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Abstract

The evolution of a tearing mode is a multi-scale problem, involving lengths from below the ion

gyroradius up to the dimensions of the system. The e�ects due to �nite ion Larmor radius on the

island dynamics are investigated by means of numerical gyrokinetic and gyro
uid simulations in

tokamak geometry. In gyrokinetic runs, the magnetic island is prescribed. The coupling induced by

a static island between small and large scale 
uctuations in the case of electrostatic turbulence is

discussed and the role of the perturbed magnetic geometry on the electron response is highlighted.

Simulations in the presence of a rotating island, excluding background turbulence, allow a clear,

self-consistent determination of the electrostatic potential associated to the island rotation and

of the relevant plasma pro�les for arbitrary island widths. Finally, the �rst gyro
uid simulations

showing the growth of an island in the presence of electromagnetic turbulence for parameters

typical of a mid-size tokamak are presented.
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I. INTRODUCTION

The tearing instability[1, 2], appearing as magnetic islands developing on low-order ra-

tional surfaces, is often observed in tokamak experiments. A fully-developed tearing mode

represents a serious concern for a tokamak reactor, as it limits the achievable plasma pressure

and can trigger disruption events[3]. In axisymmetric devices, the dynamics of the tearing

mode is strongly a�ected by toroidal e�ects. The mode is often neoclassically driven by the

drop of the bootstrap current caused by pressure 
attening within the reconnected region[4{

6]. Moreover, the neoclassical polarization current[7, 8] and P�rsch-Schl�uter currents[9{11]

have been demonstrated to in
uence the island evolution. More recently, the interaction

between small-scale turbulence and \mesoscale" magnetic islands has attracted a growing

attention, also because of the fact that the increasing availability of high-performance numer-

ical resources allows the exploration of more and more realistic parameters. The importance

of this mutual in
uence between di�erent scales for magnetic reconnection has been long

recognized in general[12] and for magnetic islands in fusion plasmas in particular[13]. As

far as the in
uence of small on large scales is concerned, besides the investigation of tur-

bulence as a source of anomalous dissipation (viscosity, resistivity)[14{18], electromagnetic

turbulence has been shown to be able to provide a trigger for the growth of an island[19].

Moreover, turbulent transport contributes to determining the density and temperature pro-

�les across the reconnected region, in turn in
uencing the contribution of bootstrap[20] and

polarization[21] current to the island dynamics. On the other side, the tearing mode has a

major impact on the turbulence pro�le, as the above-mentioned pressure 
attening inside

the island reduces the drive for the instabilities. In addition, the turbulence is regulated by

the sheared 
ows associated with the long-wavelength modes (this last e�ect being similar

to that of zonal 
ows in axisymmetric systems). A nice overview of the properties of the

mutual interaction between small and large-scale instabilities has been given by McDevitt

and Diamond[17].

A magnetic island is a system exhibiting di�erent spatial scales along and across it. In

tokamaks, the poloidal wavelength of the island is of the order of the minor radius, while its

width can be of the order of the ion Larmor radius or below. For this reason, kinetic studies

of the tearing-mode dynamics employing the gyrokinetic theory have been already carried

on in the past. Slab-geometry calculations have been performed to investigate analytically
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the problem of the island propagation and the role of the polarization current, the emission

of drift waves, and their stability in the presence of an island-perturbed equilibrium[22{25].

Numerical gyrokinetic particle-in-cell (PIC) simulations have been employed to study the

reconnection problem in a collisionless plasma slab[26] and also extended to the semicolli-

sional regime[27]. On the other hand, the gyroradius is the typical spatial scale of turbulent


uctuations in fusion plasmas. For a description of the e�ects of the presence of a tearing

mode on microturbulence and vice versa, �nite-Larmor-radius (FLR) e�ects must then be

retained, by means of a gyro
uid or gyrokinetic approach.

It is clear that the self-consistent evolution of island and turbulence constitutes a

formidable multi-scale problem. On the way to its complete solution, several routes are

being explored, that reduce the size of the problem by means of appropriate simpli�cations.

This paper is intended to present recent new results on the role of FLR e�ects on the dynam-

ics of magnetic islands in toroidal plasmas. We adopt two di�erent numerical approaches,

the �rst based on gyrokinetic, the second on gyro
uid equations. In the former case, we

rely on the separation between the typical time scales involving the development turbulence

and the island growth (for a discussion see also Refs. 21, 28). In this scheme, the magnetic

island is prescribed, i. e. island rotation and width do not evolve. This excludes, of course,

the feedback of short on long time scales. On the other side, toroidicity and kinetic e�ects

are retained. They are known to signi�cantly change the bootstrap[29{31] and polarization

current[32{34] and are, hence, potentially important for the \closure" of the interaction

loop, when neoclassical e�ects on the mode evolution will be considered. Two sets of gy-

rokinetic simulations are presented here. First, we explore the behaviour of electrostatic

turbulent 
uctuations in the presence of a static island, that con�rm and extend, in partic-

ular through the inclusion of the perturbed magnetic geometry in the electron response[35],

previous recent investigations[36]. The second part of our gyrokinetic results refers to a

rotating island, for which the self-consistent electrostatic potential and the pressure pro�le

are investigated switching o� the turbulence. These simulations, that represent a �rst steps

towards a neoclassical analysis, are found to support previous drift kinetic results[31]. The

latter (gyro
uid) approach mentioned before implies a di�erent simpli�cation of the problem

(namely, neglecting kinetic e�ects) but allows a simultaneous treatment of turbulence and

island time-scales. Here, the �rst results obtained for a set of plasma parameters close to

those typical of the ASDEX Upgrade tokamak are presented. It is worth noting that a 
uid
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approach has been already employed recently to resolve both turbulence and island scales

in both slab geometry[37] and including curvature e�ects[38, 39].

In the next section, the numerical tools employed in our simulations, namely the two

gyrokinetic codes ORB5[40, 41] (particle-in-cell, global) and GKW[42, 43] (Vlasov, 
ux-

tube) and the global gyro
uid code GEMZ[44] are brie
y presented, with emphasis on

the di�erent treatment of the magnetic perturbation associated to the magnetic island.

Gyrokinetic results in the presence of turbulence are discussed in Section III, while the

simulations of a rotating island in the absence of turbulence are presented in Section IV.

Section V is �nally devoted to gyro
uid simulations. A summary and discussion of the

results can be found in Section VI.

II. NUMERICAL TOOLS

The dynamics of microinstabilities in toroidal geometry in the presence of a magnetic

island is investigated in this paper employing the two complementary schemes described

above, namely a gyrokinetic and a gyro
uid approach. A magnetic island developing on

a given rational surface  s characterized by a poloidal number m and toroidal number

n can be introduced as a perturbation of the parallel vector potential (or, equivalently,

of the poloidal 
ux ~ = �R ~Ak , R being the major radius of the tokamak) of the form

~Ak = �Ak cos � , where � = m� � n'� !t is the helical angle ( � and ' being the poloidal

and toroidal angle, respectively, and ! the island rotation frequency). The corresponding

perturbed magnetic �eld is mainly directed radially and varies in the r� direction as

sin � . A new 
ux label 
 = 2( � s)2=W 2
 
�cos � , where W =

q
4R �Akqs=q0s is the island

width in  units (the prime denoting di�erentiation with respect to  ), can be introduced

such that the total magnetic �eld is perpendicular to r
 . With this de�nition, 
 varies

between �1 at the island O-point (where  =  s and � = 0 ) and +1 . The island

width W is obtained in terms of W as W = W =jr j .

A. Gyrokinetic approach

Two gyrokinetic codes have been used in our study, based on di�erent methods for the

solution of the gyrokinetic equation.
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The global PIC code ORB5 provides a numerical solution to the gyrokinetic equations

in the formulation of Hahm[45]. It employs the particle-in-cell method, which is based

on the introduction of an ensemble of numerical particles (markers), each one connected

with a piece of the phase space associated with a given particle species. In the simulations

presented here, the electrons are adiabatic and the markers represent only the main ion

species i . The evolution of the markers is determined by the corresponding equations of

motion, which are coupled to Maxwell's equations. The self-consistent �elds are calculated

projecting the charge and current associated with each marker onto a �xed spatial grid

(in this paper, only simulations of electrostatic turbulence will be considered). The total

distribution function is split into an analytically-known time-independent part f0 and a

perturbation Æf which is represented numerically. The gyrokinetic equations of motion for

the markers are

dR

dt
= vkb+

1

B�

k

"
�B + v2

k


c
b�rB �

v2
k


c
b� (b�r�B)�rh~�ig � b

#
; (1)

dvk

dt
= ��

2
4b� vk

B�

k

c
b� (b�r�B)

3
5 � rB (2)

� Ze

M

8<
:b+ vk

B�

k

c

[b�rB � b� (b�r�B)]
9=
; � rh~�ig;

d�

dt
= 0; (3)

where R is the position of the gyrocentre, vk the velocity component along the magnetic

�eld, b the unit vector along the magnetic �eld B , � the magnetic moment, 
c the

cyclotron frequency, h~�ig the perturbed potential (solution of the Poisson equation) av-

eraged over the gyroperiod, Ze and M the particle's charge and mass, respectively, and

B�

k
= B+(M=Ze)vkb�r�b . Since along the orbits df=dt = 0 (no collisions are considered

here), Æf must obey the equation

d(Æf)

dt
= �df0

dt
= �dR

dt
� rf0 �

dvk

dt

@f0

@vk
: (4)

The velocity dR=dt includes the radial motion along the perturbed �eld lines. The radial

component ~B of the magnetic �eld produced by the tearing mode accounts for the most

important modi�cation of particle orbits[46] and has been included in ORB5 by operating

the substitution b! b+ ~b (where ~b = ~B=B ) in the �rst term of both Eq.(1) and Eq.(2).
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In the Vlasov 
ux-tube code GKW, the gyrokinetic equation is solved in the form

@g

@t
+ v� � rg +

�
vkb+ vd

�
� r(Æf)� �B

M

B � rB
B2

@(Æf)

@vk
= S (5)

on a �ve-dimensional grid in the (X; �; vk) space, where X is the gyro-centre position

(the index denoting the particle species is suppressed for brevity). In the previous equation,

the distribution function is split into a Maxwellian background term FM and a deviation

Æf , with the auxiliary function g de�ned as g = Æf + (Ze=T )vkh ~AkigFM . The velocity

v� = (b � r�)=B , with � = h~�ig + vkh ~Akig , is a combination of the E � B velocity

and the parallel motion along the perturbed �eld lines, and vd is the drift velocity due

to magnetic-�eld inhomogeneity ( rB and curvature). The electrostatic potential is the

solution of the Poisson equation, while ~Ak is the imposed island perturbation. The source

term on the right-hand side of Eq. (5) reads as

S = � (v� + vd) �
"
rn
n

+

 
v2
k

v2th
+
�B

T
� 3

2

!
rT
T

#
FM � Ze

T

�
vkb+ vd

�
� rh~�igFM

( n and T are the background density and temperature, respectively, and vth =
q
2T=M

is the thermal velocity). In the previous equations, the contribution connected to the radial

pro�le of the toroidal plasma rotation velocity has been omitted. With respect to the global

approach described above, the physical model remains the same, but the equations are

solved in a �nite domain of the plasma around a given �eld line. Correspondingly, the so-

called 
ux-tube ordering[47] is adopted, in which the deviation of the distribution function

from its equilibrium value is assumed to be small over the region of interest, whereas its

gradients can be comparable to the equilibrium gradients. For a more detailed discussion

of the ordering assumptions in GKW see Refs. 43, 48 (a comparison between the global

and 
ux-tube results is presented in Section III). GKW is written in �eld-aligned Hamada

coordinates ( ; �; s) . When a magnetic equilibrium with circular concentric 
ux surfaces

is adopted, s can be regarded as a normalized poloidal angle varying between �1=2 and

1=2 ( s = �=2� in the large-aspect-ratio limit �! 0 ) and � = (q��')=2� is chosen such

that the parallel-gradient operator B � r involves only @=@s . In these coordinates, the

helical angle � can be expressed in the vicinity of the rational surface, which is supposed

to be located at the centre of the computational box ( � =  �  s being the distance from

this surface), expanding the safety factor appearing in the de�nition of � to the �rst order
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around qs = m=n ,

m� � n'� !t = 2�
�
n� � nsq0

s
� 
�
� !t = k�� � sk � � !t:

Here, the island wave vector with components k� = 2�n�� and k = q0
s
k� has been

introduced (the wave vector is expressed in units of 1=�i , with the de�nition �� = �i=R ,

�i being the ion gyroradius). This expression shows that the periodicity constraint in the

radial direction (required by the spectral approach adopted in GKW) cannot be satis�ed for

every value of s . De�ning the radial width of the box as � = [��=k ; �=k ] , the �rst
step to impose periodicity is projecting the vector potential on the  -harmonics,

~Ak = ei(k���!t)
1X
p=0

Ap(s)eipk 
� ;

with

Ap(s) =
k 

2�
�Ak

Z
�=k 

��=k 

e�ipk 
� e�isk 

� d = �Ak
sin[�(s+ p)]

�(s+ p)
:

This simple implementation turns out to be unsatisfactory, as it leads to abrupt jumps in

the vector potential at the edge of the radial computational domain, where periodicity is

enforced (Fig. 1a). The problem, however, can be circumvented by introducing a smoothing

factor at high p -harmonics (Fig. 1b), i. e. by operating the replacement

sin[�(s+ p)]

�(s+ p)
! exp

h
�(s+ p)2=L2

i sin[�(s + p)]

�(s+ p)

in the previous equation. The exact value of the scale L does not a�ect the results, provided

it is large enough.

B. Gyro
uid approach

Following the dynamics of magnetic islands and microturbulence simultaneously is not

presently feasible by gyrokinetic models without unphysical compromises involving the pa-

rameters of scale separation. If it is to be demonstrated that small and large scales can

interact, then the results are only meaningful with the correct values of the dimensionless

ratios �s=a or Me=Mi or �e = c2
s
=v2

A
or qR=LT , where cs is the sound speed, vA is

the Alfv�en speed, and �s is the drift scale (also called the ion sound gyroradius). See

Refs. 49, 50 for the signi�cance these parameters, alone and in combination, have for toka-

mak microturbulence. A moderate sized tokamak has a=�s � 200 , a deuterium plasma
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has Mi=Me = 3670 , and typical conditions have �e � 3 � 10�3 for the plasma core.

The electromagnetic gyro
uid equations are as given in Ref. 44. Time dependent equations

for six gyro
uid moment variables (for each species, density, parallel velocity, parallel and

perpendicular temperature and parallel and perpendicular heat 
uxes associated to each

temperature) are advanced for a singly charged, single component, purely ionized plasma.

The self consistent �elds ~� and ~Ak are found via the polarization and induction equations,

respectively. The tilde symbol denotes a dependent variable. The corresponding free energy

conservation law, also given there, is relevant because the energetic contact between the

electromagnetic microturbulence and the much slower large-scale MHD through much faster

shear-Alfv�en transients involves a small amount of energy which however yields strong con-

sequences. The only modi�cation in the equations as used here is the incorporation of the

current pro�le as a free energy source, as described in Section V. The 
ux surface geometry

is built around the equilibrium 
ux surfaces. Islands are initialized or emerge naturally and

are represented as part of the ~Ak disturbances.

For this work the geometry is updated by using �eld-aligned conformal coordinates. Field-

aligning means using a Clebsch representation fxysg , in which x( ) is a surface label of the

poloidal 
ux, s is a parallel coordinate set equal to either the poloidal or toroidal angles, and

y is a function of both angles but through the use of the pitch parameter q( ) satis�es

By � B � ry = 0 exactly, everywhere. This is only possible for straight �eld line angle

coordinates because q = B'=B� and to build Clebsch coordinates B = �(x)rx�ry the

condition q = q( ) is necessary[51]. The function � gives e�ective normalization. Here, '

is the geometric toroidal angle and the choice s = ' leads to yk = ��q�1('�'k) with the

constant 'k giving the reference position. The use of a di�erent 'k on each poloidal plane

' = 'k is a version of the shifted metric procedure[52] which avoids secular deformation in

the metric coeÆcient ratio gxy=gxx . Here, the sign convention is for B = Ir'+r'�r 
and rR�rZ � r' > 0 .

The linear component of the parallel derivative is calculated as B � r = Bs(@=@s) . The

conformal property is then introduced to further avoid poloidally periodic deformation in the

coordinate cells, by stating B � r�c = (fc=R)jr j2 as the poloidal angle de�nition, where

fc( ) is the conformal 
ux function found by normalizing �c to a 2� -cycle for periodicity.

The radial coordinate xc( ) is de�ned as rxc = fcr . The straight �eld line angle

de�nition, by contrast, is de�ned as B � r� = I=qR2 since B' = I=R2 , with q found by
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normalizing � to a 2� -cycle. We de�ne yc = �c . The relationships �c(�) and �(�c) are

used to interpolate the �nite di�erence of @=@s onto a grid which is equidistant in xc and

yc in the poloidal plane. This makes use of the fact that y = � for ' = 'k . One can then

derive the coordinate Jacobian rxc�ryc � rs = gxx
c
=R and the deformation d = gxy

c
=gxx

c

using the de�nitions of fc and xc . One �nds that in conventional tokamak equilibrium

models d2 < 1 almost everywhere, facilitating both the representation of microturbulence

and iterative solvers for linear operators involving the perpendicular Laplacian r2
?
, and

that the conformal property gxx
c
gcyy = 1 is exactly satis�ed. In the cylindrical limit one

can show yc and � both relax to � , the geometric axial angle, and xc relaxes to log r

with r the cylindrical radius. The subscript c in each of these expressions denotes the

conformal coordinate system fxc; yc; 'g . For further motivation and details see Ref. 51.

III. GYROKINETIC SIMULATIONS OF ITG TURBULENCE IN THE PRES-

ENCE OF A MAGNETIC ISLAND

Vlasov 
ux tube and global PIC simulations are employed to investigate the behaviour

of electrostatic ion-temperature-gradient (ITG) driven turbulence in the presence of a pre-

scribed (m = 3; n = 2) magnetic island. The parameters employed in the runs of GKW are

close to those of the Cyclone base-case[53], �� = 2� 4� 10�3 , R=LT = 6:9 , R=Ln = 2:2 ,

� = 0:19 . ORB5 simulations have been run without source terms. To have a phase of

slowly-decaying turbulence with quasi-stationary pro�les[44], a smaller value of �� has

been considered, typically �� = 4 � 10�4 . The gradient length for the ion temperature

during the decaying-turbulence phase stays about R=LT � 7 in the region 0:5 <
�

p
 <

� 0:9

(where
p
 is used as a normalized radial coordinate and the resonant surface is located

at
p
 = 0:67 ). The background density was assumed to be 
at, R=Ln = 0 . A small

inverse aspect ratio, � = 0:14 , has been considered. The whole radial domain is simulated.

In the PIC simulations presented here, the new electromagnetic version of ORB5[54] has

been used in the electrostatic approximation. With respect to previous PIC results[36], new

code diagnostics have been implemented (e. g. on the local energy spectrum, see below),

but the physical picture remains the same. In the following, it is shown that the �ndings of

global, slowly-decaying turbulence simulations agree well with local 
ux-tube simulations as

long as the physical model remains the same, in particular with respect to the treatment of
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the electron dynamics. As a matter of fact, both codes assume, for the case of an adiabatic

electron response, that the electrons react instantaneously to the electrostatic potential on

the unperturbed 
ux surfaces. In the presence of an island, however, the axisymmetry typical

of the tokamak con�guration is destroyed. The only feasible way to include the perturbed

magnetic geometry in the electron response is to treat also the electrons as a kinetic species.

At the moment, however, this is not possible with ORB5 if a magnetic island is present (for

an unperturbed magnetic equilibrium with nested magnetic surfaces, ORB5 simulations of

electromagnetic turbulence with kinetic electrons have instead been presented recently[54]).

For this reason, modes with m = n = 0 are excluded from ORB5 runs[36]. In this section,

simulations that treat the electrons as a kinetic species are performed with the code GKW,

employing the actual mass ratio of a deuterium plasma.

The �rst e�ect connected with the presence of the island seen in the simulations is the

expected 
attening of density and temperature pro�les inside the island separatrix, after a

transient phase in which they relax to the perturbed magnetic con�guration. Just outside

the separatrix, a steepening with respect to the unperturbed pro�les is found, in particular in

the region around � = 0 (i. e. at the level of the O-point), where the perturbed 
ux surfaces

are \compressed" by the island. However, a corresponding increase of the turbulence level

is not observed. On the contrary, the heat 
ux and the heat conductivity are reduced in

this region, while they are higher across the X-point, as shown in Fig. 2, where the eddies

can cross the rational surface. In both codes, an asymmetry in the heat conductivity at

the X-point is usually seen, that can be attributed to the fact that the eddies are able

to convect through the island in the drift direction. This convection mechanism seems to

act more e�ectively than di�usive turbulence spreading[55] in transporting the turbulence

towards linearly stable regions inside the island. The turbulence reduction at the separatrix

for � = 0 mentioned above is explained as a result of the action of the sheared 
ows

connected with the long-wavelength components of the electrostatic potential, which \rip

apart" the eddies in analogy to what is know from zonal-
ows dynamics. Fig. 3 reports the

time evolution of the local turbulence spectrum at two di�erent radial locations in Fig. 2,

namely h
p
 i = 0:57 and h

p
 i = 0:63 (angular brackets denoting the average value of the

radial coordinate on the perturbed 
ux surface). Well outside the island, it can be seen that

the n = 2 component of the electrostatic potential, that decays during the �rst phase of the

ORB5 simulation (in which the pro�les adjust to the perturbed equilibrium[36]), is again
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pumped through a nonlinear coupling with the small-scale (turbulent) modes. However,

the energy of the long-scale mode is smaller than that of turbulence during most of the

simulation time and the turbulent eddies eÆciently transport heat across the 
ux surfaces.

On the contrary, at the island separatrix, especially on the side towards the plasma core, the

n = 2 mode largely dominates the other modes. The result observed in several simulations

is a reduction of the heat 
ux at the separatrix. From the simulations performed so far[35],

however, no �rm conclusion can be drawn on whether non-linearly generated sheared 
ows

arising in the presence of small magnetic islands can contribute to the improvement of the

con�nement in the vicinity of rational surfaces, which has been reported in experiments[56].

Inside the island, the E�B transport can be dominated by long-wavelength modes. The

transport due to di�erent modes is shown in Fig. 4.

The picture outlined above emerges consistently from ORB5 and GKW simulations with

adiabatic electrons. The inclusion of the perturbed magnetic equilibrium in the electron

response through kinetic electrons in GKW, however, shows that the dynamics of the long-

wavelength mode in the island region can change signi�cantly. Fig. 5 shows a snapshot of the

electrostatic potential, perturbed density, total density and total density pro�le across the

O and X-point. A large-scale electrostatic mode, which we will call \vortex mode" following

Ref. 17, develops in the centre of the magnetic island as a consequence of the non-linear 
ow

of energy into long wavelengths discussed above. The time evolution of this structure exhibits

a complex dynamics, being non-stationary with a periodic sign reversal of the electrostatic

potential. In passing, we note that a nonzero zonal-
ow frequency has been observed recently

in turbulence simulations including a magnetic island in slab geometry[37]. It is shown in

Ref. 35 that the heat 
ux associated with the vortex mode at its peak intensity can largely

exceed the 
utter 
ux, i. e. the radial 
ux due to the parallel motion of the particles along

the perturbed magnetic-�eld lines. On average, the 
utter 
ux and the E�B 
ux due to

the vortex mode yield a comparable contribution to the total heat transport. The strength

of the mode is found to be reduced for smaller �� , i. e. larger scale separation between

island and turbulence. This fact could also be related, however, to the di�erent degree of


attening of the ion temperature inside the island between both cases and the associated

di�erent behaviour of the microinstabilities. The vortex mode appears also in simulations

performed for the same plasma parameters in the case of islands rotating at the ion or

electron diamagnetic frequency.
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IV. TURBULENCE-FREE GYROKINETIC SIMULATIONS OF ROTATING IS-

LANDS

We now turn to simulations performed with the code GKW, in which a �lter is applied

on high angular component of the spectrum of the electrostatic disturbances to suppress

the turbulence. Moreover, the background density and temperature gradients are reduced,

R=Ln � 1 and R=LT � 3 . Although neoclassical physics is still not fully tested in the code

(and therefore collisions are switched o�), the presence of fully kinetic electrons allows the

investigation of the behaviour of the potential connected to the rotation of the island, and

provides useful information on the density and the temperature in the presence of toroidal

e�ects, which can be compared with kinetic simulations that retain neoclassical physics but

not a self-consistent determination of the electrostatic potential[31]. It is worth to stress

that numerical simulations can explore a parameter range which goes beyond the validity of

the neoclassical analytic theory, in particular magnetic islands whose width is comparable

or smaller than the ion banana width. As in the previous section, the island evolution is not

computed and the (constant) island rotation frequency is treated as an input parameter.

A known result of tearing mode theory is that the potential associated to the rotation of

a neoclassical magnetic island is[7, 8]

~� =
!q

mc
[ �  s � h(
)]; (6)

as can be derived from requiring Ek = �rk
~� � (1=c)@ ~Ak=@t = 0 . The function h(
) is

an integration \constant" (deriving from the fact that rk
 = 0 , see Section II) which is

connected with the density pro�le in the presence of an island[8]. Assuming no sources nor

sinks in the island and a vanishing electric �eld away from it, h(
) must vanish inside the

island separatrix for parity reasons (this corresponds to pro�le 
attening), and must scale as

 �  s for  �  s �W . The E�B velocity connected with this electrostatic potential

forces the plasma inside the island to co-rotate with it, while it vanishes at some distance

from the island, where ~� attains a constant value. When a �nite island rotation is enforced

in GKW simulations, and the island width is larger than the ion orbit width, a potential with

the shape given by Eq.(6) develops, Fig. 6a. Its peak value (at the island separatrix) exhibits

the expected linear scalling with the rotation frequency ! , while it vanishes at the edge of

computational domain to satisfy the periodic boundary conditions. If the rotation frequency
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is chosen to be in the ion diamagnetic direction, ~� is found to be localized in the vicinity of

the island, while its shape is broader if the rotation is in the electron direction. It is known

that islands rotating at a frequency between 0 and the electron diamagnetic frequency lead

to the emission of drift waves[23]. In this case, the maximum of the electrostatic potential

outside the island is found to be localized between the O and the X-point (Fig. 6b), as found

in analytic theory for the slab case[25].

A set of simulations has been performed at small island width (slightly smaller than

the thermal ion banana width) in order to determine the density and temperature pro�les

in a rotating island. In recent drift-kinetic simulations[31], it was found that, when the

ratio �i=W is increased, the ion density perturbation exhibits more and more an adiabatic

(\unmagnetized") response[22, 57]. As a consequence, due to the shape of the electrostatic

potential, cf. Eq. (6), the ion density perturbation was observed to lead to a 
attening of

the total density pro�le even in small islands rotating in the ion diamagnetic direction,

and to a steepening for islands rotating in the opposite direction. Correspondingly, the

bootstrap current was found to be strongly reduced in islands rotating at the ion diamagnetic

frequency and largely preserved when the island frequency equals the electron diamagnetic

frequency, implying an enhanced neoclassical stability in the latter case. Since, however,

in the presence of an un
attened ion density quasi-neutrality was violated (the electron

orbit width is always much smaller than the island width and the electron density tends

therefore to be 
at), in Ref. 31 the (prescribed) electrostatic potential was modi�ed with

respect to Eq.(6) in order to recover quasi neutrality. In the simulations presented here, the

potential is determined self-consistently form the electron response. GKW simulations show

that the ion density pro�le exhibits the same properties as described above, the electron

density pro�le following closely that of the ions. As can be clearly observed in Fig. 7,

for rotation frequencies above the diamagnetic frequency, the density perturbation leads

even to a positive density gradient inside the island (rotation in the ion direction) or to a

gradient larger than the equilibrium one (rotation in the electron direction). In other words,

these simulations support the neoclassical drift kinetic simulations of Bergmann at al.[31],

according to which the neoclassical drive is largely suppressed in a small island rotating in

the electron diamagnetic direction.
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V. SELF-CONSISTENT GYROFLUID SIMULATION OF THE ISLAND EVOLU-

TION IN THE PRESENCE OF TURBULENCE

The self consistent interaction between magnetic islands and turbulence was studied by

the GEMZ model described above. The nonlinear dynamics is followed together with lo-

cal modi�cations in the pro�les but the MHD and neoclassical 
ow equilibrium is removed

by separating nz ! n0 + ~nz (e.g., for the gyrocentre density of species z ) for each de-

pendent variable. Pro�le functions n0 and T0 , set equal for ions and electrons, provide

gradient dynamics for the turbulence. Tearing and island dynamics are enabled by keeping

ue0 = �J0=ne in the parallel velocity for the electrons, consistent with the chosen pro�le

q(x) . The equilibrium dynamics[58] is avoided by leaving these pro�le functions out of the

curvature terms. A small island, added consistently to ~Ak and ~Jk as a piece proportional

to a simple radial pro�le and to cos �0 = cos(2� � ') (here, a 2,1 island is considered), is

combined with the random-bath turbulent density 
uctuations in the initial state.

The plasma parameters are typical of tokamak core conditions ( n = 3� 1019 m �3 and

T = 2 keV and B0 = 2:5 T) in the dimensions R0 = 1:65 m and a = 0:5 m. The pro�les

have R=LT = 8 and Ln=LT = 3 . Various current pro�les were tried. An \exponential"

case has q = 4 exp(r2
a
� 1) , a parabolic case has q = 1 + 3r2

a
and a tearing unstable case

q = 3=(2 � r2
a
) taken from Wesson [59], where ra = exp(xc) is the conformal normalized

minor radius. In each case J0 = (B0=�0R0)(1=r
2
a
)(@=@ra)(r

2
a
=q) is chosen consistently. The

poloidal and toroidal 
ux pro�les  and  t do not enter the equations but are used in the

helical 
ux diagnostic 	 = R�1
0 [( t=2 �  ) �Min( t=2 �  )] + ~Ak of the q = 2 rational

surface (the 
ux label 
 introduced in Section II can be easily derived from 	 through a

second-order expansion of  t around the rational surface). Here, the sign convention is for

B = Ir'+r'�r and rR�rZ � r' > 0 .

The current pro�les in present tokamaks are usually mildly stable to tearing for the

cylindrical model and neoclassical e�ects are usually invoked to account for observed mag-

netic 
uctuations consistent with magnetic islands a few cm wide. It is important to note

that the combination of gradients and toroidal curvature are severely stabilizing for tear-

ing modes[10], due to the action of geodesic curvature (the part acting on @=@ of the

disturbance). Hence the maintenance of the island has to be a robust e�ect. Turbulence

has two potential e�ects on islands. Di�usion is more familiar, but the details of drift wave
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turbulence[60, 61] show that this has to act through the pressure and current 
uctuations,

not the E � B or magnetic part. The other potential e�ect is inverse cascade dynamics

through these two components. For drift waves dynamically incompressible vorticity dynam-

ics is active. In addition for electromagnetic cases one has the inverse helicity cascade in 2D

MHD turbulence[62], which directly a�ects ~Ak . Normally the nonlinear electromagnetic

processes are weaker than the E�B ones[63]. However, in this case they have the island's

component of ~Ak to act upon and are therefore non-negligible.

A further less-familiar component of this dynamics from the point of view of magnetic

island studies is that the turbulence is dominantly ion temperature gradient (ITG) driven de-

spite the presence of many other mode types and despite the mild �nite-beta stabilization[50].

The tendency of the electron dynamics to equalize the pressure along �eld lines and within

the island does not a�ect ion temperature 
uctuations, so the e�ect to weaken the turbulence

is negligible.

The main result of the computations so far is that the initial long-wave disturbance in

~Ak is not only maintained but increased during the turbulence which is well saturated. The

simulations show an island activity which survives in the face of the curvature/toroidicity

e�ects. The helical 
ux diagnostic 	 forms a channel whose width depends on the magni-

tude of ~Ak : the contour interval is �1=3 times the minimum value of 	 , so the channel

is wide for larger islands. The visual appearance is therefore indicative of island robustness.

The form of a 2=1 island indicates island coherence and is con�rmed by a corresponding

peak in the disturbance spectrum, as presented in Fig. 8. A coupling to the m = 3 mode

is also visible. The strength of this coupling also 
uctuates as the island evolves. The

tearing-unstable case shown in the �gure exhibits a more clear and more coherent island but

the other two cases also show strong activity albeit with less island coherence. The island

activity persists despite the absence of a clear unstable-eigenmode signature in ~Ak | one

looks for a slope discontinuity in the O-point cut of Ak across the island, which shows

neither an obvious eigenmode structure nor signi�cant chopping by turbulence. Indeed the

poloidal spectrum of Ak shows clear dominance by the m = 2 component. The control

cases without turbulence but with all the toroidal and pressure gradient e�ects are yet to

be run; these and more detailed energy transfer diagnosis will provide for more de�nitive

�ndings which will be published in the future.
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VI. SUMMARY AND CONCLUSIONS

In this paper, recent advances in numerical simulations of tearing modes in toroidal ge-

ometry, including FLR e�ects have been reported. The development of highly parallelized

and thoroughly benchmarked gyrokinetic and gyro
uid codes, as well as the increasing avail-

ability of high-performance computer resources allow the �rst steps in this area, employing

realistic plasma parameters. Three di�erent approaches have been followed here. The �rst

one relies on the fact that the tearing mode grows on a much longer time scale than the tur-

bulence. The magnetic island can then be implemented as a static magnetic perturbation

and the development of the microinstabilities retaining toroidicity and kinetic e�ects can

be investigated. Our results for electrostatic ITG turbulence con�rm previous �ndings[36]

that outside the island the 
uctuations are much larger at the X-point as compared to the

the O-point, where sheared 
ows associated to nonlinearly-driven long-wavelength modes

suppress the turbulence even in the presence of increased gradients. Inside the island, the

turbulence is reduced because of the 
attening of temperature and density pro�les due to the

fast parallel motion along the perturbed �eld lines. Eddies convected in the drift direction

contribute signi�cantly to the turbulence level inside the island in the region close to the

X-point. The nonlinear coupling between small (turbulence) and large (island) scales can

generate a vortex mode that can yield inside the island a transport level comparable to the

parallel (
utter) transport. This mode is found only if the perturbed magnetic geometry is

accounted for in the electron response. These results show that the transport in the island

region has more complex behaviour than in the \standard" paradigm[20] and con�rm the

importance of the coupling between small and large scale. From a computational point of

view, moreover, they represent a cross-check that di�erent approaches (local and global)

to the solution of the gyrokinetic equation in the presence of an island yield a consistent

physical picture if the same assumptions are made. The second method presented here again

employs a toroidal gyrokinetic formalism, but excludes the turbulence. The long-term goal

is in this case to study processes taking place on the collisional time scale. Although the

collision operator is still not fully functional, �rst collisionless results for an island with an

imposed rotation reveal the potentialities of this approach, which allows a determination

of the electrostatic potential associated to the island rotation, of the density and current

pro�les. Finally, the gyro
uid simulations performed with the GEMZ code demonstrate {for
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the �rst time for realistic tokamak parameters{ the role of electromagnetic turbulence for

the growth of the tearing mode, whose evolution is calculated in this case self-consistently

as a part of the global disturbance spectrum.
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Figure captions

Fig. 1: Implementation of a magnetic island satisfying periodicity conditions in the 
ux-tube

code GKW: simple projection on radial Fourier harmonics, showing the deformation of the

edge cells to ensure periodicity (a) and smoothing obtained by adding a Gaussian damping

on higher harmonics (b).

Fig. 2: ORB5 simulation showing the heat 
ux in the island region with the associated the

strong transport through the X-points ( � = �� ) and its reduction on the island separatrix

(marked by thick vertical lines) at the O-point location ( � = 0 ).

Fig. 3: Time evolution of the toroidal energy spectrum (logarithm of the mode energy

normalized to Mic
2
s
) of the potential disturbances for h

p
 i = 0:57 (outside the island, a)

and for h
p
 i = 0:63 (island separatrix, core side, b). In the latter case, only low mode

numbers (corresponding to the magnetic island) are signi�cantly excited.

Fig. 4: Radial electrostatic heat 
ux (integrated over the simulation box) driven by each

component of the spectrum for di�erent values of the ratio W=�i (GKW simulations).

Fig. 5: Snapshot of a GKW simulation showing the electrostatic potential (top left), Æn=n

(top right), the total density (bottom left) and the density pro�les (bottom right; the green

line represents the unperturbed pro�le, the blue line a cut through the O-point and the red

line a cut through the X-point).

Fig. 6: Electrostatic potential arising from a rotating magnetic island in the absence of

turbulence for a frequency close to the electron diamagnetic frequency in the case of no

equilibrium gradients (a) and with equilibrium gradients (b).

Fig. 7: Density pro�les for a small island rotating in the ion diamagnetic direction (a) and

in the electron diamagnetic direction (b).

Fig. 8: GEMZ simulations showing the contour plots of the helical 
ux 	 at two di�erent

time slices during the simulation, t = 20 and t = 3150 (time is expressed in a=cs units),

and the disturbances spectrum (in terms of amplitude squared) for electron density (n),

ion temperature (i), magnetic �eld (B), electrostatic potential (p) and parallel magnetic

potential (A).
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