excitation (orbital, vibrational and rotational), and at-
tachment. The data has been collected from several databases
[9]. For simplicity, the electron scattering is presently treated
as isotropic but differential cross-sections could be straightfor-
wardly included. Cross-section data for Argon, molecular Hy-
drogen, Neon and Helium has been implemented in the code.

The so-called 'null collision‘ technique is used to stochastically
choose the time between collisions [10]. Secondary electrons
from ionisation are initialised with a random energy chosen by
the experimental distribution in reference [11]. Other distri-
butions such as uniform (Ey. = RE,;inay With R a pseudo-
random number uniformly distributed in [0 — 1]) or ’equally
shared energy* (50%-50%) have been tested with little varia-
tion of the results. To achieve a statistical uncertainty of about
5% we simulate between 10000 and 2 million primary electrons
in order to get at least 1000 ionisations. The code has been im-
plemented in Fortran 90 and a typical pressure scan (20 steps in
the range of 10™* — 3 - 10! mbar) takes from 80 to 500 minutes
on a single CPU depending on configuration and background
gas [12].

3. Model validation

The code is compared and validated against experimental
data with several gases and with and without magnetic field.
The model geometry implemented for this comparison is shown
in figure 2 whereas the potentials applied to the electrodes and
the potential variation along the gauge axis are sketched in fig-
ure 3. We note that the physical model applied here has no free
parameters in the sense that all geometric and electromagnetic
values are fixed and taken from actual measurements.
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Figure 2: Computational box and model geometry of the APG’s electrodes
and electrostatic field. The filament is approximated by a straight cylinder in
front of the control grid slit and its contribution of the heating current to the
magnetic field is also taken into account. The arrows show the electrostatic field
from finite element calculations. Continuous lines represent a bi-dimensional
contour plot of the potential.

3.1. Simulation versus experiment: no B-field case

We plot the gauge characteristic in terms of the normalised
output, I;/(I, — i;), versus pressure. Without magnetic field
the APG behaves linearly as any standard ionisation pressure
gauge. The output from the simulation compares quite well
with experiments with a quantitative agreement within 30-40%
(figure 4) for a pressure range spanning about 4 orders of mag-
nitude. We extract the constant sensitivity, /;/(I, — i;)/ p, by ap-
plying a linear regression on both experiments and simulations
and compare it with established data in table 1.



300 T T T T T T

UAG
2501 g
200t g
)
S 1501 scattered electron -
2.
100 -
H IWANYANAN 2 NIV WA T
50+ - .Vu\/‘.'\/\_'\\/\_)\f‘.v‘ |
UfiI unscattered electron M U|c
max
0 . . . . . .
6 -4 -2 0 2 4 6 8
X/mm

Figure 3: Sketch of the electrostatic potential of the APG. The acceleration
grid at z=0 is at 250V, control grid 105V, filament 70V and the ion collector
is grounded together with the base plate. One can clearly seen that the elec-
trons move in a potential well in which may be trapped. We illustrate paths
of a trapped (scattered) and untrapped (unscattered) electron. Larmor radii are
exaggerated for clarity.

Table 1: Relative sensitivity comparison of experiment, simulation and litera-
ture [13]

Ar/H2 Ne/H2 He/H2
Literature 2.98 0.55 0.35

Experiment | 2.68 0.55 0.30
Simulation 2.83 0.58 0.35

The relative sensitivities for the different gases are in good
agreement showing the high quality of the cross-section data.
Without strong guiding field the gauge characteristic is quite in-
sensitive to the details of the electromagnetic structure (bound-
ary and edge effects) because of the short residence time of the
electrons (time spent in the ionisation volume).

3.2. Simulation versus experiment: B-field at 2 Tesla

When introducing the guiding magnetic field the dynamic
changes dramatically. The electrons, confined by the magnetic
field and moving in the potential well (figure 3), may either re-
turn to the filament due to their initial energy [2], or get trapped
if its parallel momentum changes during the first transit (i.e.
scattered by a collision). These trapped electron dominate the
ionisation process. A typical path from the filament to the ioni-
sation volume and back takes about 10ns while a trapped elec-
tron can make more than 1000 transits. For the same pressure,
due to this long trapping time, the output increases by more than
one order of magnitude when increasing B from OT to about 1T.
This effect can be clearly seen in the experimental data (full line
with circle symbols in figure 3.2) carried out with an electron
current of 20¢A and 2T magnetic field (see also references [2]
and [4]).

The enhanced gauge output is also reproduced by the numer-
ical model indicated as ’simple‘ in figure 5 (dash-dotted line
with triangles). This model considers the electrostatic field pro-
duced by large plates with no grids or slits. By statistic analysis
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Figure 4: Comparison of simulation (dotted) with experiment (solid) for Argon,
Hydrogen, Neon and Helium with no guiding field and uniform thermionic
from the filament.

[ ! 1 4
e, model
. 2

40109(p)+15.8 HA

—©—exp.2T,2QA

-V - simple

- %~ model '1’
model '2’

----- sat. model

i

-1 0

10° 10 10
pressure [mbar]

Figure 5: Comparison of simulation (dotted lines) with experiment (solid lines)
for H2 gas and 2T guiding B-field. Triangles are calculated with analytic
capacitor-like E-field. Stars and crosses include the effect of the electron space
charge respectively constant and variable with pressure and finite-size elec-
trodes effects. The dash-dotted line with no symbols is calculated with ea.
3.

of the trajectories and collisions during the simulation we find
two basic reasons for this enhancement:

i the increased fraction of electron current returning to the
filament, Iy, reduces the current measured at the acceler-
ation grid, 1, which in turn increases the normalised output.

ii The electrons ionise up to 6 times before getting absorbed
at the electrodes due to their long trapping time (whereas
without guiding field they ionise typically once or twice
maximum).

The other important aspect is the early saturation occurring at
pressure of few 1072 mbar, earlier than without B-field. This
feature is also well described by the simulation and will be
treated in more detail in the next section.

At low pressures the result of this ’simple‘ electromagnetic
model may be 2-3 times larger than the experiment. This differ-



ence can be reduced by considering a more detailed electromag-
netic model (EM) including boundary and space charge effects
(seemodel *1°and *2°in fig. 5). In particular model ’ 1 includes
finite size electrodes, the base plate, and a uniform beam-space-
charge from the filament emission. The space charge density is
estimated as n, = 41,/(ev,,.xS ), where [, is taken from the ex-
periment, S is the projected surface of the filament, v,,,, is the
maximum unperturbed velocity at the acceleration grid and e
the electron charge. Model *2° achieves a very good agreement
by using a pressure dependent (increasing) charge density. This
is qualitatively justified by considering the presence of an in-
creasing fraction of secondary and trapped electrons [4] with
pressure but the function n.(p) used here is however arbitrary.
It is important to realise that all these additional effects create an
electric field component non parallel to B (i.e. vertical) and thus
E X B drifts. To see how these drifts affect the dynamic let’s con-
sider an e~ born on a field line passing through the grid which
gets trapped because of a collision (elastic or inelastic) during
the first transit. For the magnetic field of interest (small Larmor
radius) the scattering with neutrals is very ineffective in detrap-
ping the electron which can then ionise until its energy goes be-
low the threshold (limit of infinite f;4ppine)- In the presence of
the E X B drift, however, the electrons slowly reach a magnetic
field line intersecting the grid before having consumed all the
available energy (limited #;pping). In the ’simple* EM model
there is no E x B drift (E purely parallel to B), whereas in the
other models it exists. This explains the higher output at low
pressure in the ’simple‘ model. All models show a very simi-
lar saturation which is in good qualitative agreement with the
experiment. This is because, at high pressure, the characteris-
tic energy loss time becomes short compared with the trapping
time, regardless of drifts. Despite the difficulty of accurately
describing the potential in the gauge in order to quantitatively
match the experiment, it is clear that the main ion gauge physics
is included in the simulations (even for the simple EM model).
To develop further physical intuition we next attempt an analyt-
ical description of the saturation mechanisms.

3.3. Saturation model

We start by writing the currents I, and I; in the following
way:

I; = f : Ixec(p)

I, = Ly + Isec(p) - Ibkfil(p) (1)

Isec = Z I_iec

where I,..(p) is the current from secondary electrons (first,
second, etc ... generation) which is a function of pressure p. f
is the fraction of secondary electrons (and thus ions) produced
in the ionisation volume (i.e. between acceleration grid and
ion collector) which depends mainly on the gauge geometry.
For the standard gauge f ~0.65. I is the current emitted
from the filament and passing through the control grid. It is

constant for constant heating current and emission condition.
Ipkpir 1s the current of electrons returning to the filament. Up to
this point the formulation is quite general. Now we assume the
following physical picture: an electron born on a magnetic field
line passing through the grid becomes trapped if it is scattered
(even just a single elastic collision). If it does not collide with
any neutrals, it will then return to the filament and be absorbed.
The trapped electron current, /), and Iy i can then be written
as:

P
Itrap(p) = Lomir — Ilpass - Ibkfil = lemir - 1 [1 — eXp (_aﬁ)]
Ilpass = =) Lo

Lo fit(p) = Lomis - T€XP (—ak%)
a = 9§Uzaz(v)dx

where k is the Boltzmann constant and o, is the total scat-
tering cross-section. The integral « is performed along the elec-
tron path from the filament to the ionisation volume and back.
p/kT gives the neutral particle density at gas temperature 7.
The exponential factor represents the probability of having no
collision on the integration path. The transparency of the accel-
eration grid is indicated by ¢ and, in the example considered in
figure 3, is equal to about 80%. I, are the electrons starting
on field lines intersecting the acceleration grid which are ab-
sorbed at their first pass. For standard gauge geometry and po-
tential one finds @ = 8.4 - 10> m>. The trapped electrons ionise
the neutral gas once or several times depending on their tapping
time. Let us define nl.lon as the average number of ionisations
per primary trapped electron. Then we have Il,. = n} Iq,. In
general n}(m will depend on pressure. We can make the simpli-
fying assumption that the trapping time is long enough to allow
the electron to spend all its energy in inelastic collisions. With
this assumption nilo” is constant and depends only on the accel-
erating field and gas type. Similarly we have for the tertiary,
quartiery, etc ... electrons I',. = ni I';!.

Combining the above definitions and equations (1-2) the nor-
malised output can be written:

(@)

I 1—exp (—a%)
— f K-t
I — I L+(1= fyxt—[(1 - fHx+ 1] rexp(-ad)
Kion = ElHl]n,](m

3

With only «;,, left as a free parameter we fit the ’simple* sim-
ulation in fig. 5 with eq. (3). «;,,=5.7 yields a good agreement
especially at high pressure. One can see that the linear regime of
the ionisation gauge in magnetic field corresponds to the phase
where only a small fraction of the electrons is actually trapped.
The turning point is around 2 - 1072 mbar where Lirap [ Lemir sur-
passes 20% for this configuration.



4. Optimisation

With the goal of extending the pressure range of the APG
two main guidelines arise: i) decrease the fraction of trapped
electrons for a given pressure by reducing electron scattering
and ii) reduce the trapping time by increasing the E x B drift.
Among the many possible practical solutions we show two ex-
amples of modified configurations. In both we accelerate the
electrons earlier and reduce the ionisation volume (U, from
105 to 200 V, ionisation volume from 7.5 to Smm) with the ef-
fect of reducing the scattering (especially elastic scattering). In
the first example we additionally reduce the transparency of the
acceleration grid from 80 to 50%, whilst in the second we add
an horizontal electrode plate attached to the upper part of the
ion collector which is also grounded to bend the electric field
and increase the drifts. The results are shown in figure 6. In
both cases the slope of the characteristic is still sufficient up to
pressures above 10~! mbar at the expense of a lower sensitivity
(lower I; current). Further improvements may be expected with
others modifications.
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Figure 6: Modified APGs for higher pressure limit with U.,=200V and 5Smm
ionisation volume. The dash-dotted line has 50% transparency of the accelera-
tion grid while the full line has extra horizontal plate attached to the upper part
of the ion collector to "curve‘ the electric field and increase the E X B drift.

5. Conclusion

We have developed a numerical model to describe ionisa-
tion pressure gauges in magnetic field. We have then validated
it against dedicated laboratory experiments with and without
magnetic field. This simulation tool can be used to optimise the
parameters of an existing ion gauge and to develop new con-
cepts. The analysis of the model results and the comparison
with the experiments has led to a deeper physical picture of
the ASDEX gauge in presence of magnetic field. Although the
“single particle‘ picture so far adopted seems adequate, for an
accurate quantitative prediction extreme care must be devoted
to the modelling of the electromagnetic field inside the gauge
including boundary and space charge effects.
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