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Abstract

The interaction between small scale turbulence (of the order of the ion
Larmor radius) and meso scale magnetic islands is investigated within the
gyrokinetic framework. Turbulence, driven by background temperature
and density gradients, over nonlinear mode coupling, pumps energy into
long wave length modes, and can result in an electrostatic vortex mode
that coincides with the magnetic island. The strength of the vortex is
strongly enhanced by the modified plasma flow response connected with
the change in topology, and the transport it generates can compete with
the parallel motion along the perturbed magnetic field. Density and tem-
perature gradients inside the island are below the threshold for turbulence
generation, and the anomalous transport inside the island is determined
by turbulence spreading. A finite radial temperature gradient inside the
island is observed to persist despite the fast motion along the field, and is
related to the trapped particles which do not move along the field around
the island. Consequences for the stability of the neo-classical tearing mode
are discussed.

Multiscale dynamics receives a large amount of interest in the current lit-
erature, with a wide range of applications. A magnetized plasma is a particu-
larly interesting system for studying the dynamical interaction since it supports
waves and instabilities over a wide range of length and time scales. Furthermore,
multiscale dynamics is crucial for the understanding of various phenomena in
astrophysics as well as laboratory plasmas. In laboratory plasmas, the influ-
ence of mesoscale magnetic island structures on small scale turbulence and vice
versa is expected to affect heat and particle transport properties [1, 2, 3], al-
though the exact mechanisms are poorly understood. Mesoscale, here, refers to
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a length significantly larger than the ion Larmor radius, but smaller than all
other length scales (the gradient length of the temperature and density profiles,
for instance). Mesoscale magnetic islands are formed through reconnection of
the magnetic field, and are commonly obtained in both laboratory and astro-
physical plasmas.

In this letter the interaction between small scale turbulence (order of the ion
Larmor radius) and mesoscale magnetic islands is investigated through massive
parallel computing and, to our knowledge, we present the first kinetic simula-
tions that retain the electron dynamics. The letter concentrates on the tearing
mode obtained in a tokamak plasma [4], with the results being directly applica-
ble to existing experiments and, consequently, allowing for a validation through
direct comparison. In the simplest picture the destruction of the nested mag-
netic surface topology through the formation of the island allows the plasma
to flow along the field lines radially outward, reducing the energy confinement.
However, the self-consistent electrostatic response connected with the island
may attain large gradients resulting in a considerable sheared plasma flow. Such
flows are known to stabilize small scale turbulence [5, 6] and, therefore, a confine-
ment improvement is also possible. Indeed there is evidence that steep density
and temperature gradients can form in the vicinity of island structures [7].

In this letter the state of the art gyro-kinetic model will be used to simulta-
neously describe both small scale turbulence and mesoscale magnetic structures.
Simulations are performed with the GKW code [8, 9] which solves the Maxwell-
Vlasov system in a flux tube geometry which follows the background magnetic
field. The code is able to treat all species kinetically which is vital to the de-
scription of the island dynamics.

Fluxtube geometry is used to exploit the fact that turbulence is elongated
along field lines, and have a short scale length perpendicular to the field[12]. The
tube is of small (few gyro radii) radial and poloidal extent, while is extended
along a field line of fixed pitch, i.e the number of toroidal turns per single
poloidal turn. GKW uses field aligned Hamada coordinates [13, 9] that allow for
an efficient numerical solution. The local approximation is used and therefore
background quantities are assumed to be functions of radius only, which vary
linearly.

The letter concentrates on nonlinear pumping of large scale vortex struc-
tures, as well as profile relaxation in the presence of the island. The timescale
of these processes has been found to be short compared with the growth/decay
of the island structure which is treated as static. The island structure is intro-
duced in the model through an imposed perturbed vector potential parallel to
the background magnetic field

A‖ = Ã‖ exp[i(mθ − nφ)], (1)

where θ (φ) is the poloidal (toroidal) angle, n (m) is the toroidal (poloidal)
mode number, and Ã‖ is the amplitude of the perturbation. In the tokamak,
any magnetic surface with a rational field line winding number, safety factor,
q = m/n is topologically unstable against the perturbation given above, i.e. an
island structure in the magnetic field is formed around the rational surface.

Here, a large aspect ratio circular magnetic equilibrium will be assumed
(the s-α model) for which the transformation to Hamada coordinates becomes
[9] (s, ζ) = (θ/2π, [qθ−φ]/2π), where s is the coordinate along the unperturbed
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magnetic field and ζ is the generalized toroidal angle. Assuming the winding
of the magnetic field is resonant (q = m/n) in the center of the computational
domain (ψ = r/R = ε, where r is the radius of the magnetic surface, and R is the
distance of the center of the surface to the axis of symmetry), expanding q up to
first order in ψ, q = m/n+ψ(∂q/∂∆ψ) gives A‖ = Ã‖ exp[2πin(ζ−s∂q/∂ψ∆ψ)].
From this expression the wave vector of the island follows kIζρi = 2πnρ∗, which
is always the largest wavelength mode in the domain, where the ion Larmor
radius (ρi = mvth/eB with vth =

√

2Ti/mi) is used for normalization and
ρ∗ = ρi/R is the ratio of Larmor radius. As the code is pseudospectral in the
perpendicular direction, the expression for the vector potential can be expanded
in the Fourier modes used for the numerical implementation

Â(s, kζ , kψ) = Ã‖N exp (−ıkIζζ)

∞
∑

p=−∞

exp

(

−
(sN + p)2

L2

)

×
sin (π(sN + p))

π(sN + p)
exp (ıpkψψ), (2)

where N is an integer that determines the radial mode spacing ∆kψ = (1/N)kIζdq/dψ.
This expression contains an additional ad hoc damping at higher radial mode
numbers (the term exp[−(sN + p)2/L2]) in order to satisfy the periodic radial
boundary conditions of the sheared flux tube domain. The results are unaffected
provided the scale length L is chosen to be large enough. In the simulations
presented here this length is set to L = 2.0 which is found to be of a sufficient
length without affecting the physics. The contour lines of the perturbed vector
potential given above summed with the background A‖0 = RB0ψ

2/2q0(1 + ŝ)
form the surfaces traced out by the magnetic field and exhibit an island struc-
ture in a perpendicular plane to the field. The (half) width of the island is

w = 2
√

qRÃ‖/ŝB. The perturbed vector potential is artificially imposed in the

simulations of small scale turbulence driven by the free energy of density and
temperature gradients. Since Â‖ is time independent the only effect it gener-
ates is the prallel motion along the perturbed field v‖δB/B = v‖b × ∇A‖/B.
Because the vector potential is imposed, Ampères law is not necessarily satis-
fied, and only the Poisson equation (quasi-neutrality) is treated self-consistently.
The turbulence is essentially electrostatic with no other magnetic perturbations
other than that of the island. Space limitations do not allow us to give all the
model equations, but an exact description of all model equations, together with
details on the implementation are given in Ref. [9].

Fig. 2 shows (a snapshot of) time traces of the heat flux averaged over the
entire computational domain and broken up in different contributions. The
parameters of these simulations are similar to those of the cyclone base case:
normalized ion temperature gradient R/LT = 6.9, normalized density gradient
R/LN = 2.2, inverse aspect ratio ε = 0.19, electron to ion temperature ratio
Te/Ti = 1, safety factor q = 1.5 and magnetic shear ŝ = 0.16. The results in
this paper are based on three sets of simulations, which will be referred to as
LL, LH and HH, with the naming referring to the varying resolution/box size
in the poloidal and radial direction. Unless explicitly stated otherwise, kinetic
electron effects are kept at the true mass ratio of a Deuterium plasma. The
simulations use (LL,LH,HH)=(21,21,41) (positive) toroidal modes with ∆kζρi =
(0.05, 0.05, 0.025), and (101,167,167) radial modes (positive and negative) with

3



∆ψ [ρ
i
]

T
or

oi
da

l d
ire

ct
io

n,
ζ 

[ρ
i]

 

 

−100 −50 0 50 100
0

20

40

60

80

100

120

−400

−200

0

200

400

Figure 1: Normalized electrostatic potential (φN = eφ/Tρ∗, case LH) in the
plane perpendicular to the magnetic field (outboard midplane). Black lines
represent the perturbed flux surfaces calculated from the total parallel vector
potential.

∆kψρi = (0.05, 0.025, 0.025). The wave vector of the island is always the longest
wavelength on the grid, i.e. kIζρi = (0.05, 0.05, 0.025). For a m = 3, n = 2
island which is resonant at q = 1.5, this choice effectively determines ρ∗ =
(4·10−3, 4·10−3, 2·10−3), values that correspond to a large tokamak like ASDEX
Upgrade. The radial width of the domain is chosen to be sufficiently large so
that there is freedom for the flows around the island, and their perturbation by
the island, to form. Temperature profiles return to their equilibrium values far
before the boundaries which proves sufficient resolution is used.

The typical timescale for a particle of species s to traverse the field around
the island (τs‖) and the timescale for perpendicular transport across the island
τs⊥ can be estimated to be

τs‖vthi

R
=

√

Tims

Tsmi

4πq

(kIθρ)ŝ(w/ρ)

τs⊥vthi
R

=
1

2DN
s

(

w

ρi

)2

(3)

whereDN
s is the relevant transport coefficient in gyro-Bohm units (Ds = DN

s ρ
2

i vthi/R).
For the parameters used in this paper τi‖ ≈ 196 for HH and ≈ 97 for LH,
τe‖ ≈ 3.3, τi⊥ ≈ 40, τe⊥ = 80. Comparison of the timescales would indicate a
moderate flattening for the ions for LH, a slight flattening for HH and a complete
flattening of the electron temperature in both cases.

The critical width above which sound wave propagation[10, 11] around the
island will have an effect on the density is wc/ρ∗ = RLn ∗ q/ŝ ∼ 20 where RLn
is the normalised ion density gradient. As such sound waves are likely to induce
further flattening in the density gradients.

It has been suggested that sheared plasma flows connected with the island
can stabilize turbulence and lead to improved confinement. The right panel of
Fig. 2 shows that the time integrated total heat flux increases with the island
size. (Although, as indicated by the horizontal lines, the error bars calculated as
the standard deviation, do not allow for a confirmation of this increase at small
island widths.) Since the perturbed distribution function is radially periodic,
the temperature difference across the box is determined by the background
temperature gradient and is independent of the island width. The increase in the
heat flux, therefore, directly implies a confinement degradation with increasing
island width. Time integrated (during statistical steady state) temperature
profiles (background plus perturbed) along a radial chord through the O-point
and X-point of the island are shown in Fig. 3. As expected, the presence of an
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Figure 2: Left: time traces of the total electrostatic and magnetic flutter tur-
bulent heat fluxes (for case LH) for ions (solid lines) and electrons (dashed
lines) during the converged stage of a simulation with a magnetic island width
of w = 24ρ∗. The thick dotted line gives the electrostatic heat flux generated
by the modes with the same poloidal wave length as the island. Middle: The
contribution to the electrostatic heat flux from the different toroidal modes as
a function of the normalized poloidal wave vector for different island sizes (case
LL). Right: Total heat flux in the ion and electron channel as a function of the
island width (case LL).
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island structure leads to a flattening of the temperature profile inside the island.
Fig. 3 also shows the temperature gradient as well as the turbulent fluctuations
of the density δn/n0. It can be seen that the gradient just outside the island
structure, where the shear in the plasma flow is large, is strongly enhanced
without a corresponding increase in the turbulence fluctuations. The sheared
flows do stabilize the turbulence as previously reported [19], but the net effect
of the island is nevertheless a degradation of confinement.

A striking observation shown in Fig. 2 is the magnitude of the electrostatic
heat flux of the mode with a poloidal wave vector equal to that of the island.
This contribution is observed to increase with the island size, and is enhanced
by one to two orders of magnitude compared with the case without island.
The reason for the increased transport at this wavelength is the formation of a
large scale electrostatic vortex structure that coincides with the island as shown
in Fig. 1. The vortex structure develops in the LL and LH cases for which
τi‖ is sufficiently small such that the temperature gradient is below the stability
threshold of the ITG/TEM. For the HH case, with its larger τi‖, the temperature
gradient inside the island remains above the threshold and a turbulent flux is
generated, although much reduced compared with outside the island. The HH
case shows a much reduced vortex strength compared with the LL/LH case. It
follows that this newly observed vortex structure is not due to a linear instability,
but generated through the nonlinear pumping by small scale turbulence in a
manner similar to the generation of the zonal flow. A finite level of fluctuations
is present inside the island in the LL/LH cases through turbulence spreading [20,
21, 22], i.e. the transport into the island of turbulent fluctuations driven outside
the island. A large part of this turbulent spreading occurs in an unconventional
way: fluctuations convect into the island in the drift direction via the X-point.

We note that the nonlinear pumping has previously been discussed in Ref. [14]
which studies the linear stability of large scale modes in the presence of small
scale turbulence. The vortex structure observed in our simulations, however,
is different from the modes studied in Ref. [14] whose growth rates depend on
the resistivity, which is zero in our collisionless simulations. We also note here
that the variable nature of the vortex means that it is not the vortex predicted
in [15] which comes from equilibrium considerations. The large scale potential
structures outside the island, but NOT the vortex structure inside the island,
are also found in simulations without turbulence and represent the equilibrium
flow connected with the island [2]. The strength of the convective cell is largely
enhanced by the modified flow response around the island analogous to the
generation of zonal flows. In the case without an island, the magnitude of the
potential for the n = 0 ’zonal’ mode is largely enhanced because the electrons
can not balance the ion charge through a motion along the field. Similarly,
in the case with an island the parallel electron motion can not balance an ion
density that is constant along the perturbed magnetic surfaces. The result is a
strong enhancement of the potential perturbation which is constant on the per-
turbed surface and, consequently, a large ExB flow along the perturbed surfaces.
Indeed, simulations with an adiabatic electron density response ne = en0φ/Te,
which lack the physics of the stronger potential response, do not show a large
vortex structure. The vortex is not constant in time, as shown in the left panel
of Fig. 2, and the direction of rotation around the vortex can flip sign. One
can note a clear anti-correlation between the radial heat flux generated by the
vortex and the ’magnetic flutter’, i.e. the heat flux due to the motion along
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Figure 3: (for the HH case) Top panel shows the radial electron temperature
profiles, black: Low field side, gray: High field side. Middle panel shows the
corresponding electron temperature gradients. Bottom panel shows the RMS
density fluctuation profile showing a decay of the fluctuation strength within
the island. Dotted lines represent lines through the X-point.

the perturbed magnetic field that forms the island. At its maximum strength
the transport due to the vortex largely exceeds the flutter flux, and on average
its contributions to the heat flux is comparable. It is generally accepted that
the fast transport along the magnetic field flattens the radial pressure gradient
in the island, provided the perpendicular transport across the island is negli-
gible against the parallel motion around the island [16]. The reduced pressure
gradient inside the island plays an important role in magnetic confinement fu-
sion since it leads to a reduction in the bootstrap current and can give rise to
the so-called Neoclassical Tearing Mode (NTM) [17, 18]. The surprising result
of our simulations is that profile flattening inside the island is not necessarily
dominated by the fast flow along the field lines. The vortex structure leads to
an enhancement of the profile relaxation inside the island, with smaller radial
gradients being observed at stronger vortex strength.

Our simulations show that a modelling of perpendicular transport with a
constant perpendicular heat conduction coefficient is largely inadequate. The
heat conduction coefficients have been found to roughly follow the dependence
of δn/n and, consequently, transport in the island is reduced compared with the
outer region. Inside the island the turbulent transport is affected by both the
gradient as well as turbulence spreading / convection. In the sub-critical phase
a vortex structure develops that reduces the perpendicular transport through
shearing and is strong enough to compete with the parallel transport around
the island. The transport coefficients are reduced in the O-point region while,
they are strongly enhanced at the X-point.

The observed electron temperature gradients, in Fig. 3 are at odds with
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the expectations dervived from the time scales, showing a large radial electron
temperature gradient inside the island. The presented simulations uncover an
overlooked element in the theoretical description of the NTM. While the pass-
ing electrons move along the field lines resulting in a radial profile flattening,
the trapped electrons do not, since the field line length around the island is
much longer than 2πqR. The turbulent motion perpendicular to the field will,
therefore, maintain a finite radial gradient in the trapped population. The tem-
perature diagnostic used to generate Fig. 3 combines the background gradient
with the integrated energy in the perturbed distribution function. Inside the
island it combines the flat radial temperature of the passing particles with the fi-
nite gradient of the trapped particles. Since ∼ 50% of the particles are trapped,
the observed reduction in the electron temperature gradient of roughly a fac-
tor two is consistent with a trapped particle distribution with a temperature
gradient equal to the original equilibrium gradient. A demonstration that the
finite temperature gradient in the simulations is due to the trapped particles is
shown in Fig. 3, which additionally plots the temperature profile along a cord
through the O-point on the high field side of the tokamak. No trapped particles
reach the high field side position and, consequently the radial gradient is zero.
Since it is the gradient in the trapped population that is responsible for the
bootstrap current (see [23] and the references cited therein) we come to the as-
tonishing conclusion that the bootstrap current is not reduced inside the island
and the NTM would be stable. Of course, the argument above applies only in
the limit of small (but finite) collisionality. De-trapping of electrons and ions,
which occurs on a typical time scale Rνs/r, where νs is the collision frequency of
species s, will reduce the temperature and density perturbation in the trapped
region, provided it occurs on a timescale shorter than the perpendicular trans-
port through the island. For the NTM drive to become effective, the timescales
of the two processes must be comparable, which results in a critical island width

wc =
√

2Dr/Rνe. (4)

We stress here that our simulations are collisionless and do not allow for the de-
termination of the bootstrap current. The solution of a model problem including
the effect of collisions, however, confirms the physical picture given above and
will be published elsewhere [25]. Also this newly found effect does not contra-
dict results in the literature [24] in which the kinetic equation has been solved
for a finite collisionality without considering anomalous diffusion. In the latter
case wc = 0 and the arguments above predicts a vanishing bootstrap current.
Finally, for the determination of the bootstrap two additional mechanisms must
be considered. First, anomalous transport inside the island is smaller than the
transport outside the island and, hence, is less effective in maintaining the radial
gradient. We note here that since it is the radial gradient of the trapped par-
ticle population that drives the trapped electron mode, there might be plasma
parameters for which this drive is sustained inside the island, though this is not
the case in the presented simulations. Second, the electrostatic vortex struc-
ture discussed above rotates the trapped particle population around the island.
Indeed, we have found that when the vortex structure is sufficiently strong the
temperature gradient of the trapped population is reduced.
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