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1. Introduction
There has been a growing interest in a physically based approach to disruption prediction in 
recent years. Disruptions have different physical causes. The prediction method proposed here 
is  aimed  at  developing  different  criteria  to  predict  different  classes  of  disruptions.  The 
approach is expected to explore the recognition algorithms related to physical laws and well-
established empirical behaviour, which will be suitable for the prediction of disruptions in 
ITER. 
     A large  number  of  disruptions  (325 shots)  that  occurred  in  the  years  2005-2009 of 
operation in ASDEX Upgrade (AUG) have been analysed with the purpose of identifying 
their causes, precursors and finding their predictive criteria.  All disruptions selected for this 
study  were  in  the  flat-top  phase  or  within  the  first  100  ms  of  the  ramp-down phase  of 
discharges, where the plasma conditions were  Ip > 0.7 MA and  κ > 1.5.  The results of this 
analysis are presented in the following sections.
2. Classes of disruptions
The time traces  of  plasma parameters  have been visually  analysed.  According to  the last 
mechanism leading to them, disruptions are roughly divided into four classes: (1) vertical 
displacement  disruption  (VDD),  (2)  edge  cooling  disruption  (ECD)  [1],  (3)  impurity 
accumulation disruption (IAD) [2], (4)  β limit disruption (BLD) and others with undefined 
cause. In AUG, the second class represented the majority of the disruptions in the past [2] and 
the same situation arose also in the years 2005-2007. In 2008 and 2009, the VDDs occurred 
more frequently and amounted to almost 40% of the disruptions. In 2008, both VDDs and 
ECDs represented 80% of the disruptions, but the percentage decreased to 60% in 2009, due 
to the increasing number of the latter two classes of disruptions.  
3. Detection of the VDDs
A VDD is defined as a disruption following the plasma vertical displacement. A total of 106 
VDDs (33%) are found in the analysed data set of AUG, half of which were caused by a large 
plasma equilibrium perturbation. The reason why VDDs happened so frequently recently in 
AUG has not been clarified yet. A threshold value for the plasma vertical displacement is 
used to detect the VDDs. The threshold is searched for in the interval 0.005 - 0.1 m, and the 
57 VDDs and 62 non-VDDs are used as training discharges to obtain the optimum value. 
Figure 1 shows that the threshold value of 0.07 m is appropriate, with which 55 VDDs can be 
detected correctly, and 4 discharges are wrongly recognized as VDDs. 
4. Discriminant analysis for ECDs
The cooling of the plasma edge is well known as mechanism leading to disruptions [1]. In 
AUG, it is found that 146 disruptions (45%) were caused by this reason in the last four years. 
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Discriminant analysis [3, 4] is applied to develop a criterion to predict this type of disruptions.
      Discriminant analysis is performed on two groups of the database, which consists of 3900 
observations extracted from 75 ECDs and 4687 observations from 896 non-disruptive shots. 
An observation is a vector containing the logarithm of the 10 global plasma parameters listed 
in table 1. The covariance matrices are estimated with the set of observations and used to 
derive a discriminant  function.  It allows to calculate  the 'probabilities'  that  an observation 
belongs to each one of the two groups, and then the group membership of the observation is 
determined according to its largest probability. The performance of the discriminant function 
can  be  evaluated  by  the  error  rate,  which  is  defined  as  the  average  rate  of  the  mis-
classifications of the observations in each group.
      An analysis seeking two, three, four and more variables from the preliminary 10 variables 
in the database, whose linear combination (L) and quadratic combination (Q) minimize the 
error rate, is performed. The selection is based on the stepwise discriminant analysis using 
SAS [6].  Table 2 shows the variable entering at each step and the final combinations used. 
The variable H98(y, 2) (see [5]) is expected to be helpful to forecast the occurrence of a ECD, 
but it has hitherto been hardy applied to on-line disruption prediction, owing to its complex 
dependence on plasma parameters. Therefore, the contribution of H98(y, 2) is investigated 
separately in order to clarify how important it is. Figure 2 shows that the error rates decrease 
as the number of variables used increases. Apparently, the first three variables play important 
roles in the classification of observations. When the variable ln ne/nGW is used alone to classify 
the observations, it gives a high error rate. However it decreases the error rates by a factor of 
2 if it is used together with ln li. Also it is less correlated with ln li than ln Uloop, ln H98(y, 2) 
and  ln Pfrac.  The ln H98(y,  2)  can  improve  slightly  the  performance  of  the  discriminant 
function, and the quadratic combination of variables works better than the linear one. 
      However, the performance testing should be refined beyond the mis-classifications of the 
observations to include the factor that makes the prediction of disruption in a particular shot 
useful or not.  Therefore, the original 73 (= Ndisr) edge cooling disruptions and 111 (= Nndisr) 
non-disruptive discharges are used to test the four combinations once more. Each discriminant 
function allows to calculate the disruptive probability at each time point during the flat-top 
phase of a discharge. We assume that if the disruptive probability is larger than a given alarm 
level (threshold probability), then a disruption alarm is generated in a discharge. A disruption 
alarm is defined as successful  alarm (SA) when it is triggered in the time interval [tdisr – 500 
ms, tdisr - 2ms]; a false alarm (FA) is produced when a disruption alarm is activated in a non-
disruptive discharge or more than 1s before a disruption; a disruption alarm more than 500 ms 
but less than 1s before a disruption is considered a premature alarm (PA); a missed disruption 
(MD) occurs when a disruption is not recognized or the alarm is activated less than 2 ms 
before a disruption. Moreover, a success-to-failure ratio (SFR) is defined as 

  
  
where the denominator is the failure rate and c = 0.5 is assumed here. For each discriminant 
function, the SFR and the premature alarm rate PAR=PA /N disr depend on the alarm level, 
and they are plotted in figure 3. The alarm level for each function is optimized by maximizing 

SFR=
SA /N disr

[FAdisrFAndisr /N disrN ndisr]∗c MD /N disr∗1−c
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SFR. Then the performances of the four discriminant functions can be compared under their 
own optimum alarm levels. A bigger SFR represents a better performance, besides the PAR is 
small. Table 3 summarizes the details of their optimum performance. It is seen that the 6 
variables (ln li, ln ne/nGW, ln Uloop, ln Pfrac, ln βN, ln δ) combined with linear functions can provide 
the best prediction performance in the discharges, and that the variable of ln H98(y, 2) does 
not improve the performance any more in whatever linear combination or quadratic 
combination. 
     Another factor that  can influence the performance of the discriminant function is the 
covariance  structure.  Fixing  the  above  6  variables,  five  structures  based  on  different 
assumptions for the relation between the covariance matrices of two groups are investigated. 
Specially,  the common principle  component  and proportional  covariance models (see [7]) 
give  a  similar  error  rate  (about  7%) as  does  the  linear  model  mentioned  above.  For  the 
practical application, the following linear discriminant function is proposed, which is derived 
from L1 with optimum alarm level of 0.895.

U loop
'


1.01

∗li
0.96

∗ne /nGW 
0.48

∗P frac
0.19

∗N
−0.07

∗
−0.04

=7.13

5. Prediction performance for extra shots
To confirm the performance of VDD and ECD predictive criteria, an extra test is performed 
by using extra shots in 2009 campaign, which are not used in the training process. The extra 
shots consists of 39 VDDs, 31 ECDs, 34 other types of disruptions and 106 non-disruptive 
discharges. As a result, the threshold value of 0.07 m can detect 97% of VDDs correctly and 
yield a failure rate of 2.98%; The linear discriminant function allows to recognize 94% of 
ECDs successfully and generates a failure rate below 2%. Actually, the discriminant analysis 
has been performed in the same way on the impurity accumulation disruptions and  β limit 
disruptions, but no proper predictive criteria were found. We deduce that the global plasma 
parameters used do not allow to discriminate between these two types of disruptions and non-
disruptive phases.
6. Conclusion   
The discriminant analysis on ECDs indicates that only a few variables are really important for 
the disruption prediction, and a simple function is able to predict this type of disruptions. The 
method  can  quantify  the  predictive  capability  of  each  plasma  parameters.  The  predictive 
criterion performs quite well, while it avoids some drawbacks of the black box approach to 
disruption prediction.
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Figure 1. (a) The success rate of VDD prediction 
depends on the threshold for the vertical displacement; 
(b) the false alarms decrease as the threshold increases; 
(c) the missed alarms are generated after 0.065 m.
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Table 2. List of variables used in the quadratic (Q1 
and Q2) and linear (L1 and L2) discriminant 
functions.

Figure 2. Error rates of four discriminant 
functions versus the number of variables.

Figure 3. Dependence of the success-to-failure rate  (SFR) and of the premature alarm rate 
(PAR)  on the alarm level for the four discriminant functions (Q1, Q2, L1, L2)

Table 3. The best prediction results of each discriminant function.

Table 1. The 10 plasma variables. 
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