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Abstract

Retrieval of scientific data at large fusion experiments is an important but surprisingly compli-
cated task. There are many different data storage systems that have to be accessed using different
software interfaces on varying platforms. With MDS+ a respectable approach towards a more
standardised and simplified data access interface was started. However, it has its drawbacks re-
garding continuously acquired data and provides a whole data storage system rather than only an
interface, which is not always demanded. Therefore a data access interface based on service ori-
ented technologies has been developed aiming for a more standardised and platform independent
solution. The contribution will describe the current status of this development. It will explain
the interface itself including the WSDL (Web Service Description Language) definition and show
currently existing service implementations for the Wendelstein 7-X and the Wendelstein 7-AS data
storage systems. Furthermore different possibilities to access the services on the client side will be
discussed.
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1 Motivation

1.1 Requirements
A continuous data acquisition system like the one developed for Wendelstein 7-X (W7-X) is demanding
for the corresponding data retrieval methods. On the one hand retrieval of short time intervals (<1s)
must be provided, where data is acquired with high sampling rates. On the other hand it must also be
possible to handle very long time intervals that span several days or even weeks and give an overview for
slowly developing values. For diagnostics of the operational management it is also necessary to access
arbitrary time intervals completely independent from some discharge identifier like a shot number.
Hence, the data values must be addressed using an absolute time scale.

Steady state and long pulse data acquisition requires consideration of changing hard- and software
parameters during data analysis.[1, 2] It must be guaranteed that data values are always processed
together with the parameters that have been active at the time of the data acquisition. This means
data acquisition intervals have to be synchronised with the validity intervals of the corresponding
parameters.

Another problem with processing data from large intervals is that there is always only limited RAM
available on the data processing unit. Therefore, it is necessary to divide the intervals into smaller
portions and process them one by one during data retrieval and analysis.

Furthermore there are more technical requirements concerning the hard- and software that is used
to analyse data. This is even more challenging if the goal is to generalise the interfaces not only for
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one experiment but for multiple fusion experiments. There are different runtime platforms involved
(single PCs, clusters, grids) with different operating systems (Windows, Linux, Solaris, AIX). Dif-
ferent programming languages are used to access different data storage systems. Satisfying all these
requirements is a quite complex task and also forces some compromises.

Finally the data acquisition and storage system at W7-X has some special requirements. At the
moment it is not possible to access more than one of the so called Objectivity federations which are
used for data archiving at the same time within one process.[3] This makes it difficult to switch between
productive and test systems for example. Besides that users also have to include a number of different
libraries into their analysis codes that are necessary to access an Objectivity federation. It must be
taken care of that the libraries have the correct version and that they are accessible in different runtime
environments. Moreover there are many analysis codes that are developed based on data measured at
Wendelstein 7-AS (W7-AS), Asdex Upgrade or even WEGA[4]. It would save a lot of work if these
codes could be developed using the same data access interface like W7-X. This would make the effort
of porting these codes as minimal as possible and also allow the validation of codes with data from
multiple experiments.

1.2 Services - the solution?
The concept of Web Services [5] seems to meet all of the requirements described above.[6] It provides
an abstract interface definition independent of runtime platform, programming language and data
storage system. The usage of web services does not produce any additional dependencies and it still
allows very flexible programming due to the ever improving support by programming languages and
the corresponding development environments.

2 Data Access Service Interface
A basic principle during the development of the described interface was the Contract-First approach.
This means that the service interface was first specified in the form of a WSDL (Web Service Description
Language) specification [7] independent from any programming language. All implementations on the
client side as well as on the server side have then been derived from this specification. The WSDL
specification describes the available methods for the service and the data types used by these methods.
The following chapters will give a brief overview about the provided methods.

2.1 Logic of accessing continuous data
To understand the task of the provided methods it is necessary to understand the internal logic of the
described data access interface first.

Handling configuration & experiment parameter changes

As mentioned before accessing continuously acquired data requires some special conditions to be met.
One problem is that due to the segmented control concept parameters that are relevant for the acqui-
sition and measurement of data may change during a time interval. However, for analysis algorithms
it must be assured that the correct parameters for every data interval are accessible. It is therefore
necessary to subdivide the demanded time interval and iterate over these sub intervals in order to work
with consistent parameters.

Generally we assume that there are two kinds of parameters:

• Configuration parameters
These parameters change on a slow time scale and concern mostly hardware related settings like
cabling, board identifiers etc. They will not change during a discharge.

• Experiment/segment parameters
These parameters change more frequently and can also change during a discharge (to set a new
gain for example).

To read correctly parametrised data this implies that we have an outer loop to iterate over the config-
uration changes and an inner loop to process the segment changes inside a configuration interval. For
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the combined access of more than one data source the configuration and segment intervals must be
synchronised and provided as one common sequence of parameter intervals. Thus we can ensure that
always a data array with constant parameters is processed in the innermost loop.

Handling large data intervals

As we expect intervals to be accessed that cover long time periods or contain measurements with
high sample rates and channel numbers, it is possible that not all data can be loaded and stored into
memory at once. To avoid memory overflow errors the data access interface provides a mechanism to
split a data interval into smaller sub intervals (slices) that can be retrieved from the data archive one
after the other. To accomplish this a third loop inside the segment loop described above is necessary
which iterates over the slices of one segment interval.

2.2 Service Methods
The data access concept described above leads to a set of functions that define the interface of the
data access service. The most important of these methods will be described below.

open()

The open method initialises a new service session. The result of this method is a data structure that
holds a reference to the current session. This reference has to be passed to all subsequent method calls
to identify the session. Because the Web Service Addressing specification of the W3C provides such
a standard in the mean time this concept will most likely be replaced with this more standardised
technique.[8]

close()

The close method is the counterpart to the open method and cleanly ends a service session. No further
method calls for the specified session will be accepted after a call to close.

select()

This method selects the data sources that will be accessed during the session. The specification of the
data sources prior to the actual data access is necessary to synchronise potential parameter changes
as described before. Because there is no general identification for data sources the arguments to this
method are simply hierarchic structured key/value pairs. It is the task of the service implementation
to interpret these descriptors. Some examples will be given in chapter 3.1 and 3.2.

getConfigurationIntervals()

With this method the configuration intervals inside a given time interval are retrieved. The parameters
for this method are two 64 bit long values specifying the start and the end of the interval of interest.
These values are the nanoseconds since 1.1.1970. The result of this method is a list of data structures
that describe intervals with unchanging configuration parameters. This list will be used for the outer
data access loop.

getSegmentIntervals()

This method also returns a list of data structures similar to the method before with the difference that
these structures describe intervals with unchanging segment parameters inside a configuration interval.
Therefore the arguments of this method include the id of one configuration interval. Furthermore the
size of one data slice has to be passed to this method. This argument can be used to control the
amount of memory that is necessary for one analysis step. Similar to the start and end parameters
above this value is a 64 bit long value specifying the size of one data slice in nanoseconds.
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accessData()

accessData finally is the actual method to retrieve the data values from the data archive. The argu-
ments of this method are three IDs that specify the configuration interval, the segment interval and the
slice index and one of the selector arguments already used with the select method to define the data
source. It returns a data structure that serves as a container to the transferred data. The container
holds a vector of time values, a (multidimensional) array of data values and some meta information
that give additional information about the structure of the data values. For performance reasons the
data values are transferred as binary values. This means that the client has to decode the binary data
block into the concrete type using the provided meta data.

getConfigurationParameters() & getSegmentParameters()

Besides the method to retrieve data from the data archive these two methods can be used to retrieve
specific configuration and segment parameters for a given time interval. Their arguments include
ids to define the configuration and segment intervals and a description of the parameter that is to
be retrieved. The result is an abstract parameter description similar to the arguments of the select
method.

tagToInterval()

As described earlier the data access methods use absolute time values to specify experiment phases.
Because this is not common practise at most fusion experiments the tagToInterval method provides a
way to map shot numbers or similar identifiers for experiment phases to time intervals. The argument
to this method is simply a string which represents a shot id for example. The service must be able to
interpret this string and map it to a time interval respectively its start and end time. These two time
values are returned by the method and can be used as arguments to getConfigurationIntervals.

3 Data Access Service Implementation
Currently there are two service implementations that are already in use at W7-X. There is one imple-
mentation to access the data that is currently acquired at prototype installations and test setups at
W7-X. The other implementation accesses the shot files of the W7-AS experiment and provides access
to these kind of data with the same interface that will be used for later W7-X experiments.

3.1 For Wendelstein 7-X
The service implementation for W7-X is a Java based application that accesses the central Objectivity
archive database. It was developed using the JAX-WS framework.[9]

Because the data archive is structured by so called data streams and groups of these data streams
the selection of data sources is defined by two unique ids that describe the stream group and the
stream. These ids are passed as string values with specific keys to the select method of the data access
service.

As all data at the W7-X experiment is measured together with an absolute time value a translation
of a discharge descriptor to a time interval is not necessary. However, it might be necessary in the future
to introduce descriptors for discharges and sub intervals of a discharge to identify specific experiment
phases. In that case such a mapping method could be added easily.

3.2 For Wendelstein 7-AS
For the implementation of the data access service for W7-AS shot files the gSOAP framework was
used.[10] Thus it was easily possible to integrate the Fortran/C++ based methods to access the shot
files.

Unlike the W7-X service implementation the W7-AS data storage system uses diagnostic and
module names for the identification of data sources. Again these two names are passed as strings with
corresponding keys to the select method.
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Because W7-AS is a short pulse experiment most of the parameters do not change during a dis-
charge. Those parameters are handled as configuration parameters and hence all shot intervals are
handled as configuration intervals. However, there are some timing related parameters that can change
during a shot. These parameters are used as segment parameters and changes of these parameters
mark segment intervals.

To realise the mapping between shot numbers and absolute time values the start time contained in
every shot file has been used. Because it is not possible to dynamically search the start time of a shot
on every data access a mapping table was created that contains all shot numbers and the corresponding
start times.

4 Data Access Clients

4.1 The standard way
The usual way to access data via one of the service implementations is to:

1. retrieve the WSDL file from a well known server

2. generate the client stub using the WSDL file

3. implement the client functionality using the generated stub methods

There are stub compilers for many programming languages such as Java, C/C++, C#, Python, Matlab
and others. Unfortunately not all implementations are completely W3C conform yet. There are still
problems using the SOAP message style document/literal in Matlab for example.

Because data values are transferred as binary data for performance reasons the client has to decode
the binary data field. This can be accomplished using the meta information transferred together with
the data values. The meta information contains values like the basic data format (byte, short, float,
...) and the number of channels.

4.2 Prepared clients for easier access
The handling of stub compilers and of the code they produce can be quite difficult for the inexperienced
user. Furthermore most users will create identical stubs because they are working on similar platforms
and use similar development environments. We provide, therefore, a collection of small libraries con-
taining a prepared version of the client stub and some utility methods for common platforms. At the
moment this has been done for Java and C++.

Java client library

Java has been chosen because it is widely spread and can be used in Java applications and also in
higher level scientific languages like IDL or Matlab. The client library is developed using the JAX-WS
framework and provides wrapper methods for most of the service methods. The wrapped methods
already include the decoding of the binary data fields and provides special container classes for the
different data types that have to be handled. Besides that they simplify the selection of data sources
by providing special selector classes with an easy-to-use interface.

C++ client library

The C++ client library was developed using the gSOAP framework. Like the Java library it provides
wrapper methods for the service methods that already provide decoding of the binary data values.
The gSOAP framework can also be used to create a plain C client. With such a client it would be
possible to also support legacy codes implemented in Fortran.
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5 Summary & Tests
The implemented services have been installed on servers at W7-X and run very stable. First user
experiences were made accessing data from the W7-X Objectivity archive using the Java client imple-
mentation in Matlab or IDL. There was no negative feedback although it has been observed that users
have to get used to the way of accessing data with the developed interface (loading data in smaller
slices and analysing the slices step by step rather than loading a whole shot and analyse the data all at
once). The complete independence of the client from any data archive related library has been proven
to be very useful. It was not necessary to install any database client or similar software on the client
systems. The next step in development will be to extend the interface with methods that allow the
user to store data.

To test the performance of the interface a few measurements have been made using the W7-X
service and the provided Java client library. For these tests data volumes of different sizes have been
transferred from the data archive to the test client and the time consumption of the operation has
been measured. The data volume used to calculate the data rate was the actual data volume which
means the sum of the 64bit timestamps and the 4 byte data values for each channel. The overhead
produced by the service and the protocol was ignored. As a result an actual data rate of about 3 MB/s
could be measured without any optimisation which is a quarter of the total bandwidth (100 Mbit/s ~
12 MB/s). The data rate differs depending on the slice size. The higher the size of the data slices the
higher was the measured data throughput. Although the data rate could be better up to now there
was no real need to optimise the data transfer because analysis algorithms often include long running
calculations anyway.
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