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Introduction

Radial propagation of geodesic acoustic modes (GAMs), and GAM eigenmodes have been

discussed in recent literature [1, 2, 3]. The existence and properties of global GAM eigenmodes,

which are influenced by the GAM group velocity, might be relevant for the efficiency of GAM

excitation [3, 4]. This, in turn, could affect turbulent transport due to the potential role of GAMs

in nonlinear turbulence saturation [5].

In this context we have presented a flexible and robust method to estimate the radial group

velocity of a GAM by comparing its energy flux to its total free energy in Ref. [4], however,

restricted to up-down symmetric magnetic geometries. In Ref. [6], we generalized the method

to also cover up-down asymmetric geometries, which – in contrast to symmetric configurations

– can exhibit large group velocities of the order of the magnetic inhomogeneity drift and above.

Additionally, the generalized approach allows of interesting conjectures on possible interrela-

tions between the confinement and the group velocity of GAMs.

Group velocity of GAMs in arbitrary toroidal geometry

For simplicity, we discuss the effect of up-down asymmetry using a two-fluid framework in

the limit of cold ions and infinite safety factor. The units are chosen such that the magnetic

drift velocity equals unity at the outboard midplane. Density n, ion and electron temperature

Ti and Te, and electric potential perturbations φ are normalized to ρ?n0, ρ?T0,i/e, ρ?T0,e/e,

respectively, where the subscript 0 indicates the corresponding background value and ρ? is

given by ρse/R0 with the major torus radius at the outboard midplane R0, cse ≡ (T0,e/mi)
1/2,

and ρse ≡ (micse)/(eB0). The time scale is t0 ≡ R0/(2cse). The minor radius of a particular

flux-surface is defined as r, which makes r a flux-surface label. Thus, kr is the wavenumber and

vr the velocity with respect to the coordinate r.

Applying the method presented in Ref. [4], one can evaluate the time derivative of the flux-

surface averaged free energy within this framework for general geometry [6] to

∂t 〈E〉=

〈
−∇ ·

(
vdn2

2

)
+ ∇ · (n∇ṅ)

B2
rel

+ ∇ ·
(
n∇φ̇0

)

B2
rel

〉
, (1)

where vd is the sum of curvature and ∇B-drift, and Brel ≡ B/B0. The factor 1/Brel appears be-

cause the polarization related terms implicitly contain a factor ρ2
i (normalized to
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Figure 1: NLET computed log-color-coded

GAM spectrum for τ = 0, q = 100, and

sz = 0.3 with direct numerical solution of the

GAM equations (dashed). The extremum of

the GAM dispersion is shifted along the kr-

axis due to the up-down asymmetric magnetic

geometry.

its value at the outboard midplane). The flux-

surface average is defined by A0 ≡ 〈A〉 ≡
(
∮

B−1 dl‖)−1 ∮ AB−1 dl‖, where dl‖ denotes the

line element parallel to the magnetic field. With

adiabatic electrons, φ = φ0 + n and n0 = 0.

The first term on the right hand side of Eq. (1)

is the flow of the energy of the electron pres-

sure perturbations in the ion magnetic drift di-

rection. The second and third term are polariza-

tion energy-fluxes, the latter of which is caused

by the flux-surface averaged potential φ0, and

vanishes for up-down symmetric magnetic ge-

ometries. A detailed discussion of the individual

terms can be found in Refs. [4, 6]. Analogous to

Ref. [4], the squared density perturbation for ra-

dial wavenumbers kr¿ 1 can be approximated by

n2 ≈
4v2

d,rv
2
E

ω2

(
1 +

2vd,r

ω
kr

)
(2)

with the E×B-drift velocity vE , the radial component of the magnetic inhomogeneity drift vd,r,

the major radius R and the GAM phase velocity vp. Substituting (2) into (1), the leading terms

of the first and the third term in Eq. (1) are of order vdE f luc, whereas the second term is only of

order krρsevdE f luc. In case of circular high aspect ratio flux-surfaces, the flux-surface averages

of the leading order terms vanish and only terms of order krρsevdE f luc remain.

Coming back to our initial statement, the calculation proves on the one hand that higher GAM

group velocities are possible, if the leading order parts of the magnetic inhomogeneity and the

polarization energy-fluxes do not cancel each other. On the other hand, it shows that up-down

asymmetry gives rise to a non-vanishing group velocity of GAMs at kr = 0.

Circular flux-surfaces augmented with an r-dependent vertical shift Z0(r), i.e. R(r,θ) = R0 +

r cos(θ) and Z(r,θ) = Z0(r)− r sin(θ), may serve as the most straightforward test of up-down

asymmetric geometry in numerical studies. The Z-shifted geometry is the simplest modification

of the circular equilibrium which shows the basic effects of up-down asymmetry while avoiding

the complexity of force-free asymmetric configurations. Lacking complete consistency, it can

be thought of as being maintained by a conductor inside the considered flux-surface.

We have studied the dependence of vg(kr = 0) on the differential Z-shift sz ≡ ∂rZ0 (which can
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take values between −1 and 1) for cold ions and infinite safety factor using the two-fluid code

NLET [7], the gyrokinetic codes GS2 [8] and GYRO [9], and direct numerical solutions of the

GAM equation. A GAM spectrum computed with NLET, in which vd is parallel to the Z-axis,

for sz = 0.3 is shown in Fig. 1. As an effect of the additional kr-independent terms in the group

velocity, the extremum of the GAM dispersion is shifted away from kr = 0. The group velocity

at kr = 0 is not zero any more as conjectured in Ref. [4]. The group velocity at kr = 0 turns out

to be rather accurately linear in (1 + |sz|)/(1−|sz|), which implies vg(kr = 0)→ ∞ for sz→ 1.

However, the divergence is an artifact of the shifted-circle configuration which can be removed

by a more sophisticated magnetic geometry [6].

An estimate of the GAM group velocity at kr = 0

In Ref. [6], we derived an estimate of the group velocity of GAMs at kr = 0 for warm ions in

the infinite safety factor limit, which only depends on two geometry factors and the ratio of ion

to electron temperature τ:
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where 〈. . .〉g≡〈γ2
rel/B2

rel〉−1〈. . .〉. The radial component of the magnetic drift velocity is defined

as vd,r ≡ γrelvd ·∇Ψ/|∇Ψ|. Ψ is the poloidal flux, γ ≡ |∇Ψ|, γ0 is the value of γ at the outboard

midplane, and γrel ≡ γ/γ0. The first term on the right hand side of Eq. (3) corresponds to the

first term in Eq. (1), the second term is a finite Larmor radius (FLR) correction to the first one.

The third term corresponds to the polarization energy-flux n∇φ̇0/B2
rel in Eq. (1).

Interestingly, in case of large aspect ratio and qÀ 1 the flux-surface average 〈γ2
relvd,r/B2

rel〉g
can be reduced to the condition that the vertical magnetic forces on the central plasma current

(i.e. the flux-surfaces) vanish [6]. Thus, in consistent plasma equilibria, 〈γ2
relvd,r/B2

rel〉g ≈ 0

implying that for kr = 0 the energy of GAMs is transported essentially by the magnetic drift

energy-flux vdE f luc. In case of vertical force-balance this result agrees with the conjecture in

Ref. [4], that in single-null geometry vg(kr = 0) has the sign of vd,r at the position opposite

to the X-point. However, with low aspect ratio, when the variation of B across the flux-surface

cannot be neglected any longer, the remaining two terms in Eq. (3) might be significant.

Figure 2 shows a comparison between the group velocities obtained with Eq. (3) for the

shifted-circle geometry discussed above and the gyrokinetic codes GYRO and GS2. For the ge-

ometry factors in Eq. (3) one can estimate for large aspect ratio and small sz, vd,r ≈−sin(θ)(1+

sz sin(θ)) and γrel ≈ (1− sz sin(θ))−1, such that to first order in sz one obtains 〈v3
d,r〉g ≈−3sz/4

and 〈γ2
relvd,r/B2

rel〉g ≈−sz.
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Figure 2: GAM group velocity – computed

with GS2, GYRO and with the estimate (3) –

at kr = 0 for sz = 0.3 and sz = 0.5 vs. the ratio

of ion to electron temperature τ . In contrast

to NLET, GS2 and GYRO assume vd to be in

negative Z-direction, one has to compare the

results with Eq. (3) for sz→−sz.

The leading order polarization energy-flux

exceeds the energy flux due to the magnetic in-

homogeneity drift in the cold ion case leading to

a group velocity which is opposite to the mag-

netic inhomogeneity drift. When the ion temper-

ature is increased (τ & 0.3) gyroradius effects

overcompensate this effect such that the group

velocity changes sign. This behavior and the or-

der of magnitude of vg is quite well reproduced

by our two-fluid approximation.

Conclusions

The two-fluid expression for the Poynting

flux of GAMs in the cold ion and infinite safety

factor limit with large aspect ratio circular flux-

surfaces derived in Ref. [4] has been general-

ized to arbitrary toroidal geometries, for which

the energy flux of the GAM can be of order vdE f luc instead of krρsevdE f luc in the up-down

symmetric case. For sufficiently high aspect ratio, the free energy of the GAM can be assumed

to be transported mainly by the magnetic inhomogeneity drift. Thus, one could manipulate the

direction and magnitude of the GAM group velocity by adequate plasma shaping, e.g. to exam-

ine whether the dependence of the H-mode-power-threshold on the magnetic drift direction is

really directly related to the X-point itself or possibly rather to the geometry dependence of the

GAM propagation direction.
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