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Abstract. Computational stellarator optimization is used to create a configuration which
is quasi-helically symmetric at finite aspect ratio. For the aspect ratio per period chosen
(≈ 2) this procedure results in benign properties throughout the plasma volume.

Introduction

Previously, stellarator optimizations of quasi-symmetric configurations have been per-
formed with respect to the complete plasma volume, see e.g. [1, 2]. Since it was on one
hand proven that quasi-symmetries cannot be achieved exactly over the entire plasma
volume and, on the other hand, that they can be strictly obtained on one flux surface
[3], a different option for optimization is to choose a flux surface at finite aspect ratio
and realize quasi-symmetry there. This option is investigated here: The boundary of the
quasi-helically symmetric configuration obtained in [1] is selected and a 47-dimensional
configurational space comprising boundary Fourier coefficients with poloidal mode num-
bers m and toroidal mode numbers |n| up to 3 is used to try to achieve quasi-helical
symmetry at a toroidal aspect ratio ≈ 12 corresponding to an aspect ratio per period of
≈ 2. The result is the subject of this brief communication.

Results

Figure 1 shows structures of the strength of B =
∑

mn Bmn cos 2π(mθ +nφ) [with θ and
φ the poloidal and toroidal angle-like magnetic coordinates] in terms of its small Fourier
components, Bmn (the two largest components, B0 0 and B1 −1, are not shown). While in
the configuration of [1] all coefficients tend to get larger with increasing flux this is clearly
the case only for the helically symmetric coefficients in the configuration obtained here;
the coefficients perturbing the quasi-symmetry form two classes: those corresponding
to the optimization space chosen exhibit the quasi-symmetry at the plasma boundary
rather perfectly; the amplitudes of higher-order Fourier components not corresponding
to the optimization space remain at the few per mill level.

The comparison of the two configurations seen in Fig. 2 shows that the flux surface
geometry resulting from the optimization performed here is well-behaved. In cylindri-
cal coordinates (R,ϕ, Z), the plasma boundary is defined by the two functions R(u, v) =∑

mn Rmn cos 2π(mu−nv) and Z(u, v) =
∑

mn Zmn cos 2π(mu−nv), where v = Npϕ/(2π),
Np = 6, and u a poloidal parametrization. The boundary coefficients, Rmn and Zmn, of
the cases discussed here are given in Tables I and II. No constraints on the rotational



transform and the magnetic well have been used; as a result, the rotational transform is
slightly larger (see Fig. 3), the magnetic well slightly deeper than in the configuration
of [1].

In the context of quasi-symmetry the characterization of neoclassical transport prop-
erties is of particular relevance. Fig. 4 shows that the equivalent neoclassical ripple
(characterizing the level of the so-called 1/ν transport, see, e.g., [4, 5] and, specifically,

ε
3
2 in [6]) is of similar smallness in both configurations. From Fig. 5, it is seen that the

bootstrap current [7, 8] is similar, and from Fig. 6 that the collisionless loss of α-particles
is small, but a factor of about 2 smaller for particles started at half the plasma radius
and a factor of about 4 smaller for particles started at 0.7 of the plasma radius in the
configuration obtained here.

Conclusion

It appears that the procedure used here to obtain nearly quasi-symmetric configurations
is viable, too. The computational optimization was performed with a NAG routine
(E04UCF), i.e. exploiting the smoothness of the problem. A genetic algorithm [9] was
used to verify the global nature of the optimum found.
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Figure captions

Fig. 1. Small Fourier coefficients of the magnetic field strength in magnetic coordinates
of two quasi-helical configurations, top from [1] and bottom obtained here; B0 0 ≈ 1.3
and B1 −1 ≈ −0.18 at the boundary (top), B0 0 ≈ 1.4 and B1 −1 ≈ −0.22 at the boundary
(bottom) are not shown; —— low-m coefficients perturbing the quasi-symmetry; −−−−
quasi-symmetric coefficients; ××× high-m coefficients perturbing the quasi-symmetry.
The 17 largest of the small coefficients are shown.

Top: —— : (3, -2), (2, -3), (2, 0), (0, -1), (1, 1), (3, 0), (1, -2), (2, -1); −−−−: (3, -3),
(4, -4), (2, -2); ×××: (5, -4), (4, -2), (4, -1), (7, -6), (6, -5), (4, -3).

Bottom: —— : (0, -1), (1, -2), (1, 0), (2, -1), (2, -3), (1, -3), (3, -4); − − −−: (3, -3),
(4, -4), (5, -5), (6, -6), (7, -7), (8, -8), (2, -2); ×××: (5, -4), (4, -5), (7, -8).

Fig. 2. Magnetic surfaces at the beginning, quarter of and half of a period for two quasi-
helically symmetric configurations; top from [1], bottom obtained here. The boundary
coefficients of the latter are given in Tables I and II.

Fig. 3 Rotational transform vs. flux label; solid line: configuration found here, dash-
dotted line: [1].

Fig. 4. Equivalent neoclassical ripple ε (here used in the form ε
3
2 vs. flux surface label;

solid line: configuration found here, dash-dotted line: [1]. The spike in ε from [1] is due
to the incidental resonance, ιperiod = 1

4
.

Fig. 5. Structural factor of the bootstrap current vs. flux surface label; solid line:
configuration found here, dash-dotted line: [1]. The difference in the structural factor
at large flux label is again due to ιperiod = 1

4
near the boundary.

Fig. 6. Four different loss histories of 1000 collisionless α-particles started (randomly
distributed in the angular variables and pitch angle) at half and 0.7 of the plasma radius.
Normalization: plasma volume 103 m3, magnetic field 5 T. Each symbol marks the loss
of one particle in a cumulative way. The straight lines indicate the fractions of reflected
particles (in each case the lower line corresponds to half the plasma radius); dash-dotted
lines, � and *: configuration found here; solid lines, ◦ and �: [1].



Tables

n m
0 1 2 3

-3 0 0.0026 0.0003 −0.0008
-2 0 −0.0027 −0.01 0.0011
-1 0 0.0404 −0.006 −0.0071
0 11 1.1761 0.0463 −0.0317
1 0.6833 −0.5672 0.242 0.0315
2 0.0214 −0.0765 0.0665 −0.0752
3 0.0019 0.0058 0.0322 −0.0017

Table I. R boundary coefficients of a 6-periodic case optimized for quasi-
helical symmetry on the plasma boundary.

n m
0 1 2 3

-3 0 0.0001 0.0003 −0.0006
-2 0 −0.0025 −0.0081 −0.0003
-1 0 0.033 −0.0062 −0.0049
0 0 0.8239 0.0547 −0.0144
1 −0.8546 0.3713 0.2141 −0.0007
2 −0.0242 0.0791 −0.0244 −0.0177
3 −0.0074 0.0012 −0.025 −0.012

Table II. Z boundary coefficients of a 6-periodic case optimized for quasi-
helical symmetry on the plasma boundary.
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Figure 2
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Figure 3
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