Quasi-helical Symmetry at Finite Aspect Ratio

C. Nührenberg¹, M.I. Mikhailov², J. Nührenberg¹, V.D. Shafranov²

¹Max-Planck-Institut für Plasmaphysik, EURATOM Association

D-17491 Greifswald, Germany

²Russian Research Centre "Kurchatov Institute", Moscow, Russia

Abstract. Computational stellarator optimization is used to create a configuration which is quasi-helically symmetric at finite aspect ratio. For the aspect ratio per period chosen (≈ 2) this procedure results in benign properties throughout the plasma volume.

Introduction

Previously, stellarator optimizations of quasi-symmetric configurations have been performed with respect to the complete plasma volume, see e.g. [1, 2]. Since it was on one hand proven that quasi-symmetries cannot be achieved exactly over the entire plasma volume and, on the other hand, that they can be strictly obtained on one flux surface [3], a different option for optimization is to choose a flux surface at finite aspect ratio and realize quasi-symmetry there. This option is investigated here: The boundary of the quasi-helically symmetric configuration obtained in [1] is selected and a 47-dimensional configurational space comprising boundary Fourier coefficients with poloidal mode numbers m and toroidal mode numbers |n| up to 3 is used to try to achieve quasi-helical symmetry at a toroidal aspect ratio ≈ 12 corresponding to an aspect ratio per period of ≈ 2 . The result is the subject of this brief communication.

Results

Figure 1 shows structures of the strength of $B = \sum_{mn} B_{mn} \cos 2\pi (m\theta + n\phi)$ [with θ and ϕ the poloidal and toroidal angle-like magnetic coordinates] in terms of its small Fourier components, B_{mn} (the two largest components, $B_{0\,0}$ and $B_{1\,-1}$, are not shown). While in the configuration of [1] all coefficients tend to get larger with increasing flux this is clearly the case only for the helically symmetric coefficients in the configuration obtained here; the coefficients perturbing the quasi-symmetry form two classes: those corresponding to the optimization space chosen exhibit the quasi-symmetry at the plasma boundary rather perfectly; the amplitudes of higher-order Fourier components not corresponding to the optimization space remain at the few per mill level.

The comparison of the two configurations seen in Fig. 2 shows that the flux surface geometry resulting from the optimization performed here is well-behaved. In cylindrical coordinates (R, φ, Z) , the plasma boundary is defined by the two functions $R(u, v) = \sum_{mn} R_{mn} \cos 2\pi (mu - nv)$ and $Z(u, v) = \sum_{mn} Z_{mn} \cos 2\pi (mu - nv)$, where $v = N_p \varphi/(2\pi)$, $N_p = 6$, and u a poloidal parametrization. The boundary coefficients, R_{mn} and Z_{mn} , of the cases discussed here are given in Tables I and II. No constraints on the rotational

transform and the magnetic well have been used; as a result, the rotational transform is slightly larger (see Fig. 3), the magnetic well slightly deeper than in the configuration of [1].

In the context of quasi-symmetry the characterization of neoclassical transport properties is of particular relevance. Fig. 4 shows that the equivalent neoclassical ripple (characterizing the level of the so-called $1/\nu$ transport, see, e.g., [4, 5] and, specifically, $\epsilon^{\frac{3}{2}}$ in [6]) is of similar smallness in both configurations. From Fig. 5, it is seen that the bootstrap current [7, 8] is similar, and from Fig. 6 that the collisionless loss of α -particles is small, but a factor of about 2 smaller for particles started at half the plasma radius and a factor of about 4 smaller for particles started at 0.7 of the plasma radius in the configuration obtained here.

Conclusion

It appears that the procedure used here to obtain nearly quasi-symmetric configurations is viable, too. The computational optimization was performed with a NAG routine (E04UCF), i.e. exploiting the smoothness of the problem. A genetic algorithm [9] was used to verify the global nature of the optimum found.

Acknowledgment

This work was supported in part by the Russian Foundation for Basic Research, project no 09-02-0142-a and by grant 2457.2008.2 of President of Russian Federation for state support of leading scientific school.

References

- [1] J. Nührenberg and R. Zille, Physics Letters A 129 1988, 113.
- [2] J. Nührenberg et al, in Theory of Fusion Plasmas Editrice Compositori, Bologna 1994, 3.
- [3] D.A. Garren and A.H. Boozer, Phys. Fluids B 3 1991, 2805.
- [4] A.A. Galeev and R.Z. Sagdeev, Zh. Eksp. Teor. Fiz. **53** 1967, 348 [Sov. Phys. JETP **26** 1968, 233].
- [5] W. Lotz and J. Nührenberg, Phys. Fluids 31 1988, 2984.
- [6] V.V. Nemov et al, Plasma Phys. Contr. Fusion 45 2003, 43.
- [7] R.J. Bickerton, J.W. Connor, and J.B. Taylor, Nat. Phys. Sci. 239 1971, 110.
- [8] W.A. Cooper et al, Plasma Phys. Contr. Fusion 44 2002, B357.
- [9] A. Ben Haj-Yedder, in Automatic Differentiation of Algorithms: From Simulation to Optimization, edited by G. Corliss, C. Faure, A. Griewank and L. Hascoet (Springer, Berlin, 2002).

Figure captions

Fig. 1. Small Fourier coefficients of the magnetic field strength in magnetic coordinates of two quasi-helical configurations, top from [1] and bottom obtained here; $B_{0\,0}\approx 1.3$ and $B_{1\,-1}\approx -0.18$ at the boundary (top), $B_{0\,0}\approx 1.4$ and $B_{1\,-1}\approx -0.22$ at the boundary (bottom) are not shown; —— low-m coefficients perturbing the quasi-symmetry; ——— quasi-symmetric coefficients; $\times\times$ high-m coefficients perturbing the quasi-symmetry. The 17 largest of the small coefficients are shown.

Top:
$$---: (3, -2), (2, -3), (2, 0), (0, -1), (1, 1), (3, 0), (1, -2), (2, -1); ----: (3, -3), (4, -4), (2, -2); $\times \times \times : (5, -4), (4, -2), (4, -1), (7, -6), (6, -5), (4, -3).$$$

Bottom:
$$---$$
: $(0, -1), (1, -2), (1, 0), (2, -1), (2, -3), (1, -3), (3, -4); ----: (3, -3), (4, -4), (5, -5), (6, -6), (7, -7), (8, -8), (2, -2); $\times \times \times : (5, -4), (4, -5), (7, -8).$$

- Fig. 2. Magnetic surfaces at the beginning, quarter of and half of a period for two quasihelically symmetric configurations; top from [1], bottom obtained here. The boundary coefficients of the latter are given in Tables I and II.
- Fig. 3 Rotational transform vs. flux label; solid line: configuration found here, dash-dotted line: [1].
- Fig. 4. Equivalent neoclassical ripple ϵ (here used in the form $\epsilon^{\frac{3}{2}}$ vs. flux surface label; solid line: configuration found here, dash-dotted line: [1]. The spike in ϵ from [1] is due to the incidental resonance, $\iota_{\text{period}} = \frac{1}{4}$.
- Fig. 5. Structural factor of the bootstrap current vs. flux surface label; solid line: configuration found here, dash-dotted line: [1]. The difference in the structural factor at large flux label is again due to $\iota_{\text{period}} = \frac{1}{4}$ near the boundary.
- Fig. 6. Four different loss histories of 1000 collisionless α -particles started (randomly distributed in the angular variables and pitch angle) at half and 0.7 of the plasma radius. Normalization: plasma volume 10^3 m³, magnetic field 5 T. Each symbol marks the loss of one particle in a cumulative way. The straight lines indicate the fractions of reflected particles (in each case the lower line corresponds to half the plasma radius); dash-dotted lines, \square and *: configuration found here; solid lines, \circ and \diamond : [1].

Tables

n	m			
	0	1	2	3
-3	0	0.0026	0.0003	-0.0008
-2	0	-0.0027	-0.01	0.0011
-1	0	0.0404	-0.006	-0.0071
0	11	1.1761	0.0463	-0.0317
1	0.6833	-0.5672	0.242	0.0315
2	0.0214	-0.0765	0.0665	-0.0752
3	0.0019	0.0058	0.0322	-0.0017

 ${\bf Table~I.}~R~boundary~coefficients~of~a~6\mbox{-periodic~case~optimized~for~quasi-helical~symmetry~on~the~plasma~boundary.}$

n	m			
	0	1	2	3
-3	0	0.0001	0.0003	-0.0006
-2	0	-0.0025	-0.0081	-0.0003
-1	0	0.033	-0.0062	-0.0049
0	0	0.8239	0.0547	-0.0144
1	-0.8546	0.3713	0.2141	-0.0007
2	-0.0242	0.0791	-0.0244	-0.0177
3	-0.0074	0.0012	-0.025	-0.012

Table II. Z boundary coefficients of a 6-periodic case optimized for quasihelical symmetry on the plasma boundary.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6